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We present an integrative approach, SeqFold, that combines high-throughput RNA structure profiling data with compu-
tational prediction for genome-scale reconstruction of RNA secondary structures. SeqFold transforms experimental RNA
structure information into a structure preference profile (SPP) and uses it to select stable RNA structure candidates rep-
resenting the structure ensemble. Under a high-dimensional classification framework, SeqFold efficiently matches a given
SPP to the most likely cluster of structures sampled from the Boltzmann-weighted ensemble. SeqFold is able to incorporate
diverse types of RNA structure profiling data, including parallel analysis of RNA structure (PARS), selective 29-hydroxyl
acylation analyzed by primer extension sequencing (SHAPE-Seq), fragmentation sequencing (FragSeq) data generated by
deep sequencing, and conventional SHAPE data. Using the known structures of a wide range of mRNAs and noncoding
RNAs as benchmarks, we demonstrate that SeqFold outperforms or matches existing approaches in accuracy and is more
robust to noise in experimental data. Application of SeqFold to reconstruct the secondary structures of the yeast tran-
scriptome reveals the diverse impact of RNA secondary structure on gene regulation, including translation efficiency,
transcription initiation, and protein-RNA interactions. SeqFold can be easily adapted to incorporate any new types of high-
throughput RNA structure profiling data and is widely applicable to analyze RNA structures in any transcriptome.

[Supplemental material is available for this article.]

Regulatory information in RNA is encoded not only in its primary

sequence but also in its structure with complex base pairing pat-

terns. Virtually every step in the gene expression program, from

transcription to splicing and translation, is influenced by RNA

structure. Precise mapping of the RNA structure is essential for

understanding the functions of RNAs, especially for the large set of

functionally uncharacterized noncoding RNAs (ncRNAs) (Wan

et al. 2011). Experimental methods for RNA structure determina-

tion include X-ray crystallography (Guo et al. 2004), NMR (Latham

et al. 2005), cryo-electron microscopy (Mueller et al. 2000), and

chemical and enzymatic probing (Romaniuk et al. 1988; Brenowitz

et al. 2002; Alkemar and Nygard 2006; Das et al. 2008; Mitra et al.

2008). Although quite accurate, these methods are traditionally

only applicable to analyze a single RNA per experiment and limited

in the length of the probed RNA. Computational methods, aiming

at predicting RNA structure from primary sequence, have been

developed and can be applied to a large number of RNAs with the

increasing computational power (Hofacker et al. 1994; Mathews

et al. 1999; Ding and Lawrence 2003; Zuker 2003). However, in

silico algorithms have variable accuracy and may be limited by the

scope of applicability under real experimental conditions.

To overcome these limitations, we and others have developed

high-throughput experimental methodologies for in vitro pro-

filing of many RNA structures simultaneously, termed the RNA

structurome (Kertesz et al. 2010; Underwood et al. 2010; Lucks

et al. 2011; Li et al. 2012; Wan et al. 2012). In Parallel Analysis of

RNA Structure (PARS), precise RNA fragments generated by single-

strand specific enzyme S1 and double-strand specific enzyme V1

are read out by deep sequencing (Kertesz et al. 2010). PARS of

the yeast transcriptome generated structure profiles of more than

3000 transcripts. A similar approach applied high-throughput se-

quencing to fragments generated by single-strand specific nuclease

P1 (FragSeq), which was applied to mouse ncRNAs in two cell types

(Underwood et al. 2010). The selective 29-hydroxyl acylation an-

alyzed by primer extension (SHAPE) chemistry, combined with

multiplexed bar coding and next generation sequencing (SHAPE-

Seq), was able to measure the structures of a complex pool of RNAs

(Lucks et al. 2011). These high-throughput RNA structure profiling

technologies provide quantitative information of RNA pairing

at nucleotide resolution. However, each data set has been analyzed

by different methods by the authors, and no current method al-

lows automated analysis and comparison across different RNA

structurome experiments.

The advent of high-throughput RNA structure profiling chal-

lenges existing approaches for integrative prediction of RNA sec-

ondary structures. For instance, the RNAstructure (Mathews et al.

1999) program, initially developed for computational prediction

of RNA secondary structure using the minimal free energy (MFE)

principle, proposed to model SHAPE reactivity as pseudo-free en-

ergy to constrain RNA folding. It demonstrated considerable im-

provement over MFE when applied to certain RNAs with focused

SHAPE experiments (Deigan et al. 2009; Watts et al. 2009). Nev-

ertheless, high-throughput RNA profiling data poses two impor-

tant challenges for extant methods. First, current analytic methods

assume the availability of very dense experimental data—nearly
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every base of short RNAs to be modeled—whereas genome-scale

RNA accessibility data show much sparser coverage of data points

per transcript for thousands of full-length transcripts. Notably,

recent analyses indicate that even dozens of focused SHAPE ex-

periments on individual RNAs may not generate sufficient data

density for such modeling strategies, leading to considerable

modeling errors when compared to known structures (Kladwang

et al. 2011). Second, the applicability of current integrative methods

is limited by the scalability to the whole transcriptome. For exam-

ple, the SHAPE pseudo-free energy term relies on adjustable pa-

rameters because of its nonphysical nature. With the availability of

high-throughput experimental data, the current challenge is to scale

up the integration to the genome-scale. Ideally, the integrative

strategy should take potentially noisy experimental data directly as

input without manual curation.

