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Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory dis-
order in which patients suffer from inflammatory-erosive arthritis. Recent
advances onhistopathology heterogeneity of RA synovial tissue revealed three
distinct phenotypes based on cellular composition (pauci-immune, diffuse
and lymphoid), suggesting that distinct etiologies warrant specific targeted
therapy which motivates a need for cost effective phenotyping tools in pre-
clinical and clinical settings. To this end, we developed an automated multi-
scale computational pathotyping (AMSCP) pipeline for both human and
mouse synovial tissue with two distinct components that can be leveraged
together or independently: (1) segmentation of different tissue types to
characterize tissue-level changes, and (2) cell type classification within each
tissue compartment that assesses change across disease states. Here, we
demonstrate the efficacy, efficiency, and robustness of the AMSCP pipeline as
well as the ability to discover novel phenotypes. Taken together, we find
AMSCP to be a valuable cost-effectivemethod for both pre-clinical and clinical
research.

Disease pathotyping with histopathology, the discovery of disease
subtypes using target organ histology, is a critical step in under-
standing etiology and response to therapy in heterogeneous dis-
eases, like rheumatoid arthritis (RA). Our understanding of RA, which
is a chronic, inflammatory joint disease, has greatly benefited from
histopathology subtyping because the disease has distinct and dis-
parate etiologies with largely stable pathotypes1,2 that show differ-
ential response to therapy3–7. However, the process of pathotyping a
patient can be resource intensive involving both basic and immune-

stains requiring a high level of expertise by pathologists to interpret
tissue and cellular histologic features, and prone to inter- and intra-
observer variation8,9. More cost effective and efficient procedures
need to be developed in order to incorporate these types of data into
a precision medicine decision making process.

Recent work describing RA pathotypes uncover three distinct
synovial pathotypes (1) cellular dense, lymphocyte rich (lymphoid),
(2) myeloid rich with few lymphocytes (diffuse/myeloid), and (3) fibro-
blast rich (pauci-immune); which are identifiable through distinct
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cellular and tissue level changeswithin synovial jointbiopsies4,10–13. These
pathotypes also correlate with antibody positivity (i.e. anti-citrullinated
peptide antibodies), with the lymphoid type enriched in antibody posi-
tive patients whereas both the diffuse/myeloid and pauci-immune types
have equal contributions of both antibody positive and negative
patients. This aligns with preclinical models that rely on antibody
dependent (e.g. Collagen InducedArthritis and Serum InducedArthritis)
and independent mechanisms (e.g. humanized TNF Transgenic and
Zymosan Induced Arthritis) to study disease and are phenotypically
similar to these pathotypes14. Thus, tools that allow us to study both
murine and humanpathologywould improve our overall understanding
of this heterogeneous disease.

Computational tools to study histological changes have been
shown to augment pathologist workflows and allow for the identifi-
cation of disease specific patterns15. In particular, machine learning,
and specifically deep learning, is a data-driven framework that has
recently had success in the automated analysis of musculoskeletal
imaging data16. Additionally, computational tools can automate and
provide a more holistic analysis of a wide variety of histopathologic
tissue and cell-level changes to enable a more detailed understanding
of disease subtypes. However, an automated and comprehensive tool
to study both tissue and cell type specific changes in arthritis that can
quantify therapeutic or clinically meaningful differences has not yet
been developed16.

In this work, we developed an automated multi-scale computa-
tional pathotyping (AMSCP) model to analyze tissue and cell-level
changes during the progression of inflammatory arthritis. This model
can pathotype both mouse and human inflammatory arthritis in
therapeutic intervention studies and clinical meaningful scenarios.
We leveraged innovative transfer- and active- learning techniques to
improve model performance and workload efficiency. Our modeling
framework consists of two distinct components that can be utilized
together or independently, (1) a method to segment different tissue
types to characterize tissue-level changes and (2) a method to clas-
sify cell types within each tissue compartment to study how these
change across disease states. We utilized two mouse models of
inflammatory arthritis to train and validate our computational
models with subsequent implementation on additional datasets to
measure therapeutic efficacy, known biologic differences and dis-
cover novel pathologic changes. Then, we utilized a human synovial
biopsy data set from the Accelerating Medicines Partnership Rheu-
matoid Arthritis (AMP-RA) research consortium to demonstrate our
model’s utility in a clinical setting by classifying lymphoid pathotypes
from diffuse/myeloid pathotype and identifying cell types associated
with the pauci-immune pathotype while preserving spatial cell-
level data.

Results
Deep learning segmentation can identify major tissue types
withinmouse knee histology andmeasure therapeutic response
Several model training choices, including patch overlap, training
strategy, and use of different amounts of augmentation during
training, were empirically derived from initial experiments to
inform the final training of the deep learning segmentation model
(UNET++)17,18. First, we tested if 0%, 50% or 66% patch overlap was
more performative and determined that 66% overlap performed the
best (0% Overlap fwIOU: 0.72 ± 0.04; 50% Overlap fwIOU:
0.93 ± 0.02; 66% Overlap fwIOU: 0.95 ± 0.01; Supplemental Fig. 4A).
Qualitatively, there were less tiling edge artifacts in the 66% overlap
vs 50% overlap results (50%—Arrows Supplemental Fig. 4B vs Fig. 1).
Second, a mixed training strategy was shown to overcome the large
staining batch effect (Supplemental Fig. 5A) commonly seen in his-
tology datasets with all levels of augmentation equally performative
(Supplemental Fig. 5B). However, if the data is restricted to a sin-
gle batch and data augmentation is introduced, model performance

for the single batch training strategy becomes comparable to
model performance using the mixed strategy (High Augmentation
UNET++ : 0.81 ± 0.02 vs 0.80 ± 0.06mIOU formixed and single batch
respectively), demonstrating the need for image augmentation dur-
ing training to generalize across batches with this level of hetero-
geneity in staining and other imaging variations (Supplemental
Fig. 5B and C). Thus, we chose to employ a mixed training strategy,
with 66% patch overlap and with high augmentation to optimize
model performance and generalizability.

Once the training strategy was established, model performance
was benchmarked across segmentation tasks at multiple tissue gran-
ularities and compared with a standard RF model built-in to QuPath
(Fig. 1). As expected, as the number of different tissue types increases,
model performancedecreases for both theRFandUNET++modelwith
the DL model outperforming the RF at all levels. Interestingly, the
magnitude of decrease is smaller for the UNET++ model compared to
the RF model suggesting that it is more robust to increased com-
plexity. When testing the UNET++ model, using the ten-class granu-
larity, model performance drops from 0.88± 0.06 mIOU for the
cartilage andmeniscus class to 0.83 ± 0.05mIOU for the cartilage class
and 0.0 ± 0.0 mIOU for the meniscus class indicating a complete loss
of meniscus identification (Supplemental Fig. 6). Because defining the
amount of cartilage and meniscus is a very important pathologic
readout in inflammatory joint diseases (e.g. pannus invasion at end
stage arthritis), we developed a finely tuned two-class model and
placed it sequentially after the 9-class model. Predictions from both
were incorporated during majority voting process to create a com-
posite 10 class model. Performance jumps for this fine-tuned model
from 0.72 ±0.01 mIOU to 0.82 ±0.02 mIOU (Fig. 1A, B). Specifically,
performance for the cartilage increased from 0.83 ± 0.05 to
0.90 ±0.04 and for the meniscus from 0.00 ±0.00 0.92 ±0.05, a
dramatic improvement (Supplemental Fig. 6C). We additionally
observe that the worst performing classes are the artifact class and
bone marrow fat class, the two most infrequent classes, suggesting
that fine tuning may work to improve performance for one or both
(Supplemental Fig. 6C, D). Thus, for all subsequent work we either
used the 9-class model (termed Original model) for ease of computa-
tion or the Fine-Tuned 10 class model for meniscus segmentation
because these provided the best predictive performance while
encompassing the most amount of tissues.