We describe a systematic method, called SeqFold, that effi-

ciently leverages high-throughput RNA structure profiling in-

formation into computational modeling. As shown by Quarrier

et al. (2010), the use of experimental data to select structures from

the Boltzmann-weighted ensemble (Ding and Lawrence 2003)

rather than to constrain free energy minimization enables struc-

ture modeling to be more robust to noise. This may be especially

important for genome-scale experiments in which a large amount

of noise is inevitably produced. Here we extend this concept with

a key modification suitable for transcriptomic data. Our method

differs from Quarrier et al.’s (2010) ‘‘sample and select’’ approach

by the choice of candidate structures to be selected. The ‘‘sample

and select’’ approach selects individual structures directly sampled

from the Boltzmann-weighted ensemble. In reality, the number of

possible structures increases exponentially along with the length

of RNAs, leading to an RNA of n nucleotides having 1.8n possible

secondary structures (Zuker and Sankoff 1984). Thus, exploration

of the entire sample space would require huge computational

resources that are beyond current state-of-the-art computational

power. Importantly, Ding et al. (2005) showed that Boltzmann-

weighted ensembles of RNA secondary structures often have

multiple (3.2 on average) clusters, and the centroids of structure

clusters are statistically reproducible with a sample size of 1000.

Strikingly, the centroid of the cluster nearest to the known refer-

ence structure is a substantially improved structure prediction over

MFE prediction (Ding et al. 2005, 2006). However, computational

approaches have failed to identify which of the clusters is closest to

the known reference structure. This motivates us to use genome-

wide experimental data to choose among candidate clusters.

We implement the SeqFold algorithm to predict RNA sec-

ondary structure incorporating current high-throughput RNA

structure profiling data, such as PARS, FragSeq, SHAPE-Seq, and

conventional SHAPE data. We apply SeqFold to predict RNA sec-

ondary structures of the yeast transcriptome. Analysis of the

structural profile output of SeqFold reveals the diverse roles of RNA

secondary structure in translation efficiency, transcription initia-

tion, and identification of RNA binding protein (RBP) targets.

SeqFold can be freely downloaded from http://www.stanford.edu/

;zouyang/seqfold.

Results

The framework of SeqFold

We illustrated the strategy of SeqFold for RNA structure prediction

in Figure 1A. Firstly, it standardizes experimental signals from RNA

structure profiling data into the interval of [0, 1] for all the bases of

a given RNA. The standardized values are called structural prefer-

ence profile (SPP). A base with structural preference close to 0

suggests higher probability to be double-stranded, and that close to

1 is likely to be single-stranded. SeqFold uses standard parameters

to infer SPP from PARS, SHAPE, and FragSeq data (Methods). It

then uses the parameter-free nearest neighbor algorithm to classify

the SPP into a unique cluster of computationally sampled struc-

tures from the structure ensemble.

Taking the PARS data as an example, suppose sequencing

reads were generated from single-strand specific RNase S1 and

double-strand specific RNase V1. After reads were mapped, the

counts of the 59 end of S1 and V1 reads were obtained for each base.

Both the S1 and V1 read count profiles show great variability across

the whole transcript body (Fig. 1B), reflecting both structural in-

formation and potential noise in PARS experiments. Zooming in

the PARS signals (Fig. 1C,D) reveals that comparison of the S1 and

V1 read counts at each base subtracts out the noise and gives the

structural preference at the individual nucleotide level. Based on

the discrete nature of read counts, we used the hypergeometric test

to assess the deviation of S1 and V1 read counts at each base from

equality, adjusted for the total mapped reads from each sequencing

library (Methods). The test provided statistical significance of the

propensity that each base is single- or double-stranded (Fig. 1E).

The SPP of each transcript was then generated (Fig. 1F) with a

standard false discovery rate (Benjamini and Hochberg 1995) of

5% (FDR = 0.05).

In parallel, we used Sfold (Ding and Lawrence 2003) to gen-

erate structure clusters from 1000 sample structures from the

Boltzmann-weighted ensemble (Methods) for each RNA. The cen-

troid of the selected cluster (using the calculated SPP) was taken as

the predicted RNA secondary structure. Additionally, we estimated

RNA accessibility by averaging the sample structures in the selected

cluster to generate the probability of a base being unpaired. The

estimated accessibility profiles show a high correspondence with

the SPPs; that is, bases with the single-stranded (or double-stranded)

preference have high (or low) average accessibilities (Supplemental

Fig. S1).

Assessment of SeqFold prediction incorporating PARS data

We first evaluated the performance of SeqFold with the incor-

poration of PARS data. RNAstructure (Mathews et al. 1999) with

default parameters was used to generate MFE structures as a base-

line. We also evaluated our own genome-scale implementation of

‘‘sample and select,’’ which was developed for traditional structure

mapping experiments (Quarrier et al. 2010). For ‘‘sample and se-

lect,’’ we used Sfold (Ding and Lawrence 2003) to generate 1000

sample structures and selected the one with the lowest Manhattan

distance to the SPPs. We did not see any evident improvement of

the ‘‘sample and select’’ predictions by increasing the sample size

up to 1 million (Fig. 3C,D, see below). For each predicted structure,

we calculated the sensitivity and positive predictive value (PPV) by

comparing it with the reference structures. Sensitivity measures

the percentage of base pairs in the known structures that are also

present in the predicted structures, whereas PPV measures the

percentage of base pairs in the predicted structures that are also

found in the reference structures.