After Test set validation, we then sought to externally validate the
Fine-Tuned 10 class model (i.e., completely independent of the train-
ing, testing and validation process above) in two additional ways.
(1) We first validated our Fine-Tuned 10 class model directly on pre-
viously published data by comparing hand drawn histomorphometry
outlines of the synovial tissue previouslypublished in Bell et al.19 (n = 9)
to the synovial segmentation predictions that were in the Test set from
the TNF-Tg cohort (Batch A). There was a significant positive correla-
tion between the DL segmentation area and the hand drawn area
(r2 =0.96, Fig. 2A) which demonstrates the accuracy of our method
with hand drawn histomorphometry. However, linear regression and
RMSE analysis suggests it is not a perfect fit describing an over seg-
mentation at low areas (healthy samples) and under segmentation at
high areas (severely diseased samples). (2) We then validated our
model in a real-world setting by collecting 171 slides (64 knees, 2 or 3
histologic levels per knee) from 9.5month-old male TNF-Tg mice
either treated with anti-TNF therapy or placebo for 6weeks and from
6month-old TNF-Tg and WT (treatment naïve) mice used as
controls20,21 (experimental design schematic in Fig. 2B). Male TNF-Tg
mice display a robust inflammatory arthritis with synovial hyperplasia
and pannus invasion of the distal femur and femoral articular cartilage
(Fig. 2C, WT vs TNF-Tg, p < 0.0001; Fig. 2D, black arrow 2nd panel).
Anti-TNF therapy is known to reduce synovitis (Fig. 2D, blue outlined
tissue and * right panel) yet does not alter trabecular bone loss (Fig. 2D,
dark teal outlined tissue, red arrows right panels) in mice with
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established disease (>6months old)22,23. Our DL segmentation appro-
priately modeled these well-established structural changes autono-
mously (Fig. 2C, D), and it uncovered that cartilage degradation is also
moderately reducedwhenAnti-TNF therapy is provided at 8months of
age for 6weeks, which is an expected but novel result. Interestingly,
trabecular bone area is already decreased in 6month-old TNF-Tgmice
compared to WT counterparts while cartilage area is not, suggesting
that trabecular bone loss occurs before cartilage loss. Additionally,
multiple other tissue structures can be studied simultaneously

(Supplemental Fig. 7) showing the versatility of studying H&E seg-
mentation models to assess tissue structural changes within the con-
text of mouse disease models. Taken together, these analyses suggest
that our model accurately detects relevant and meaningful biologic
treatment effects with the potential to discover novel structural
changes. It is important to note that some of these slides were stained
with a variation of traditional H&E, H&E-Orange-G (see Methods)
demonstrating that our training strategy choices produced a model
that is robust even when introducing additional stain variations.

Fig. 1 | Afine tuned 10 classmodel cansegment relevant tissue in inflammatory
arthritis. A Mean Intersection over union (mIOU) and class frequency weighted
mIOU statistics from the held-out test set for the RF and DL segmentation models
at 4 different tissue granularities. Box and Whisker plots are constructed by
showing theMin, 25th percentile,Median, 75th percentile andMax, eachdot is one
slide, n = 16. B–F Representative images of H&E (B) image, with Ground Truth (GT,
C), RF (D), 9 class UNET++ (E) and Fine Tuned UNET++ (F) tissue overlays from the

Test set. Bi–Fi 2xmagnification of whole the joint. (Bii–Eii) 10xmagnification of
the anterior femoral condyle depicting synovial pannus encroachment reaching
the articular cartilage. Fii 10xmagnification of the posterior articular cartilage and
meniscus. (Biii–Eiii) 10xmagnification of the trabecular bone and bone marrow
proximal to the femoral growth plate depicting an area that was difficult to predict
for all models (Fiii) 10xmagnification of the posterior articular cartilage and
meniscus with the Fine Tuned UNET + + tissue prediction overlays.
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Tissue-Specific andArthritis EffectorCell Types canbe Identified
with ML in TNF-Tg Mice
We annotated a total of 4,712 cells across three stages of murine
inflammatory arthritis in the TNF-Tg mice (n = 6 healthy, n = 8 mild

disease, and n = 5 severe, Supplemental Fig. 8) to build a cell type
classification model that could recognize cells from various disease
stages. Cell nuclei were first segmented with HoverNet24, nuclei
boundaries passed to ImageJ where stain deconvoluted color features

Fig. 2 | The fine tunedUNET++modelmeasures treatment response in the TNF-
Tg with Anti-TNF therapy. A Inferred synovial area in the held-out test set com-
pared to historical hand drawn synovial histomorphometry area (n = 9, both Tissue
inferred Area and Hand Drawn Histomorphometry Area are normally distributed,
Pearson’s Correlation). B Anti-TNF therapy Study design. Six-month-old WT and
TNF-Tg mice were used as controls. Eight-month-old WT or TNF-Tg mice were
treated with Anti-TNF therapy or Placebo control for 6weeks (weeks post treat-
ment, wpt). Both left and right knees were collected and 2–3 histologic levels per
kneewere analyzed (n = Slides / Knees).CUsing the fine tunedUNETT + +model we
inferred tissue area of the Synovium (Left), Trabecular Bone (Middle) and Cartilage
(Right) for 6moWT (n = 17) and TNF Controls (n = 14) as well as Placebo (Irrelevant
IgG) treatedWT (n = 15), Placebo treated TNF-Tg (n = 10) and Anti-TNF treated TNF-
Tg (n = 8). Each dot represents one knee (average of 2-3 histologic levels), Box and

Whisker plots are construct by showing the Min, 25th percentile, Median, 75th
percentile and Max. Left Panel: TNF-Tg group was not normally distributed, data
was log transformed and a One-Way ANOVA with Tukey’s Post-hoc Test was per-
formed. Middle Panel: All data was normally distributed, and a One-Way ANOVA
with Tukey’s Post-hoc Test was performed. Right Panel: WT (Placebo) and TNF-Tg
(Placebo) groups are not normally distributed, datawas log transformed and aOne-
Way ANOVA with Tukey’s Post-hoc Test was performed. D Representative images
(2xmagnification) of 6mo WT and TNF Controls as well as 9.5 mo Placebo treated
WT, Placebo treated TNF-Tg and Anti-TNF treated TNF-Tg with predicted tissue
overlay. Note: black arrows denote pannus invasion of the femoral articular carti-
lage, the red arrows denote trabecular bone loss, and * denotes reduction in
synovial area.
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of both the nuclei and cytoplasm as well as nuclei shape parameters
were calculated. We next passed these data to our custom fea-
ture extraction pipeline leveraging our novel insight that cell type
predictive modeling dramatically improves with neighborhood fea-
tures (Supplemental Table 3) inspired by adjacent work tackling a
different classification task25. These neighborhood features include
standard statistical measure of neighboring cells within a radius to the
parent cell like hematoxylin intensity mean or kurtosis, whether the
parent cell was located in a dense region of other cells, and the shape
(convex hull) of the cells within a radius to the parent cell (Supple-
mental Table 2). The fidelity of thesemethodswas demonstrated in 2D
UMAP space, as most cell types are clearly distinguished (Fig. 3A). We
next built a gradient boosteddecision tree (GBDT) classificationmodel
(Xgboost) using nested stratified 5-fold cross validation training and
tested our models’ predictions using three methods. (1) we calculated
the average (± SD of folds) F1 of each cell class in the test sets (Fig. 3B).
Each cell class demonstrated a good F1, between 0.66 for vessel cells
and 0.94 for adipo-stromal cells with synovial associated cell classifi-
cations among the best (synovial lining cells = 0.90 ± 0.03; synovial
fibroblasts = 0.82 ±0.05; and synovial lymphocytes = 0.94 ±0.05). Our

next two validation strategies utilized tissue and disease context.
(2) Tissue segmentation using the Original model was performed on
these training slides and the remaining >300,000 cells cell-type clas-
sification was inferred. Tissues with known homogenous cell types, fat
tissue and cartilage/meniscus, were investigated and cell types among
these tissues were plotted. Within these adipose tissue and cartilage/
meniscus, the most predicted cell type were adipo-stromal cells (67%)
and chondrocytes (61%), respectively (Fig. 3C). (3) To assess predic-
tions in the context of disease, we utilized the synovial tissue predic-
tions only (as determined by the tissue segmentationmodel Fig. 1) and
stratified by disease severity. As shown by Fig. 3D, E, synovial-specific
increases in synovial fibroblasts, synovial lining cells and lymphocytes
are seen with increasing disease severity. These results suggest that
our cell type model can produce high quality predictions that are
sensitive to disease stage.

Given the promising intra-test set performance and tissue- and
disease-state specificity of the cell type modeling, we aimed to further
validate our model with a larger data-set with more biologic variation.
To do this, we utilize the previously described sexually dimorphic
synovial pathology in TNF-Tg mice19 and collected slides from

Fig. 3 | Cell type classification model successfully identifies important cell
types in inflammatory arthritis. A Uniform Manifold Approximation and Projec-
tion (UMAP) plot after principal component analysis dimensional reduction on 856
cell features of the annotated cells (colored by cell type, n = 4,712). B A gradient
boosted decision tree was trained using a parameter grid search with a nested,
stratified, 5-fold cross-validation training strategy. The F1 scores (M± SD) of the five
folds for each cell class are presented with the overall weighted F1 of 0.88 ±0.03
(M± SD). C–E On the remaining (not-annotated) cells (~300,000) on the 9 training

slides, the cell class was predicted using the most performant model. Tissue class
was also predicted using the Original segmentationmodel. C Predicted cell class is
plotted as a percent of total cells within the Fat tissue (Top) and Cartilage and
Meniscus tissue (Bottom). D Representative images of Synovial tissue cell class
predictions within an inflamed synovium. E Cell counts from the synovial tissue on
the Healthy, Mild disease and Severe disease training slides of lymphocytes (Left),
Synovial Lining Cells (Middle) and Fibroblast (Right). Each dot represents one
slide, M ± SD.
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3–5.5month-old WT and TNF-Tg-male and female mice. Confirming
our previous observation using traditional histologic scoring, we
found a significant increase of lymphocytes in female TNF-Tg syno-
vium at 3months of age with concomitant significant increase in
synovial lining cells (Fig. 4A, B). Interestingly, sexual dimorphism was
not observed when assessing synovial fibroblasts, which is a novel
finding (Fig. 4C). Finally, we found excellent correlations with our
computationally derived lymphocyte counts vs expert derived syno-
vial inflammatory score (rho =0.81, p < 0.0001), synovial lining cell
counts and pannus score (rho = 0.66, p <0.001), and total cell counts
vs total cell area (r2 =0.96, p <0.0001) (Fig. 4D–F). These data suggest
that our mouse cell typing model is sensitive to both subtle and dra-
matic tissue changes, and importantly recapitulates expert
scored data.

To reduce the annotation time, we explored various active
learning approaches retrospectively in the murine cell type data set.
Model performance using all the active learning strategies with 45% of
the total training size was comparable to using the complete dataset
with random sampling (0.8188 (0.8157–0.8219) vs 0.8213
(0.8184–0.8243), F1 ± SD). Additionally, with 45% of the data, the
model performance using active learning was higher than using a
randomly sampled set of examples (0.8188 (0.8157–0.8219) vs
0.8082(0.8053–0.8111) F1 ± SD) (Supplemental Fig. 10). Additionally,
the mean 5-fold CV macro F1-score was most different at the 10%–25%
of annotated data range, indicating that active learning can drastically
improve model performance with fewer examples.

Cell type modeling on human RA synovial biopsies predicts
pathotypes and correlates with clinical outcomes
After validating the active learning strategy in murine tissue, we next
applied this approach to generate cell type annotations on human
synovial tissue sections, aiming to reduce the overall histopathological
evaluation time for our pathologist. We collected a small subset of
initial annotations, predicted cell types on new cells and calculated the
entropy-based uncertainty, ranking the most uncertain cells for future
annotation by the pathologist. After multiple rounds with active
learning, a total of 2,341 cells were annotated (Supplemental Fig. 10).
Using a GBDT (xgboost) with a nested stratified 5-fold cross-validation
training strategy, we achieved good model performance ranging from
0.79-0.91 average F1-scores with the overall weighted F1 of 0.85 ± 0.01
(M ± SD, Fig. 5A). The confusion matrix from the best performing fold
(Fig. 5B) demonstrates that undifferentiated stromal-connective cells
are confused with vascular endothelial cells and synovial lining at the
highest frequency. Also, plasma cells are confused with lymphocytes.
These results suggest there is very little misclassification between high
level cell type (stromal vs lymphoreticular cells) but some mis-
classification within more specific cell classes. To further validate our
human RA cell typing model, we acquired adjacent immunostained
sections (Lymphoid, n = 7; Diffuse, n = 6; Pauci-Immune, n = 2) for
lymphoid (CD3, CD20 and CD138) and stromal-immune (CD3, CD68,
CLIC5 and CD34) markers to qualitatively and quantitatively assess for
cell type validity. Our qualitative analysis revealed a remarkable spatial
alignment of machine learning predicted plasma cells with CD138+

Fig. 4 | Computational pathology modeling recapitulates the sexual
dimorphismofTNF-Tg inflammatory arthritis.An independent set of slides from
the training slides were used to validate the cell type prediction model (3months-
old: WT Male n = 5, WT Female n = 4, TNF-Tg Male n = 6, TNF-Tg Female n = 5;
4months-old: WT Male n = 6, WT Female n = 4, TNF-Tg Male n = 5, TNF-Tg Female
n = 5; 5.5months-old: WT Male n = 4, WT Female n = 5, TNF-Tg Male n = 6, TNF-Tg
Female n = 6). Tissue segmentation was first performed to segment the synovium
and then cell type predictions were performed within the synovium.
A Lymphocytes predictions counts. Each dot is one mouse, Box and Whisker plots
are construct by showing the Min, 25th percentile, Median, 75th percentile and
Max. Please note the log scale. Lymphocyte counts were found to be lognormal, a
log transformation was performed on the data and a Two-WayANOVAwith Tukey’s
Post-hoc test was conducted. B Synovial Lining Cell prediction counts. Each dot is
one mouse, Box and Whisker plots are construct by showing the Min, 25th per-
centile, Median, 75th percentile and Max. Please note the log scale. A Two-Way

ANOVAwith Tukey’s Post-hoc test was conducted.Differences only shownbetween
the female andmale TNF-Tgmice. C Fibroblast predictions counts. Each dot is one
mouse, Box and Whisker plots are construct by showing the Min, 25th percentile,
Median, 75th percentile and Max. A Two-Way ANOVA with Tukey’s Post-hoc test
was conducted.Differences only shown between the female andmale TNF-Tgmice.
D Lymphocyte predictions compare to the synovial inflammatory score as pre-
viously quantified in Figure 2F of Bell et al.19. Lymphocyte counts were not normally
distributed. Spearman’s correlation, TNF-Tgmice only (n = 28). Please note the log
scale on the x-axis. E Synovial Lining cell counts compared to the pannus invasion
score as previously quantified in Supplemental Figure 3I in Bell et al.19. Synovial
Lining cell counts were not normally distributed. Spearman’s correlation, TNF-Tg
mice only (n = 28). Please note the log scale on the x-axis. F Total cell counts in the
synovium compared to the cell area as previously quantified in Figure 2D of Bell
et al.19. Total cell counts and cell area in the synovium were normally distributed.
Pearson’s correlation, TNF-Tg mice only (n = 28).
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cells (Fig. 5Ci, green outline middle panel vs green IF right panel) and
lymphocytes with CD3+ or CD20+ cells (Fig. 5Cii, blue outline middle
panel vs red/white IF right panel), synovial lining cells with CLIC5+ cells
(Fig. 5Ciii, light blue outline middle panel vs yellow IF right panel) and
vascular endothelial cells with CD34+ cells (Fig. 5Civ, grey outline
middle panel vs red IF right panel) in many of the sections. We also
observed some alignment of macrophage-histiocytes predictions with

CD68+ cells (Fig. 5Ciii, purple outline middle panel vs green IF right
panel) but these observations were much less consistent suggesting
that either the model fails to predict these cells outside of the training
data orH&Edefinedmacrophages-histiocytes are notwellmarkedwith
CD68 in our data.Wewere unable to acquire immunostains to validate
our fibroblast and stromal-connective cell classes. Lymphocyte, and in
particular B-cell, infiltration into the synovial tissue is an important
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pathologic finding to discriminate RA pathotypes2,11,26 and classify
disease severity27. Therefore, to quantitatively validate our lymphocyte
and plasma cell machine learning predictions vs fiducial protein cell
markers on adjacent slides, we performed thresholding histomor-
phometry analysis to count the number of either DAPI+
CD138+, DAPI +CD3+ or DAPI+CD20+ cells within regions of interest.
There is an excellent correlation between our machine learning pre-
dictions of plasmacells vsDAPI+CD138+ (rho = 0.94, p <0.002, Fig. 5D,
top), and lymphocytes with vs DAPI+CD3+ or DAPI+CD20+ cells
(rho = 0.95, p < 0.0001, Fig. 5D, bottom). Krenn inflammation score is
an important, expert derived histopathology score driven mainly by
the number of lymphocytes that are present in the whole synovial
biopsy specimen. Thus, we calculated the percent of machine learning
predicted lymphocytes to total cells and correlated with the Krenn
inflammation score in all samples (n = 60). This revealed a high degree
of correlation between the predictions and pathologist scores (rho =
0.88, p <0.0001, Fig. 5E). Taken together, this analysis demonstrates
we have an excellent synovial cell type predictionmodel that faithfully
predicts clinically relevant lymphoid cells.