We summarized the prediction accuracies of all three ap-

proaches on a number of known RNA secondary structures with

PARS data in Table 1. We found overall SeqFold predictions are

most accurate among the three. For instance, the secondary structure

of Tetrahymena ribozyme is known from its crystal structure (Guo
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et al. 2004), and its P9-9.2 domain was added into the PARS exper-

iment (Kertesz et al. 2010). Both the MFE prediction (sensitivity = 1

and PPV = 0.91) and the ‘‘sample and select’’ prediction (sensitivity =

0.87 and PPV = 0.87) show obvious distinction to the known

structure, whereas the SeqFold prediction (sensitivity = 1 and PPV =

0.97) is much closer (Fig. 2A). The ASH1 mRNA contains several

domains where the secondary structures are important for its

subcellular localization (Chartrand et al. 2002). Extensive muta-

genesis previously identified specific stem-loops with a big bulge

in the E1 domain (Chartrand et al. 1999; Gonzalez et al. 1999). The

MFE prediction (sensitivity = 0.41 and PPV = 0.44) is far from the

known structure. The ‘‘sample and select’’ approach identified

multiple secondary structures with equal distance to the PARS

signal with sensitivity ranging from 0.29 to 0.41 and PPV from

0.50 to 1. The SeqFold prediction (sensitivity = 0.65 and PPV = 1)

shows improvement on even the best ‘‘sample and select’’ pre-

diction (Fig. 2B).

Further, we tested the ability of SeqFold in predicting ncRNA

secondary structures with PARS data. The Rfam database (Griffiths-

Jones et al. 2003) collects seed structures from literature and uses

the so-called covariance model (CM) (Eddy and Durbin 1994) to

iteratively align ncRNAs to a large family of RNAs based on evo-

lutionary signature of both the sequence and structure similarity.

CM is considered one of the most accurate prediction methods, but

it requires large numbers of orthologous sequences that can be

unambiguously aligned. Evaluating the CM model-based second-

ary structures, we found SeqFold achieves the highest prediction

accuracies among the three approaches (Table 1). As an example,

the CM-based secondary structures and the predicted structures of

SNR10 are shown in Figure 2C. The sensitivity/PPV of the SeqFold

prediction is 0.88/0.78, whereas those of the MFE and ‘‘sample and

select’’ predictions are 0.50/0.40 and 0.72/0.66, respectively.

Overall, SeqFold (average sensitivity = 0.83 and average PPV =

0.77) outperforms ‘‘sample and select’’ (average sensitivity = 0.75

and average PPV = 0.68) with genome-scale PARS data. The im-

provement of SeqFold over ‘‘sample and select’’ is statistically sig-

nificant (P-value = 0.031 for sensitivity and P-value = 0.001 for PPV,

one-tailed paired t-test).

Figure 1. Framework of the SeqFold method. (A) The flowchart of integrated prediction of RNA secondary structure. On one hand, sequencing reads
that contain RNA structure information are mapped, followed by the inference of structure preference for each base. The structure preferences of all
informative bases of a transcript define the structure preference profile (SPP). On the other hand, 1000 structures per transcript are generated from the
Sfold Boltzman sampling procedure and grouped into distinct clusters (Ding and Lawrence 2003; Ding et al. 2005, 2006). At the structure prediction
stage, nearest neighbor classification is used to identify a specific structure cluster given an SPP. The centroid of the selected cluster is taken as the predicted
structure and the average of the sample structures in the cluster gives the accessibility of each base. The bottom panel demonstrates the clustering pattern
in the multidimensional scaling surface. (B–F ) Illustration of the SPP calling process for PARS. (B) The read counts of RNase S1 and V1 along the P9-9.2
domain of the Tetrahymena ribozyme (Guo et al. 2004). C as B showing a maximal read count of 2000. D as B showing a maximal read count of 200. (E ) The
(1 - P-value) profile of hypergeometric test for each base. (F ) Structure preference calls with FDR 0.05.
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Application of SeqFold to other RNA structure profiling data

We also assessed the ability of SeqFold as a general method to in-

corporate other high-throughput RNA structure profiling data. The

outputs of different structure profiling platforms are very diverse.

We leveraged the methods developed for processing the raw data

of different experimental platforms, such as SHAPE-Seq (Aviran

et al. 2011), conventional SHAPE (Low and Weeks 2010), and

FragSeq (Underwood et al. 2010). We then standardized the pro-

cessed data into the interval of [0, 1] to estimate SPPs and used

SeqFold for integrative prediction (Methods).

For SHAPE-Seq, a maximum likelihood approach was pro-

posed to process the sequencing reads and estimate the SHAPE

reactivity profile, where bases with high reactivities are interpreted

as more likely to be single-stranded. (Aviran et al. 2011). The B.

subtilis RNase P was probed by SHAPE-Seq, and it was proposed to

use RNAstructure to make a constrained prediction of its secondary

structure using pseudo-energy terms transformed from SHAPE re-

activities (Lucks et al. 2011). We reapplied RNAstructure to predict

the MFE structure and SHAPE-constrained structure for RNase P

using default parameters. We also predicted secondary structures

by the ‘‘sample and select’’ and SeqFold approaches using the

SHAPE-derived SPP. The known secondary structure of RNase P was

derived from the crystallography structure (Krasilnikov et al. 2003)

with noncanonical base pairs filtered. Comparing to the known

structure, RNAstructure with or without SHAPE had modest accu-

racy (sensitivity = 0.66 or 0.66, PPV = 0.60 or 0.58), whereas ‘‘sample

and select’’ and SeqFold achieved 0.90 and 0.88 sensitivity and 0.79

and 0.88 PPV, respectively—a 32%–52% increase in performance.