To further validate model performance, cell type counts were
enumerated and proportions of total cells were calculated for the
entire synovial biopsy dataset and grouped bypathotype. Importantly,
our cell type predictionswere consistentwith the previously described
cellular distribution within each pathotype4,10,11,13. Specifically, synovial
fibroblast enrichment is found in the pauci-immune pathotype and
some diffuse cases, while lymphocytes and plasma cells are found
primarily in the lymphoid pathotype (Fig. 6A). Efficient pathotype
prediction is a clinically relevant task that we propose will reduce time
and cost in RA clinical trials. Area under a receiver operator curve
(AUROC) analysis demonstrates that percent plasma cells have a high
predictive capability for discriminating between diffuse and lymphoid
cases (AUROC=0.82 ± 0.06, p <0.0001, Fig. 6B). The optimal simple
threshold is 0.82% plasma cells of total can classify 19 out of 24 lym-
phoid cases and 25 out of 29 diffuse cases correctly. Representative
images of pauci-immune, diffuse and lymphoid cases with their
respective predictions demonstrate the cellular distributions of these
pathotypes (Fig. 6C). This data shows that our model can be used in a
clinically meaningful scenario and supports the development of such
tools in clinical trials.

Discussion
Here, we demonstrate that multi-scale modeling of synovial histo-
pathology can pathotype RA and inflammatory arthritis in clinically
meaningful settings, such as treatment response. Our model will
reduce the analytical bottleneck associated with histopathology
assessment in both the clinical and preclinical settings allowing quicker
times to intervention or hypothesis resolution. Furthermore, it will
reduce the amount of accessory immunostaining required for patho-
typing by using H&E stains to infer cell types, like lymphocytes and
plasma cells, which would otherwise need an immunohistochemical

(IHC) stain to confirm specific cell types. This could be very impactful
as the diffuse pathotype (plasma cell poor with enrichment in myeloid
cells) shows improved response to tocilizumab (anti-IL-6R antibody)4

while the fibroblast rich pauci-immune pathotype shows inadequate
response to anti-TNF therapy11. While we did not have enough speci-
mens to build a model to classify the pauci-immune pathotype in the
AMP-RA data set, we were able to classify a diffuse vs lymphoid
pathotype utilizing a simple threshold on plasma cell percent with an
AUROC of 0.82 ±0.06.

Computational approaches to understanding tissue and cellular
information from histology slides have greatly improved in recent
years. Specifically, tools to segment or classify malignant tissues and
cells from biopsy specimens28, and cell type classification on cytology
blood smears29 have seen the largest amount of development with
many applications acquiring FDA approval30. These tools have dra-
matically increased the throughput of clinical histologic analysis by,
for example, red flagging potentialmalignant caseswith >0.95 AUC for
further review31, classifying and counting cells on cytology smears or
slides for detection of malignant cells and other pathologies24,29.
However, there is a dearthof computational pathology tools outsideof
cancer or outside of diagnostic settings and within the space of mus-
culoskeletal pathologies32. Our work represents the first set of com-
prehensive tissue and cellular analysis tools for both pre-clinical and
clinical phenotyping (in this case pathotyping) in inflammatory
arthritis. In adjacent work in the oncology field, Pati and colleagues
utilized hierarchical graph convolutional neural networks to integrate
information from both the cellular and tissue levels on 2048 px
x 1536 px sized images (0.42 uM2 pixels)33. This model was largely
effective at detecting cancerous images with an F1 of 84.9% ±0.8%,
however did not perform well for non-cancerous, pre-cancerous or
normal images with F1s of 56.6 ± 1.7%, 66.1 ± 3.7%, and 66.2 ± 1.7%,
respectively. In other work, HoVer-Net is a state-of-the-art nucleus
segmentation and cell type classification deep learningmodel for H&E-
stained tissues24. HoVer-Net outperformed all other models in nuclei
segmentation, however, only achieved cell classification F1s from
0.30–0.68. Thus, we utilized the nuclear segmentation portion of the
model and transferred this knowledge into our custom feature
extraction pipeline for classification of cells relevant in RA synovial
pathology. In designing our feature extraction pipeline, we were
inspired by Wang et al.25 who used cell intrinsic features, contextual
features about surrounding nuclei, density features and spatial
arrangement features generated from a H&E tumor biopsy in a graph
neural net framework to predict if patients would benefit from check-
point inhibitor therapy.We extend this featuremodeling framework to
include both hematoxylin and eosin specific features, as well as cyto-
plasm features with statistical calculations of neighborhood features
that empirically show improved that cell classification performance
(Cell Intrinsic Features: 0.75 ± 0.01 vs Cell Intrinsic Features plus 150 px
distance features: 0.86 ± 0.02 vs All Features: 0.88 ±0.03, Supple-
mental Table 3 and Fig. 3). To the authors’ knowledge, our work is the

Fig. 5 | Cell type modeling correctly classifies synovial stromal and immune
cells inRA synovial biopsies. AA subset of cells from 13 RA synovial biopsies were
annotated (n = 2,341) using an active learning strategy. After nuclei detection and
custom feature extraction from each cell, a gradient boosted decision tree was
trained using a parameter grid search with a nested, stratified, 5-fold cross-valida-
tion training strategy. The F1 scores (M± SD) of the five folds for each cell class are
presented with the overall weighted F1 of 0.85 ± 0.01 (M± SD). B The confusion
matrix from themost performantmodel demonstrates the typicalmisclassification
in this dataset (data is cell counts). Stromal cells can be mistaken for other stromal
cells (vascular endothelial cells, synovial lining cells, and fibroblast) and lympho-
cytes can be mistaken for plasma cells. F: Fibroblast, L: Lymphoid, M/H: Macro-
phage/Histocyte, PC: Plasma Cell, S/C: Stromal/Connective Cell, SLC: Synovial
Lining Cell; VEC: Vascular Endothelial Cell. C, D The most performant model was
used to predict the cell type of the remaining cells from all RA synovial biopsies

(n = 60).CAdjacent sections to theH&E-stained slides were stainedwith eitherCD3
(T-Cells), CD20 (B-Cells) and CD138 (Plasma Cells) or CLIC5 (Synovial Lining), CD3
(T-Cells), CD68 (Macrophages), and CD34 (Vascular Endothelial Cells) (n = 15).
Representative images of plasma cells (Ci), lymphocytes (Cii), synovial lining cells
(Ciii) and vascular endothelial cells (Civ) with the original H&E in the left column,
prediction overlays in the middle, and adjacent slide IF in the right column.
Immunostains and magnification are denoted within the image. D Correlation of
machine learning predictionswith quantitative histomorphometry of IF+ cells from
adjacent sections of n = 15 RA synovial biopsy pieces. Top: CD138+ cells vs ML
Predictions of Plasms cells; Bottom: CD3+ and CD20+ cells vs ML Predictions of
Lymphocytes; Spearman’s Correlations (n = 15). Please note the log scale.
ECorrelation ofmachine learning predictions of lymphocytes (as a percent of total
cells) vs the Krenn Inflammation Score, Spearman’s Correlations (n = 60). Please
note the log scale on the x-axis.
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Fig. 6 | Cell type modeling can differentiate diffuse vs lymphoid cases with
plasma cell counts alone. A Cell type predictions were made on 58 RA biopsy
specimens (n = 5 Pauci-Immune, n = 27 Diffuse, n = 26 Lymphoid) and plots of the
Synovial Fibroblasts, Lymphocytes, and Plasma Cells percent of total cells
demonstrate the known clinical differences among these pathotypes. Each dot is
one human biopsy specimen, Box and Whisker plots are construct by showing the
Min, 25th percentile, Median, 75th percentile and Max. All data was not normally

distributed. Kruskal–Wallis tests with Dunn’s post hoc were performed. B Using
plasma cell counts alone, we can discriminate between diffuse and lymphoid cases
with a ROC-AUC of 0.82 ± 0.06 (n = 53). The optimal threshold is 0.82% plasma cells
of total cells. C Representative H&E and cell type prediction overlays with low
magnification and high magnification images of a pauci-immune case, diffuse case
and lymphoid case.
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first to utilize this type of framework in a cell type classification task.
Independent validation of our human cell tying model is needed to
formalize general applicability. However, we were able to utilize an
independent cohort of mouse inflammatory arthritis slides (Fig. 4)
which formally demonstrated the utility of such a model to recapitu-
late historical scoring measures and discover novel phenotypes.

Some computational approaches have already been successfully
applied to H&E slides of synovial biopsies of RA patients to quantify
cellular changes, such as nuclei density and its association with clinical
inflammatory measures34, and simple counting of CD3+ T-cells or
CD68+macrophages on IHC35–37. Further, pathologist scores of specific
cells types have been associated with quantitative inflammatory gene
expression changes in the RA synovium38. Our approach aimed to
incorporate the important cell types from this previous work while
producing models that only require H&E-stained tissues. However, RA
has been shown to be a complex polygenic autoimmune disorder with
various environmental risk factors contributing to multiple
etiologies4,39,40. As a consequence of this complexity, many RApatients
are refractory to existing approved therapies41–44. This highlights the
need for a personalized medicine approach to improve clinical trial
design and treatment allocation, as done in recent trials like the R4RA6

and PEAC26 that utilize ultrasound guided synovial biopsies and
pathotype evaluation to stratify patients. Our models may be able to
improve the workflow of these types of clinical trials and reduce the
overall cost. To realize the full potential of our human models and
understand unbiased performance, a formal independent validation
cohort needs to be developed.

One major benefit of our model is the fact that we used H&E-
stained tissues. These tissues are routinely and easily collected and
represent a large proportion of historical datasets allowing for larger
retrospective studies. While some of the computational pathology
tools utilize H&E-stained slides, many have utilized special stains
geared towards tissue- or cell type- specific classification32. This limits
the overall throughput and utility of such pipelines by adding addi-
tional steps and costs that may be prohibitive. In addition, using a
common stain facilitates transfer learning applications to other mus-
culoskeletal pathologies, like osteoarthritis, bone fracture or disc
degeneration, with different etiologies but similar tissue involvement
and histopathology requirements. However, this fundamentally limits
the specificity of some cell classes. For example, not all fibroblasts are
long, thin and spindly; not all macrophages are plump, granulated
cells; andnot all plasmacellshavea red/pinkish cytoplasmor clockface
appearance; all H&E histologic features which our pathologist utilized
during cell annotation (Supplemental Fig. 10). We address some of
these concerns by staining adjacent slides with fiducial protein mar-
kers (CD3, CD20, and CD138) that largely validate our lymphocyte and
plasma cell predictions. However, we found less consistency with
macrophage identification, likely due to the heterogeneity of CD68+
cells. Until high dimensional biochemicalmethods for cell labeling that
also allow subsequent high-quality H&E staining and imaging are
developed, like spatial transcriptomics, we will be fundamentally lim-
ited when reaching for multi-class cell typing.

Consensus scoring that utilize Likert scales45 is the gold standard
analysis method for histopathology. For RA, various types of assess-
ment, including Krenn lining and inflammation scores, rely on a con-
sensus grading system to summarize high level pathologic features of
the tissue (e.g. percent of area effected) and cells (e.g ranges of
quantity within a region)46,47. This reduces the challenge of quantifying
complex and heterogeneous disease states. This approach also has an
added benefit of often measuring large differences which usually
correspond to clinically meaningful differences. However, this reduc-
tion in complexity may remove vital biologic information about
treatment response or disease heterogeneity. For example, in our
previous workwe used a Likert scale to quantify synovial inflammatory
infiltrate inwhich a score of 3 corresponded to “>30 inflammatory cells

thick”. If we had utilized this system in an interventional study which
aimed to achieve a 50% reduction in synovial infiltrates but the number
of cells across the synoviumwent from 100 cells thick to 50 cells thick,
there would be no difference in the histology score despite a quite
large treatment effect.

In the current work, we attempt to quantify this complexity with
tissue segmentation and cell typing computational approaches. To
demonstrate the benefit of these approaches, we can calculate the
effect size (Glasse’s delta) between male and female TNF-Tg, 3month-
old synovium comparing the historical synovial inflammatory infiltrate
scoring system (Bell et al., Fig. 2F19) with our machine learning pre-
dictions of lymphocyte counts within the synovium (Fig. 4A) of the
exact same slides. This analysis reveals that our computational meth-
ods are orders of magnitude more sensitive to biologic differences
than histologic scoring (Histologic Scoring: 2.79 Glasse’s delta vs
Lymphocyte Counts: 74.82 Glasse’s delta). These differences in quan-
tification method represent ~25 fold increase in measured effect size
using the computational approach. This increased data sensitivity
does, however, place an additional burden on the investigator to fully
realize if ameasureddifference is clinicallymeaningful. Previously, this
burden was partly shouldered by the scoring mechanism. In addition
to more granular quantification of pathology these analyses are also
more efficient. For example, to generate the annotations to build our
segmentationmodelwe spent 200 + hours drawing annotations on the
94 slides. However, to infer the tissue segment on the 174 slides in
Fig. 2 the model took ~30 h of hands-off compute time with only 2–3 h
of labor to visualize the results, representing a ~120-fold increase in
efficiency.

Lastly, utilizing computational tools that quantify multiple tissues
and cell types improves the ability to find novel phenomena. For
example, while our primary focus is on the synovial pathology in
inflammatory arthritis, having a model that measures cartilage,
meniscus, and bone pathology provides a more comprehensive pic-
ture ofdisease. This allows easier detection of off-target or unexpected
therapeutic effects with a singular methodology. However, reliance
solely on computational modeling may increase false positives and
expert-level quality control is advised for high impact results.

In conclusion, we have developed a set of models that can char-
acterize tissue and cellular pathology in pre-clinical and clinical
inflammatory arthritis settings. These models can be leveraged to
better understand disease mechanisms in pre-clinical settings and be
used in a precision medicine pipeline to improve patients’ health.

Methods
Dataset description
All mouse work was approved by the University Committee on Animal
Resources at the University of Rochester Medical Center and the
Institutional Animal Care and Use Committee at the Hospital for Spe-
cial Surgery.Whole slide images (WSIs) of sagittalmouse knee sections
were taken from two differentmousemodels of inflammatory arthritis
and the accompanying controls for segmentation experiments (Sup-
plemental Fig. 1A). Batch A consisted of male and female TNF Trans-
genic mice (TNF-Tg, n = 47) and wild-type littermates (WT, n = 15) used
in previous publications19,20. Batch B consisted of previously unpub-
lishedmale and female knees that received intra-articular injections of
180 ug of Zymosan to induce Zymosan Induced Arthritis (ZIA, n = 24)
and control contralateral limbs (Control, n = 8)48 that were euthanized
on Day 7 after injection. Different batches were used to test model
generalizability across different biological mechanisms of arthritis
development, differences in H&E staining protocols and slide scanners
used to digitally capture slides at 40 xmagnification (Batch A: VS120
Olympus, 0.173μm per pixel; Batch B: CS2 Aperio Leica, 0.253μm
per pixel).