We compared SeqFold and RNAstructure with or without

SHAPE reactivity on additional benchmark RNAs with conven-

tional SHAPE data from Kladwang et al. (2011) and the RMDB

database (Cordero et al. 2012). We observed substantial improve-

ment of RNA secondary structure prediction incorporating SHAPE

data in RNAstructure and SeqFold over the MFE approach (Table 2).

We found that SeqFold is more accurate than ‘‘sample and select’’

and has comparable accuracy to RNAstructure, the established

method optimized for SHAPE data. Although RNAstructure has

higher sensitivity, SeqFold is better in

terms of PPV on this data set. In addition,

we assessed all the methods on the E. coli

16S and 23 rRNAs which include some

longer domains of ;600 nt (Mathews

et al. 1999). With SHAPE data from Deigan

et al. (2009) in which the RNA structure

algorithm was trained, we found that

SeqFold and ‘‘sample and select’’ have

similar accuracy (Table 2). Due to limited

data available for structured long RNAs as

benchmarks, the performance of the RNA

secondary structure prediction methods

as a function of RNA length is not con-

clusively demonstrated.

Finally, we applied SeqFold to the

FragSeq data from mouse embryonic stem

cells (Underwood et al. 2010). As shown

in Supplemental Figure S2, SeqFold suc-

cessfully generated structure predictions

incorporating FragSeq data. As prior work

fitted FragSeq data to known structures

and did not report the accuracy of RNA

structure prediction using FragSeq data

(Underwood et al. 2010), our results illustrate the generality of the

SeqFold approach.

Robustness of RNA structure prediction methods
incorporating experimental data

We systematically compared the different RNA secondary structure

prediction methods regarding their robustness to noise in RNA

structure profiling data. To simulate noise level in experimental

Table 1. Comparison of RNA secondary structure prediction algorithms with PARS data

RNA

RNAstructure
MFE

‘‘Sample and select’’
with PARSa

SeqFold with
PARS

Sensitivityb PPVc Sensitivity PPV Sensitivity PPV

P9-9.2 1.00 0.91 0.87 0.87 1.00 0.97
P4P6 0.87 0.76 0.86 ± 0.01 0.72 ± 0.02 0.87 0.77
ASH1-E1 0.41 0.44 0.39 ± 0.05 0.82 ± 0.18 0.65 1.00
SNR37 0.77 0.77 0.84 ± 0.04 0.89 ± 0.04 0.94 0.95
SNR10 0.50 0.40 0.72 0.66 0.88 0.78
SNR81 0.80 0.73 0.78 ± 0.05 0.70 ± 0.06 0.80 0.74
SNR33 0.85 0.57 0.83 ± 0.11 0.58 ± 0.08 0.97 0.62
SNR46 1.00 0.98 0.74 ± 0.10 0.73 ± 0.11 0.82 0.96
RDN58-2 0.48 0.23 0.68 0.37 0.52 0.52
SNR53 0.82 0.36 0.8 ± 0.08 0.43 ± 0.08 0.82 0.43

Average 0.75 0.61 0.75 0.68 0.83 0.77

Winner countd 5 1 1 1 8 9

aFor ‘‘sample and select,’’ if multiple sample structures with equal distance to the PARS signal are
identified, the average and standard deviation of sensitivity and PPV are present.
bSensitivity: percentage of base pairs in the known structures that are also in the predicted structures.
cPPV: percentage of base pairs in the predicted structures that are also in the known structures.
dThe count of a method with the highest (or equally highest) performance among all methods.

Figure 2. Comparison of RNA secondary structure prediction methods
with PARS data. For each RNA, the reference secondary structure, the
RNAstructure MFE prediction, the ‘‘sample and select’’ prediction with
PARS, and the SeqFold prediction with PARS are shown. (A) The P9-9.2
domain of the Tetrahymena ribozyme (Guo et al. 2004). (B) The E1 domain
of the ASH1 mRNA (Chartrand et al. 2002). (C ) The noncoding RNA
SNR10. In the case that the ‘‘sample and select’’ algorithm outputs alter-
native structure models, the one most matching the reference structures is
presented. For each predicted secondary structure, the red bases corre-
spond to errors compared to the reference structures.
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data, we randomly selected increasing fractions of data points and

randomized signals in those fractions. We then asked how sensi-

tive the performance of each method is to noise. At each noise

level, we calculated the Matthew’s correlation coefficient (Baldi

et al. 2000), a prediction accuracy measurement combining sen-

sitivity and PPV for RNA structure comparisons (Gardner and

Giegerich 2004). The MFE prediction without incorporating ex-

perimental data was compared as the baseline. At 20% noise level

in PARS data, the ‘‘sample and select’’ prediction accuracy quickly

drops below the MFE baseline, whereas SeqFold prediction is re-

sistant to even 40% noise level and approaches the MFE baseline at

higher noise levels (Fig. 3A). Similarly, SeqFold prediction is more

robust to noise in SHAPE data than the ‘‘sample and select’’ ap-

proach (Fig. 3B). Strikingly, we found that RNAstructure is even

more sensitive to noise in SHAPE data and suffered in prediction

accuracy much faster than other methods (Fig. 3B). These results

suggest that the clustering and centroid selection step in SeqFold is

important for handling noisy experimental data.