To further test model generalizability, 2 different independent
holdout datasets were used to validate the model: (1) the remaining
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H&E-stained sagittal knee WSIs from Bell et al.19,20 that were not
annotated or used in model training and (2) Orange G-H&E stained
sagittal knee WSIs from Kenney et al.21. Slides from Bell et al. were
ensured to not have been used in the initial model training, internal
validation, or testing. These included slides from 6month-old male
TNF-Tg (n = 33 slides from 14 knees) and WT littermates (n = 43 slides
from 17 knees), and slides from 9.5month old male TNF-Tgmice (anti-
TNF: n = 24 slides from 8 knees; Placebo: n = 29 slides from 10 knees)
andWT littermates (Placebo: n = 42 slides from 15 knees) either treated
with a 6week course of anti-TNF antibodies or placebo con-
trol (irrelevant IgG). To generate downstreammeasurements of tissues
of interest, a region of interest (ROI) was drawn from the tibial growth
plate to femoral growth plate including the anterior and posterior
extra articular tissue.

WSIs of H&E-stained human synovial biopsies were collected from
the Accelerating Medicines Partnership Rheumatoid Arthritis (AMP-
RA) Phase II consortium47. In short, synovial tissue biopsies were
acquired from RA patients at 13 different clinical sites in the United
States and 2 in the United Kingdom from October 2016 to February
2020. The study was performed in accordance with protocols
approved by the institutional review board at each site. The tissue was
paraffinembedded, stainedwithH&E and imagedon aVS120Olympus.
Three pathologists independently determined Krenn lining and
inflammatory infiltrates scores (0–3 each) for each tissue sample27, and
the mode of the three scores was used for further analysis. To classify
the cases into H&E based pathotypes, the UK Birmingham group
developed consensus semiquantitative four point scores for infiltrate
density and aggregate radial size on aper fragment basiswith a custom
atlas using a test set of tissues from the Birmingham Early Arthritis
Cohort49, scored by three pathologists. Aggregate grade was derived
as follows: Grade 3; high ≥ 20 radial count. Grade 2: medium 10–19
radial count. Grade 1: low6–9 radial cell count. Grade0:No aggregates.
This approach was validated by scoring tissues from the first AMP RA
cohort46 and original data is presented from the second AMP RA
cohort47. These semiquantitative scores were then used to classify the
cases into three pathotypes, either lymphoid (n = 27), diffuse (n = 26)
or pauci-immune (n = 5) according to the following rules: Lymphoid:
The presence of ≥1 grade 1 aggregate in at least two fragments, or any
grade 2 aggregate, or any grade 3 aggregate. Diffuse: Does not meet
lymphoid criteria but with a mean fragment density score≥ 1. Pauci-
immune: Does not meet lymphoid criteria, mean fragment infiltrate
density score < 1.

Semantic segmentation annotation and preprocessing
Manual annotations were performed within QuPath50 to assign labels
for WSIs. To test model performance across tissue types at different
granularity, multiple different class structures were tested (Supple-
mental Fig. 2). Eleven different classes were manually annotated,
including synovium, muscle and tendon, growth plate, bone marrow,
cortical bone, trabecular bone, articular cartilage, meniscus, fat, bone
marrow fat, and histology artifact (i.e., out of focus). A seven-class,
nine-class, and ten-class segmentation task was generated by merging
histologically similar tissues, such as merging cartilage and meniscus
into the same class (Supplemental Fig. 2). Overall, we estimate about
250hours were spent annotating the 11 tissue classes on 94 WSIs.

Due to the gigapixel nature of WSIs, the entire slide cannot be fed
directly into adeep learningmodel. Previousworkhas shown thatWSIs
canbebroken intopatches, in this case 512 pixel x 512 pixel, to perform
downstream learning tasks31. For semantic segmentation, a custom
QuPath script was used to export patches at a 4x downsample while
filtering out regions of the scanned slide that lacked annotations or
without tissue. Additionally, images were normalized to mean 0 and
standard deviation 1 by sampling a subset of patches to get mean and
standard deviation RGB statistics.

Semantic segmentation models and training strategy
Initially, a stratified random sampling method was used to randomize
the 94 annotatedWSIs into a Training, Validation, and Test split, using
70%, 15%, and 15% for each split, respectively (3 splits total, Supple-
mental Fig. 1B). We stratified by batch (e.g. staining and site differ-
ences) and disease type (e.g. healthy and disease) to ensure even
allocation of data variation into each set. Randomization occurred at
the slide level, as opposed to the patch level, to ensure no data leakage
across splits. During our initial qualitative explorations of models and
hyperparameters (detailed below), we only utilized Training and Vali-
dation sets; and calculated the Dice score on the validation set to
measure performance. Dice score was calculated as

Dice=
2 � intersection

union+ intersetion

These initial experiments included variations in SLIC feature
extraction, model selection (UNET vs UNET++), efficient-net backbone
size (B0, B2, B5), lossmetrics (weight loss vs unweighted), and learning
rate parameters as described below. Once these items were tuned,
quantitative experiments (details below) were performed varying the
tissue segmentation number (7, 9, 10, or 11), image augmentation
(None, Low, Medium, or High), or patch overlap percentage (0%, 50%,
66%). These experiments were performed by training the models with
the Training and Validation sets, freezing the models’ weights, and
then inferring segmentation on the Test set. These inferences were
then compared to the ground truth labels to calculate the mean
Intersection over Union (mIOU) or the frequency weighted mIOU
(fwIOU). The fwIOU is the class frequency weighted sum of the mIOU.

In addition, to assess how site-specific differences in histology
slides may impact model performance51, we performed a single batch
training method while varying the image augmentation style. In this
training strategy, Batch A (n = 62) was used for the Training (45%) and
Validation (20%) sets, and Batch B (n = 32, 35%) was used as the held-
out Test set. These experiments were performed to assess if image
augmentation could overcome batch related staining differences that
are seen in the real world.

Data augmentation strategies were also tested to assess their
impact across the different training strategies (Supplemental Fig. 3).
We had three different levels of augmentation tested, (1) None, (2)
Low, (3) Medium, and (4) High. The python package imgaug52 as used
to implement augmentation. Augmentation was applied in the fol-
lowing way: (1) None had zero augmentation, (2) Low had 2–4 aug-
mentation process applied 25% of the time, (3) Medium had 3–7
augmentations applied 50%of the timeand (4)High augmentation had
5–11 augmentation process applied 50% of the time during training.
Augmentation was randomly selected from 11 different types of aug-
mentations including, horizontal flip (p =0.5), coarse dropout or pixel
dropout from 0.2x the original image resolution (p = 0.1), one of three
different rotation types at 90°, 180°, and 270°, additive gaussian noise
sampled from a normal distribution withmean 0 and variance 0.2*255,
blur using gaussian kernel with sigma of 1.5, hue modification using
addition (−30,10) and saturation modification using multiplication
(0.5,1.5) and linear contrast (0.5,2), brightness adjustment both
add(−30,30) and multiply (0.5,1.5), and color change adjustment
(3000, 8000). Data augmentation was performed only during the
training of the models, not during testing or inference.

To compare segmentation performance using both conventional
machine learning and deep learning methods, we tested two different
model architectures. A Random Forest (RF) model implemented in
QuPath with OpenCV53 and an U-Net++54 deep learning model imple-
mented in PyTorch (1.8.0)55. We qualitatively assessed both pixel level
segmentation and super-pixel level segmentation in QuPath and
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determined super-pixel segmentation performed better. To generate
super-pixels, we applied a Simple Linear Iterative Clustering (SLIC)
algorithm (σ = 5, spacing = 20μm, Max Iterations = 1, Regularization =
0.01) inwhicheachover segmented areawas considered a super-pixel.
We qualitatively assessed SLIC feature extraction variations and chose
to extract RGB, estimated Hematoxylin, Eosin and residual stain
means, standard deviations, min, max, and median values from each
SLIC super pixel. We also calculated theHaralick value using a distance
of 1 and bin of 32. We next calculated the average features of super-
pixels within 40 and 80μms. These features were then used in the RF,
which was implemented fully in QuPath using their “Train Object
Classifier” GUI with max depth = 20,min sample count = 10, Active
variable count = 0, maximum trees = 50 and termination epsilon =0.
Fourmodelswere built, one for each of the 7 class, 9 class, 10 class and
11 class segmentation tasks. After the models were trained, they were
used to infer on the Test set and performance metrics calculated.

For our deep learning pipeline, we utilized the segmentation_
models_pytorch56 package for the UNET++ implementation with an
ImageNet pre-trained EfficientNet-B5 backbone for the encoder to
improve training time and computational efficiency57. The decoder
was left unchanged from the native UNET++ architecture except for
the final layer which was changed to match the number of tissue types
being segmented. We also initially explored using the UNET archi-
tecture and other efficient net backbones, however UNET++with a B5
backbonewas found tobemostperformant.We initially exploredboth
class frequency weighted loss and un-weighted loss and the un-
weighted loss demonstrated improved performance. We utilized a
combo loss calculation, which was the arithmetic average of the dice
loss and binary cross entropy (BCE) loss during model training58. We
explored a few hyperparameter variations for the learning rate sche-
duler including step size = [1,2], gamma = [0.25, 0.5] and learning rate
start = [0.01, 0.02, 0.025]. From initial explorations we found that a
step size of 2, a gammaof 0.5 and a learning rate start of 0.025 resulted
in the best performance. We used a stochastic gradient descent (SGD)
optimizer with momentum (0.9) and regularization of 1 × 10−4 and the
models were trained for 10 epochs at a batch size of 40.

When jointly training across 10 different classes, this model pro-
vided no prediction for the meniscus class resulting in a mean Inter-
sectionOver Union (mIOU) of 0 ±0 (Supplemental Fig. 6), likely due to
insufficient training examples (Supplemental Fig. 2; 0.9% frequency
overall). As the meniscus was important for downstream biological
analyses,we developed a strategy to improve predictions for this class.
A secondUNET++model was fine-tuned from the nine-classmodel (i.e.
the model that has cartilage and meniscus merged into one class) by
changing the prediction (final) layer specifically to predict between
cartilage and meniscus. We then re-trained the full model only on
images and Ground Truth annotations (GTs) that contained either
cartilage or meniscus within the mixed training set.

Previous work had suggested that UNET based semantic seg-
mentation can have image boundary level artifacts17. Therefore, we
assessed how including patch level overlap for prediction can improve
model performance. We included experiments using no overlap, 50%
overlap and66%overlapbetween themwith images frombothbatches
(Supplemental Fig. 4). Toanalyze the results, we looped through all the
predictions (N) for the entire WSI and calculated a majority vote for
each pixel after thresholding to remove low confidence predictions
(pixel value of 75). N can be variable depending upon the region, for
example if it is on border, but typically is between 4 and 9.

Semantic segmentationmodel evaluation, inference on external
validation set and statistical evaluation
To evaluate the semantic segmentation model performance for the
Validation and Test set slides with ground-truth labels, we calculated
the mean Intersection over Union (mIOU) and frequency-weighted
mIOU (fwIOU) to prevent very rare classes from drastically impacting

overall model performance59. All model hyperparameter optimization
was performed on the Validation set, and once the above parameters
were chosen the models were used to infer segmentation on the Test
set and the mIOUs were calculated.

We used the optimal settings from the training/validation process
to evaluate themodel performance on the held-out datasets. Pearson’s
correlation was used to compare the hand drawn synovial tissue area
reported in Bell et al.19 with model classified synovial tissue area. The
fine-tuned 10-classmodel was used to infer tissue segmentation on the
held-out data21,60. Specifically, the UNET++ 9 class model was used to
predict tissues classes on each patch, and if the nine-classmodel had a
prediction output for the combined Cartilage-Meniscus class on a
patch, then the patchwas passed through the fine-tuned 2 classmodel
to assign to either the meniscus or cartilage class. Predictions were
merged by only allowing the fined tuned predictions to be within the
predictions from the combined Cartilage-Meniscus class. Once the
inference was complete, a ROI was drawn on each slide from femoral
growth plate to tibial growth plate around the joint to restrict the
downstream analysis to the joint space, subchondral bone, and syno-
vial adjacent tissue. Tissue area was calculated for each slide and
averaged for each knee then a One-Way ANOVA with Tukey’s post-hoc
adjustment was used to detect significant differences.

Cell type classification framework and preprocessing
For cell type classification, a combination of transfer learning and
active learning was used to identify several different cell types that
exist within the joint tissue. Cell type classification canbe broken into a
two-step process, (1) segmentation and (2) classification. For cell seg-
mentation, transfer learning was used by leveraging a deep learning
model, HoVer-Net24, pretrained on the PanNuke dataset61, to extract
nuclei regions. Image patches (1024× 1024 pixels) at 40 x
magnification were given as inputs, and ROI contours of nuclei were
obtained to perform feature extraction upon. These nuclei with their
features and labels (detailed below) were then leveraged in a gradient
boosted decision tree (GBDT, XGBoost (https://xgboost.readthedocs.
io/en/stable/) implemented within the ScikitLearn package (https://
scikit-learn.org/stable/)) model to classify cells.

The input for the classifier was derived from features extracted
from each ROI generated by HoVer-Net. Specifically, every nucleus
from the json file output of HoVer-Net was converted into a ROI (.roi)
file to be read into FIJI/ImageJ62 for feature extraction using a custom
script. Detailed workflow for the ImageJ/FIJI analysis is described as
follows. Each image was split using the built-in color deconvolution63

algorithm in FIJI into hematoxylin and eosin color channels. For each
channel the nuclei were measured for several different parameters,
includingmorphological quantities (area, perimeter, circularity, feret’s
diameter, feret angle, aspect ratio, roundness, and solidity) and
staining color quantities (mean, mode, min, max, standard deviation,
skewness, median, and kurtosis). The nuclei ROI was then enlarged by
20px, the original nuclei masked out, and the data from this surround
20px was used to calculate cell specific cytoplasmic H&E color infor-
mation for each cell. These features are called cell intrinsic features
(Supplemental Table 1). Neighborhood characteristics of cells at sev-
eral different distance ranges (150px and 300px)wereused to include
local cell and tissue level context into cell type classification (Supple-
mental Table 2)25. Simply, a neighborhood is determined as all the cells
within a certain distance to the parent cell. These neighborhood
characteristics included the average, standard deviation, skew, kurto-
sis, Z-score, interquartile range, standard error of the mean and
entropy the cell intrinsic features of cells in the neighborhood.We also
calculated shape characteristics of the neighborhood including the
average distance of the neighboring cells, the linear correlation coef-
ficient of the cells within the neighborhood, a string of up to 30 cells
linear correlation coefficient, the strait line distance of a string of up to
30 cells, a scored measure of density of the cells and the number of
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cells within the distance measure. A final total of 854 features were
extracted for the downstream analysis.

Known healthy and pathologic cell types that contribute to
inflammatory arthritis were then annotated on bothmouse and human
tissues (details below, Supplemental Figs. 8 and 10). Themouse proof-
of-concept classification taskconsistedof bone-embedded cells, blood
vessel cells, adipo-stromal cells (both adipose and stromal cells within
fatty tissue), synovial fibroblasts (healthy and pathologic), chon-
drocytes, lymphocytes, and other synovial lining cells (healthy and
pathologic) as detailed in Supplemental Fig. 8; annotated by subject-
matter experts familiar with histologic analysis of these cell types.
These cells were annotated on six healthy, eight mild disease and five
severely diseased TNF-Tg knee sections. For human samples, a clini-
cally meaningful set of cell types were labeled by a senior pathologist,
following a standard cell type hierarchy (Supplemental Fig. 10). These
included stromal/connective tissue cells, synovial lining cells, synovial
fibroblasts, vascular endothelial cells, tissue macrophages/histocytes,
lymphocytes, and plasma cells. These cells were labeled on five lym-
phoid, five diffuse and three pauci-immune cases. Nuclei were then
mapped to manually annotated nuclei by checking if a nuclei’s cen-
troid (as determined by Hover-Net) was within an annotation mask.