To further explore the value of clustering and centroid selec-

tion over direct structure selection, we increased the sample size for

‘‘sample and select’’ over three orders, from 1000 to 1,000,000. As

shown in Figure 3, C and D, increasing the sample size even by

three orders of magnitude did not improve the accuracy of struc-

ture prediction. In fact, the ‘‘sample and select’’ accuracy started to

decline for PARS data. This is likely due to the noisy nature of ge-

nome-scale data, and direct selection from a large number of

structures, including ones with low probability, may overfit to

noise in the data. Thus, the results show that an exploration of the

clustering features as in SeqFold rather than the number of struc-

tures is more effective.

SeqFold links RNA structure with function

Using SeqFold, we reconstructed the secondary structures of more

than 3000 transcripts in yeast with the high-throughput PARS data

(Supplemental Table S1). We sought to study the insight of such

genome-scale RNA structure information on RNA processing and

regulation.

RNA secondary structure has long been thought to play a role

in mRNA translation (Kozak 2005). Although we observed a mod-

est but statistically significant correlation

(Kertesz et al. 2010) between the PARS

signal and ribosome density (Ingolia et al.

2009), a proxy of translation efficiency,

the strength of the connection is still

unclear. As SeqFold improves RNA struc-

ture prediction, we reexamined this re-

lationship using the SeqFold-derived RNA

accessibility. In fact, we found a highly

significant correlation (R = 0.2 and P = 5 3

10�20) between RNA accessibility and ri-

bosome density around the translation

start sites (Fig. 4A), and the peak correla-

tion locates approximately 10 bases up-

stream of the translation start site, the 59

position of the occupancy site of the first

ribosome in yeast (Ingolia et al. 2009).

Compared to the PARS score, the SeqFold-

derived RNA accessibility is much more

widely correlated with the ribosome

density—the RNA structure ‘‘footprint’’

extends from �40 to +40 nucleotides

(Fig. 4A)—which enables a greater sensitivity in identifying bi-

ological signals in structure data. We further compared SeqFold to

RNA accessibility estimation from RNAfold (Hofacker et al. 1994)

without the incorporation of PARS data. Comparing to SeqFold,

RNAfold-derived accessibility has a lower correlation with ribo-

some density (Fig. 4A). This suggests that incorporating experi-

mental data gives more accurate estimation of RNA accessibility.

Furthermore, prior studies have shown that RNA structure is not

simply a reflection of GC content but also how the bases are arranged

(Shabalina et al. 2006). We showed that RNA accessibility is more

predictive of translation efficiency than GC content (Fig. 4A), dem-

onstrating a layer of regulatory information not directly evident

from base content. Further analysis integrating RNA accessibility and

codon bias indicated that both have important and independent

contributions to translation efficiency (Supplemental Fig. S3).

In mammalian cells, the presence of stem-loop RNA structure

in RNA polymerase II-initiated nascent transcripts recruits Poly-

comb complex and silence transcription (Kanhere et al. 2010).

Still, the structure–function relationship in nascent transcripts has

not been well understood. A recent study of nascent transcripts by

sequencing reveals that local Poll II density is enriched near the

transcription start site (TSS), indicating the abundant production

of 59 nascent transcripts (Churchman and Weissman 2011). We

calculated the average RNA accessibilities inferred by SeqFold

along the transcript length of mRNA and found increased acces-

sibilities toward the 59 end (Fig. 4B), suggesting the accessibilities of

59 nascent transcripts are generally high. Moreover, the 59 end RNA

accessibility is correlated with the overall Poll II density through-

out the transcript body (R = 0.09 and P = 1 3 10�6) (Fig. 4B). It is

thus plausible that 59 nascent transcripts may affect transcription

initiation and elongation.

To explore how 59 nascent transcripts might be involved in

transcriptional regulation, we correlated 59 end mRNA accessibility

with genomic occupancies of histone modifications and chroma-

tin remodeling enzymes in yeast (Pokholok et al. 2005). 59 end

mRNA accessibility is positively and significantly correlated with

H3K9 acetylation (R = 0.10 and P = 2 3 10�7), H3K14 acetylation

(R = 0.10 and P = 4 3 10�8), and H3K4 tri-methylation (R = 0.09 and

P = 3 3 10�7) (Fig. 4C). To a lesser extent, 59 end RNA accessibility is

also positively correlated with H4 hyperacetylation (R = 0.07 and

Table 2. Comparison of RNA secondary structure prediction algorithms with SHAPE data

RNA

RNAstructure RNAstructure ‘‘Sample and select’’ SeqFold

MFE With SHAPE With SHAPE With SHAPE

Sensitivity PPV Sensitivity PPV Sensitivity PPV Sensitivity PPV

RNase Pa 0.66 0.60 0.66 0.58 0.90 0.79 0.88 0.88
tRNAphe 0.60 0.50 0.75 0.71 0.40 0.31 0.90 0.95
5S rRNA 0.27 0.21 0.94 0.80 0.94 0.80 0.94 0.80
P4-P6 RNA 0.92 0.77 0.90 0.83 0.85 0.73 0.88 0.79
Adenine riboswitch 0.71 0.60 1.00 0.91 0.95 0.83 1.00 1.00
Cyclic di-GMP

riboswitch
0.80 0.61 0.80 0.63 0.76 0.56 0.60 0.65

Glycine riboswitch 0.58 0.50 0.93 0.84 0.92 0.80 0.72 0.97
16S rRNAa 0.61 0.54 0.88 0.78 0.85 0.76 0.81 0.79
23S rRNAb 0.74 0.61 0.84 0.72 0.79 0.65 0.76 0.68

Average 0.65 0.55 0.85 0.76 0.82 0.69 0.83 0.83

Winner counts 2 0 6 3 2 1 3 7

aAverage of the four domains of the 16S rRNA.
bAverage of the six domains of the 23S rRNA.
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P = 6 3 10�5). Similarly, positive correlations are observed between

59 end mRNA accessibility and the histone acetyltransferase Esa1

(R = 0.11 and P = 3 3 10�9) and Gcn5 (R = 0.09 and P = 6 3 10�7).