Mouse cell type classification model
A total of 4,712 cells were annotated for mouse cell type classification
from seven different classes (Supplemental Fig. 8). Cells were labeled
from a total of 19 different slides. A GBDT model was trained for cell
type classification (XGBoost (https://xgboost.readthedocs.io/en/
stable/) implemented within the Scikit-learn package (https://scikit-
learn.org/stable/)), using stratified nested 5-fold cross validation with
grid search to select the best models. In order to minimize the influ-
ence of annotations from any one slide, we enforced an even sampling
method to ensure approximately equal numbers of cells from each
slide appeared in all folds (sklearn.model_selection.StratifiedKFold).
To tune the parameters of the GBDT, we performed a grid search
(sklearn.model_selection.GridSearchCV) on the inner CV for learning
rate = [0.05, 0.1, 0.2], colsample_bytree = [0.6, 0.8, 1.0], subsample =
[0.25, 0.5], max_depth [6,12], n_estimators = [10, 100, 200, 400],
gamma= [0, 0.1, 0.3], and min_child_weight = [1,5,10]. To evaluate
model performance, F1 statistics were calculated as the average of the
5 external folds and then the best performingmodels was used to infer
cell type in two different biological settings, (1) to identify cell com-
position changes across different disease severities on the remaining
cells (>300,000) on the 19 slides, and (2) identify differences between
male and female mice in the context of disease progression in a held-
out dataset19. Finally, average synovial inflammatory infiltrate scores
and average pannus invasion scores were correlated with lymphocyte
and synovial lining cell counts respectively (Spearman’s Correlation).

Feature ablation studies
To demonstrate the performance improvements of the distance fea-
tures, we performed a feature ablation study within mouse cohort in
which no distance features were utilized, features at distance 150 px
and all features (cell intrinsic features, 150px features and 300px
features) in out modeling framework (detailed above). To evaluate
model performance, F1 statistics were calculated as the average of the
5 external folds.

Active learning implementation
Human annotation was the time-consuming step for the cell type
classification pipeline. Therefore, we applied the active learning
strategy to improve the annotation efficiency for cell annotation of
human samples. Todevelop this strategy,we tested aproof-of-concept
active learning strategy using labeled data from the mouse H&E slides
(Supplemental Fig. 9). Active learning is an iterative process that
consists of threemain steps, (1) annotation, (2) model training, and (3)

sample selection for further annotations. Its goal is to select the sam-
ples that can lead to the largest model performance improvement
when adding to the training data after annotation. To validate the
strategy, 100 different rounds of 5-fold cross-validation were per-
formed. Average F1-scoreswere reported for each class and amacro-F1
scorewas additionally reported. 25 runs of 5-fold cross validation were
removed due to cells from a single class not being present in both the
training and testing sets. For the training dataset for each split, 5% of
cells were first randomly selected as the first set of cells selected as
being labeled annotated. Subsequently, theGBDTclassifierwas trained
using this randomly selected data. Several different metrics for
determining cells for annotation and subsequent model finetuning,
including smallestmargin uncertainty64, least confidence uncertainty65

and entropy-based uncertainty64 were assessed. The top 5% of cells
were added to the training dataset and the cycle of model training and
evaluation and new cell annotations continued until the entire training
dataset was used. A random selection of cells after shuffling was also
tested to compare model performance to the various active learning
strategies. The packagemodal66 was leveraged in our implementation.
Mean and 95% confidence intervals are reports for each subset across
the 75 different runs of 5-fold cross validation.

Cell classification model evaluations
Confusion matrices were generated for model prediction along with
F1-scores calculated as 2 � precision�recall

precision+ recall, where precision= TP
TP + FP and

recall = TP
TP + FN, where TP, FP, FN stand for true positives, false posi-

tives, falsenegatives.Modelswere tested using known cell typeswithin
specific tissue types to evaluate the model qualitatively.

Human synovial biopsy cell type modeling
Active learning was then leveraged for human cell type classification
using H&E-stained slides of human synovial biopsy tissue of RA
patients from the AMP consortium as described above. A subset of
slides was selected to be annotated (Lymphoid, n = 5; Diffuse, n = 5;
Pauci-Immune, n = 3) that represent the diversity of specimens within
this cohort. Multiple rounds of cell type labeling were performed with
the assistance of active learning, to obtain a total of 2,639 cells
grouped in seven different cell types, detailed in Supplemental Fig. 10
(stromal/connective tissue cells n = 597, synovial lining cells n = 309,
synovial fibroblasts n = 189, vascular endothelial cells n = 486, Tissue
Macrophages/Histocytes n = 201, lymphocytes n = 826, and plasma
cells n = 310). A cell type classification model using GBDT was trained
using a stratified nested 5-fold cross validation with grid search strat-
egy (as described above) to select the best models. F1 statistics were
calculated as the average of the 5 external folds. The best performing
model was used to infer cell types all cells on the slides within this
patient cohort (n = 58 subjects; 2,976,535 total cells). Summary cell
type quantification (total cell counts and percent of total) was then
assessed for each patient. Two analyses were performed using the
derived cell types from the cell classification model. First, cell type
counts and proportions were correlated with either immuno-
fluorescent stained adjacent sections (described below) or with a
pathologist-derived, and clinically relevant Krenn inflammation scores.
As these data were non-normal, we utilized a Spearman’s correlation.
Second, we assessed the frequency of cell types across pathotypes.
Specifically, statistical significance testing using lymphocyte, plasma
cell, and fibroblast slide proportions were evaluated across patho-
types. Additionally, weperformed a receiver-operator curve analysis of
plasma cell frequency of total to predict if a biopsy was a lymphoid or
diffuse case (n = 53).

Immunofluorescence (IF) and histomorphometry
Adjacent sections from 15 of the RA synovial biopsies were stained in
batches with either CD3 (T-Cells), CD20 (B-Cells) and CD138 (Plasma
Cells) or CLIC5 (Synovial Lining), CD3 (T-Cells), CD68 (Macrophages),
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and CD34 (Vascular Endothelial Cells) antibodies; and counter stained
with DAPI. In depth staining procedures are described in the original
work47. All IF images were imported into QuPath to perform histo-
morphometry. All biopsies were evaluated for tissue morphology
similarity to the adjacent H&E to ensure as little physical distance
between the sections as possible. To count IF+ cell, DAPI+ cells were
first segmented with a watershed algorithm in QuPath (cell detection)
and then mean CD138, CD3, and CD20 IF intensity for each cell was
calculated. Staining batch specific thresholds for each channel were
used to count positive cells.

Visualization of data
Uniform Manifold Approximation and Projection67 visualization was
used for feature representations between batches and cell type fra-
mework features. Both tissue segmentationmasks and cell typemasks
for each class were reimported into QuPath50 for visualization
purposes.

Statistical approach and implementation
All graphing and hypothesis testing statistics were performed in Prism
(10.0, Graph Pad, Boston, MA). For all continuous variables, a Shapiro-
Wilks Normality test was performed to assess normality. If the test
determined the specific distribution to be non-normal, the equivalent
non-parametric test was utilized to test for significance or correlation.
If an ordinal variable was being associatedwith a continuous variable a
non-parametric Spearman’s correlation was chosen. Otherwise, One-
Way, Two-Way and Two-Way Repeated Measures ANOVAs with
Tukey’s Post-Hoc tests were used to test for significant main effects,
interaction effects and post-hoc pairwise differences. All pairwise tests
are two-tailed. Specific test information including sample size for each
figure is provided in the “Supplemental Statistical Information Per-
taining to Data Presented in Figures” document.

Software and hardware
Qupath (0.3.2 or later) was used to visualize WSIs and annotate tissues
or cells as well as perform some image processing (detailed above). All
othermachine learningordeep learning techniqueswereperformed in
Python (3.8.1) as described above. Primary machine learning libraries
include PyTorch (1.8.0), segmentation_models_pytorch (0.1.3)56

Sklearn (scikit-learn, 1.3.2), and xgboost (2.0.2). Deep learning seg-
mentation training was performed on four Nvidia V100’s GPUs with 16
gb of RAM in parallel with a CUDA implementation (11.6.2). Segmen-
tation inference was performed on either a Nvidia 3070 or 3090. Cell
type classification was performed on an Nvidia 3070.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information. Source
data are provided with this paper as a Source Data file. AMP-RA data
can be accessed via the source work47. Source data are provided with
this paper.

Code availability
All analysis scripts and models are provided at https://github.com/
rdbell3/Arthritis_HistoPath. Full environment dependencies are in the
spec-files in the Segmentation or Cell Classification folders.
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