Conversely, 59 end RNA accessibility is negatively correlated with

histone H4 (R =�0.08 and P = 5 3 10�6) and H3 (R =�0.06 and P =

4 3 10�4) occupancy, the indicators of nucleosome localization (Fig.

4D). Their peak anticorrelations are ;50 bp downstream of the TSS,

which corresponds to the position of the first nucleosome in yeast

(Mobius and Gerland 2010). The anticorrelation relationship be-

tween RNA accessibility and H4 is missed by computational pre-

diction alone (Supplemental Fig. S4), suggesting higher accuracy of

estimated RNA accessibility by incorporating experimental data. Our

study suggests that RNA structure (or lack of) in 59 nascent transcripts

may influence the occupancy of histone modifiers to overcome the

transcriptional barriers imposed by nucleosomes near TSS. The

possible mechanism of this new role requires further studies.

Incorporating RNA accessibility facilitates distinguishing
true and false RBP targets

RBPs bind to RNAs and regulate their activities. It is still unclear

how RBPs recognize specific RNAs. Computational methods usually

try to find short sequences in RNAs that match the consensus

binding motifs of RBPs. However, experimental studies indicate

that many unbound transcripts also contain the same sequence

motifs (Hogan et al. 2008). There have been recent attempts to

incorporate structure information for improved identification of

RBP targets (Hiller et al. 2006; Kazan et al. 2010; Li et al. 2010).

Here, we sought to test whether SeqFold-derived RNA accessibility

incorporating experimental data provides valuable information

for RBP targets identification.

We compiled the lists of bound and unbound transcripts for

a set of RBPs from a genome-scale RIP-chip study in yeast (Hogan

et al. 2008). For each RBP, its known binding sequence motif was

scanned on all the input transcripts. For the transcripts that con-

tained at least one sequence motif, we distinguished bound tran-

scripts that are true targets from those unbound transcripts that

are false targets. The count of the sequence motifs is usually in-

sufficient to distinguish false targets from true targets, for example,

as shown in Supplemental Figure S5, the motif counts of the RBP

Puf3 (motif consensus UGUAHAUA, where H indicates A or C or

U). However, the accessibilities of the false targets are on average

lower than those of the true targets for every position of the

binding motif of Puf3 and many other RBPs (Supplemental Fig. S6).

Figure 3. Comparison of the robustness of RNA secondary structure prediction methods on PARS and SHAPE data. (A) The mean prediction accuracy
measured by Matthews correlation coefficient (MCC) for RNAstructure MFE, ‘‘sample and select,’’ and SeqFold with increasing fractions of PARS data
being replaced by randomized signals. (B) The mean MCC for RNAstructure MFE, RNAstructure pseudo-energy, ‘‘sample and select,’’ and SeqFold with
increasing fractions of SHAPE data being replaced by randomized signals. (C ) The mean MCC of the ‘‘sample and select’’ predictions for PARS data by
sampling structures in the order of 1000, 10,000, 100,000, and 1,000,000. (D) The mean MCC of the ‘‘sample and select’’ predictions for SHAPE data by
sampling structures in the order of 1000, 10,000, 100,000, and 1,000,000. The bars in each plot indicate the standard error of the mean MCC.
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Based on this observation, we weighted each motif instance by its

accessibility and summed all motifs to form a single score for each

transcript (Methods). The score distribution of the true targets was

compared with that of the false targets. Instead of setting an arbi-

trary cutoff, a continuous receiver operating characteristic (ROC)

curve was plotted to visualize the ability of distinguishing the true

from the false targets. The improvement of incorporating RNA

accessibility over the use of motif count was assessed via the area

under curve (AUC) of the ROC plots. We found 11 of the 12 RBP

binding motifs showed clear improvement when SeqFold-derived

RNA accessibility was incorporated (Supplemental Table S2), con-

sistent with previous observations using in silico-derived RNA

accessibility (Li et al. 2010). Those with >10% improvement are

shown in Figure 5 and the rest are in Supplemental Figure S7.

Furthermore, SeqFold-derived accessibility demonstrates clear

improvement over in silico-derived accessibility on four of the

RBPs (Supplemental Fig. S8). These results suggest that the SeqFold-

derived RNA accessibility provides a useful layer of information for

RBP binding site recognition.

Discussion
We present SeqFold, a novel method for integrating high-throughput

RNA structure profiling data to predict RNA secondary structures.

SeqFold efficiently utilizes experimental structure profiling

information and clustering features of the Boltzmann-weighted

Figure 4. Implications of SeqFold-derived RNA accessibility on translation efficiency and transcription initiation. (A) RNA accessibility around the
translation start site positively correlates with ribosome density, a proxy of translation efficiency (Ingolia et al. 2009). Shown are the P-values of the
Spearman correlation between average accessibility in a 30-bp-wide window and the ribosome density. Also shown are the relationship of ribosome
density with the raw PARS signal (Kertesz et al. 2010), RNA accessibility calculated directly from RNAfold without experimental information, and GC
content of the sequences. (B) The average accessibility increases near the 59 end of a transcript and positively correlates with Pol II density, a proxy of
nascent transcription (Churchman and Weissman 2011). Shown are the average accessibilities in a 20-bp-wide window sliding from the TSS (blue) and the
P-values of the Spearman correlation with the average Pol II density calculated from the [40, 100] region (red). (C ) The 59 end accessibility of a transcript
positively correlates with histone modifiers and chromatin remodeling enzymes (Pokholok et al. 2005) but not nucleosome occupancy (Pokholok et al.
2005). Shown are the P-values of the Spearman correlations between the average accessibility in a 20-bp-wide window sliding downstream of TSS and
various histone marks. (D) The 59 end accessibility of a transcript negatively correlates with nucleosome occupancy at ;50 bp downstream of TSS. Shown
are the P-value of the anticorrelations between the average accessibility in a 20-bp-wide window sliding downstream of TSS and various histone marks. The
data points are the centers of the windows.
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ensemble, lifting the power of RNA secondary structure recon-

struction to the genome-scale. SeqFold uses the standard FDR

cutoff of 0.05 and the nearest neighbor algorithm, and thus does

not require tuning parameters. However, if a user were to attempt

to tune the parameters for SeqFold, appropriate cross-validation

procedures can be applied. SeqFold sets the stage for future devel-

opment of other RNA structure prediction algorithms to incor-

porate genome-scale experimental data. Although RNAstructure

can incorporate SHAPE reactivities (Deigan et al. 2009), appropri-

ate strategies to compute bonus energies

from genome-scale PARS signals remains

a challenge. On another front, the use of

‘‘shape representatives’’ from RNAshapes

(Giegerich et al. 2004) provides an inter-

esting alternative strategy to represent

the structural ensemble instead of clus-

tering on sampled structures.

Current RNA structure profiling data

are from probing RNAs folded in vitro,

which is missing interactions with pro-

teins and ligands in vivo, and cotran-

scriptional folding. When high-through-

put RNA structure profiling starts being

applied in vivo, SeqFold would be valu-

able to interpret such data. One in-

teresting application is to probe RNA

structures under different conditions,

such as riboswitches. Integrative model-

ing of such data with SeqFold would re-

veal dynamic changes of RNA structure.

The scalability of SeqFold allows us

to study the role of RNA structure in gene

regulation in a genome-wide manner.

Indeed, the improved estimation of RNA

accessibility deepens our appreciation of

RNA structure in transcriptional and

translational regulation. For example,

SeqFold-derived RNA accessibility displays

much higher correlation with translation

efficiency measured by ribosome density

than the original PARS signal or GC con-

tent. SeqFold also reveals a hitherto un-

known correlation of 59 RNA accessibility

with Poll II density and the localization of

histone modifiers, suggesting the preva-

lent role of 59 nascent transcripts in

transcription initiation and processing.

The apparently low but statistically sig-

nificant correlations may have several ex-

planations. First, we are making genome-

wide comparisons of RNA structure at a

position in every transcription to a func-

tional outcome for every transcript. It

could well be that RNA structure is im-

portant for the regulation of transcription

or translation but especially for a subset

of transcripts or under specific biological

conditions. Because PARS data were gener-

ated from a population of unsynchronized

yeast cells, specific cell states could be a

minority and obscured by other signals.

Second, biological regulation is combi-

natorial; and even if a regulatory relationship exists, that re-

lationship is not always rate-limiting in a biological context. For

instance, it is well known that only a minority of genes bound by

a transcription factor change their expression when the tran-

scription factor is deleted. Transcription and translation each

involves dozens of regulatory factors, and the interplay with RNA

structure is likely complex. As such, it is remarkable that these

crude analytic tests yield any signal at all. We suggest that the

association we observed should be viewed as an important step

Figure 5. Incorporation of RNA accessibility improves the identification of RBP targets. Shown are
higher prediction accuracies for distinguishing true and false RBP targets than using motif count only
evaluated on RIP-chip data sets of a number of RBPs with consensus motifs: (A) Msl5 with motif
UACUAAC; (B) Puf3 with motif CNUGUAHAUA; (C ) Puf3 with motif UGUAHAUA; (D) Puf4 with motif
UGUAHMNUA; (E) Puf5 with motif WUUGUAWUWU; and (F) Yll032c with motif AAUACCY. The receiver
operating characteristic (ROC) curves demonstrate the change of the true positive rate versus the false
positive rate with varying cutoffs. The area under curve (AUC) of the ROC plot measures the discrimi-
nation accuracy. The higher the AUC, the better the discrimination accuracy is. The gray dashed line of
the diagonal indicates no discrimination power (AUC=0.5).
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in hypothesis generation—but not proof—of potential roles of

mRNA structure in modulating transcription and translation.

SeqFold-derived RNA accessibility demonstrates the effec-

tiveness of RNA structure information in identifying RBP targets.

Certainly, the role of RNA structure in protein-RNA interaction

may be RBP-specific in the sense that a more complex pattern other

than unpaired probability may be involved. For example, Vts1

recognizes binding sites within hairpin loops (Aviv et al. 2006).

Further development of sophisticated motif discovery methods,

such as RNAcontext (Kazan et al. 2010), is required to fully capture

the structure preferences of RBP binding sites. Nevertheless, we

expect SeqFold will provide useful resources for characterizing

protein-RNA interaction specificities.

Methods

Inference of the structure preference profile
We called the structure preference of each base position of yeast
from the PARS data generated and mapped previously (Kertesz
et al. 2010). We downloaded base-level read count data as well as
the original PARS scores of more than 3000 transcripts in yeast
from http://genie.weizmann.ac.il/pubs/PARS10/. For each base
position k, note the read counts of RNase S1 and V1 as NS1

k and
NV1

k , and the total read counts of RNase S1 and V1 as T S1 and
TV1. A hypergeometric test was performed to test if a base po-
sition is enriched with S1 reads. Namely, the P-value of the
enrichment of S1 reads in position k is calculated by the formula
below.

+
min N
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k

+ N
V1
k
;TS1
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 !
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Similarly, the P-value of the enrichment of V1 reads in posi-
tion k is calculated by the formula below.
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To account for multiple comparisons, we calculated the FDR
given the P-values according to the Benjamini-Hochberg pro-
cedure (Benjamini and Hochberg 1995). Under FDR cutoff 0.05,
134,595 and 255,113 positions were called ‘‘single-stranded’’ (SS)
and ‘‘double-stranded’’ (DS), respectively. All other base posi-
tions were noted as ‘‘unknown’’ (UN). We assign DS sites by
a value of 0, SS sites a value of 1, and UN sites a value of NA. The
structure preference profile (SPP) is defined as a vector in which
the elements are the individual structure preferences of all bases
of a transcript.

To preprocess SHAPE data, we used the 2%/8% rule (Low and
Weeks 2010; Lucks et al. 2011) to standardize SHAPE reactivities by
excluding the top 2% of reactivities and normalizing by the aver-
age of the next 8%. The standardized SHAPE reactivities >1 or
<0 were capped at 1 or 0, respectively. For FragSeq, Underwood
et al. (2010) output the processed cutting score as the log ratio of
the normalized read count of nuclease P1 over control. We esti-

mated SPP by thresholding: Cutting scores >ln(2) were assigned
a SPP value 1 and those <0 were assigned 0.

SeqFold prediction of RNA secondary structure

To predict RNA secondary structure, we incorporate computational
predictions with SPP inferred from high-throughput RNA structure
profiling. First, 1000 structures per transcript were sampled from
the Boltzmann-weighted ensemble and clustered using Sfold (Ding
and Lawrence 2003). We then used the nearest neighbor algorithm
to classify a transcript with a given SPP into one of the structure
clusters.

To be more specific, let �x = x1; x2; . . . ; xLð Þ be the SPP of a given
transcript of length L and �yi = yi1; yi2; . . . ; yiL

� �
be the SPP of the ith

sampled structure of the transcripts, i = 1, 2, . . ., 1000. We calcu-
lated the Manhattan distance d �x; �yi

� �
between the SPP of the

transcript and the SPP of the ith sampled structure. We recorded
the minimum Manhattan distance as dmin = mini d �x; �yi

� �� �
with m as

the number of sampled structures with the same dmin to the transcript.
The predicted cluster of the transcript is then set to the most frequent
cluster among the m equivalently nearest structures. After selecting
the structure cluster for a transcript, we predicted its structure as the
cluster centroid, the one in the entire ensemble that has the shortest
total base-pair distance to all structures in the cluster (Ding et al. 2006).

Annotate ncRNA structure with Rfam

We used the Rfam database (Griffiths-Jones et al. 2003) to annotate
the secondary structures of ncRNAs and compared those with
SeqFold prediction. We matched the yeast ncRNAs to the Rfam
families by combining BLAST (Altschul et al. 1990) and CMsearch
(Nawrocki and Eddy 2007). The best-matched Rfam families
were extracted and the secondary structures for the ncRNAs based
on the CM model (if any) were obtained, and redundancies were
removed. Several criteria were performed to filter the structure
annotations: (1) An ncRNA was filtered if its aligned region has
insertions or deletions, leading to an inconsistent length com-
pared to that of the consensus secondary structure; (2) an ncRNA
with the consensus secondary structure containing at least one
large loop (>50 consecutive single-stranded bases) was also filtered
since such a structure is probably unstable; (3) all tRNAs were fil-
tered since their lengths are too short (72–74 bps) for the PARS
experiment; and (4) for duplicated structures only one of them was
kept. After filtering, we annotated seven ncRNAs with Rfam con-
sensus secondary structures. Correspondingly, the SeqFold and
MFE-predicted structures were tailored to contain only the aligned
regions as in the Rfam annotation. Those aligned regions were
used to assess secondary structure prediction accuracy.

RBP targets analysis

We analyzed the role of RNA accessibility in RBP binding using
data sets from a RIP-chip study in yeast (Hogan et al. 2008). We
defined the bound transcripts of an RBP by FDR <1% reported in
the original study. The unbound transcripts of a RBP were defined
as those underrepresented in the corresponding protein IP com-
paring to the mock IP. The motif consensus of an RBP was scanned
on both bound and unbound transcripts. Those that contain at
least one motif instance of the RBP were selected and called true
targets or false targets, depending on whether they were bound or
unbound. We derived a score to distinguish true targets and false
targets of an RBP using both motif count and accessibility in-
formation. For a transcript containing N motif instances of an RBP
with motif length M, suppose the accessibility of the jth position of
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the ith motif instance is aij, a combined motif score is defined as
the formula below.

+
N

i = 1

+
M

j = 1

aij

We compared the performance of the combined motif score
in distinguishing true and false targets with the traditional motif
count approach.

Implementation and software availability

SeqFold is implemented in Python and Perl scripts and can be
freely downloaded at http://www.stanford.edu/;zouyang/seqfold.
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