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Prolactinomas have been reported for the failure of cognitive functions. However,

the electrophysiological mechanisms of attention processing in prolactinomas remain

unclear. In a visual mission, we monitored the scalp electroencephalography (EEG)

of the participants. Compared with the healthy controls (HCs), larger frontoparietal

theta and alpha coherence were found in the patients, especially in the right-lateralized

hemisphere, which indicated a deficit in attention processing. Moreover, the frontoparietal

coherence was positively correlated with altered prolactin (PRL) levels, implying the

significance of PRL for adaptive brain compensation in prolactinomas. Taken together,

this research showed the variations in attention processing between the HCs and

prolactinomas. The coherence between frontal and parietal regions may be one of

the possible electrophysiological biomarkers for detecting deficient attention processing

in prolactinomas.

Keywords: prolactinomas, attention processing, prolactin, theta coherence, alpha coherence

INTRODUCTION

Pituitary adenomas are the second most common intracranial tumors, accounting for about 16.5%
of the central nervous system (CNS) tumors (1). The mechanical pressure from tumor mass on
adjacent neuroanatomical regions (e.g., the inferior frontal lobe, diencephalon, optic chiasma,
pituitary stalk, etc.) could disrupt the tissue structures (2, 3) and then decrease the endocrine
functions of the hypothalamus or pituitary stalk. Apart from the physical damages, the functioning
pituitary adenoma may abnormally secrete high hormone levels and, thus, impair cognition
functions in these patients with pituitary adenomas (4), leading to less social contact and lower
living quality (5). Although the underlying pathophysiology has not been completely understood,
electrophysiological researches suggest that endogenous hormone abnormalities contribute to
cognitive impairments in executive performance (6, 7), pre-attention (8), processing speed (9), and
working memory (10). Electrophysiological research has manifested that altered levels of blood
hormones can affect brain structure in pituitary patients with Cushing syndrome, acromegaly,
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and prolactinomas (11–13). These researches above strongly
demonstrate that disturbances in endogenous hormones could
harm the brain structure and then likely lead to corresponding
brain dysfunctions. Specifically, pituitary patients frequently
suffer from the dysfunction in attention processing leading to a
decline in the quality of life of the patients (14, 15). However, to
date, no electrophysiological studies of frontoparietal networks
in attention processing have been conducted on prolactinomas,
which will be discussed in the present study by analyzing the
event-related phase coherence (ERPCoh).

P200, whose peak latency ranges from 100 to 200ms, is
sensitive to emotional stimuli and reflects the attention bias
occurring automatically (16, 17). Hence, P200 can be regarded
as an attention-related component (18). While P200 amplitudes
predominantly reflect the amount of synchronous activity
in the local region, the degree of interactions between two
electrode pairs can be measured by coherence (19). Previous
research found that functional connectivity can be regarded
as a well-established biomarker for cognitive impairments
(20). Long-range communications appeared to be mediated
by lower-frequency oscillations, especially the alpha and theta
frequency ranges, which, in general, appear to fulfill a messenger
function (21–23). Alpha phase interactions between distinct
regions directly supported the neuronal processing underlying
attentional function (24). Theta coherence between the frontal
and parietal region would be strong if task-relevant stimuli were
processed (25). This also indicated that theta coherence might
have a pivotal role in attention tasks, especially in the right
frontoparietal regions (26). Previous research revealed several
significant group differences in power and coherence values
(27). Concussed participants showed enhanced coherence in the
low-frequency bandwidths between several regions of interest.
Increased coherence meant that concussed participants were
able to recruit additional brain networks to compensate for the
impaired cognition. Furthermore, this altered intrinsic coherence
is currently under investigation as a potential imaging biomarker
in a variety of psychiatric disorders (27, 28).

Attention processing has been associated with frontal and
parietal regions. The bilateral superior longitudinal fasciculus
(SLF) connects the frontal regions with the parietal regions, and
it consists of three frontoparietal longitudinal pathways (29–
31). The SLF I is the most dorsal pathway and connects the
precuneus and superior parietal lobule to the superior frontal
lobes. The SLF III is the most ventral pathway and extends
from the temporoparietal junction/supramarginal gyrus to the
inferior frontal lobes. The SLF II, overlapping with the prefrontal
component of the dorsal network and the parietal component of
the ventral network, directly connect the dorsal networks with
ventral networks.

In the current study, we aimed to examine whether the
attention network was impaired by comparing the performances
of prolactinomas to those of the healthy participants. ERPCoh
was used for analyzing the attention network in a passive viewing
paradigm in prolactinomas. We hypothesize that prolactinomas
would show abnormal frontoparietal networks. Accordingly, we
further predicted that the altered intrinsic coherence within
these frontoparietal networks related to attention processing

may be associated with the abnormal serum prolactin levels
in prolactinomas.

METHODS

Participants
Prolactinomas were recruited in the Department of
Neurosurgery, Wuhan School of Clinical Medicine, Southern
Medical University (China). This prospective study was
approved by the ethics committee of Wuhan School of Clinical
Medicine, Southern Medical University. The written informed
consent was fully understood and signed by all participants. The
inclusion and exclusion criteria were described in our previous
work (32). Patients were included if (1) a prolactin-secreting
pituitary tumor was discovered (33, 34), (2) they had never
undergone a craniotomy or received radiation therapy, (3) they
were able to fulfill ERP examinations, and (4) their age ranged
from 20 to 50 years old, with all of them completing at least
secondary school education. Patients were excluded if they (1)
had a history of neurologic or psychiatric disorders; (2) had
comorbidities that could affect cognitive function, including
severe liver, hypertension, heart, or kidney dysfunctions; (3)
had severe complications, such as coma, infection, epilepsy,
hydrocephalus, and leaking of cerebrospinal fluid; and (4) had
drug or alcohol abuse [subjects who drink alcohol over 2.0
standard drinks (10 g of pure alcohol) during the day and meet
any 2 of the 11 criteria under the DSM-V in the past year] (35)
or were on any medications (including oral contraceptives). In
this research, the volume of the tumor may have a fundamental
effect on our observations because reports have demonstrated
that macroadenomas can affect the brain structure (36, 37). The
population sample in this research was strictly chosen to rule
out big tumors that compress the surrounding neuroanatomical
structures (see representative brain images of a few patients
regarded in the Supplementary Materials).

Twenty prolactinoma patients and 20 healthy controls (HCs)
were recruited to perform the assigned task. Their age [t(40) =
0.933, p= 0.340], gender (χ2 = 0.404, p= 0.525), and education
[t(40) = 0.207, p= 0.652] werematched between these two groups
(see Table 1).

Stimuli and Procedure
The IAPS (International Affective Picture System) provides
basic and reliable experimental materials for studies on visual
processing (38). The valence and arousal of the pictures in the
IAPS have been rated. These ratings have been established to be
robust and reliable over thousands of ratings using several scales,
primarily the self-assessmentmanikin (39). In our experiment, 45
pictures were selected from the IAPS, comprising affective stimuli
(including positive and negative images) and neutral stimuli, 15
images for each stimulus type. E-prime (Psychology Software
Tools) was used to regulate the stimulus presentation. The trial
started with a white fixation mark (+) for 1,000ms on the black
screen, and then a random picture was displayed for 2,000ms
(see Figure 1). The materials were displayed in a pseudorandom
order, and a particular stimulus appeared less than four times
consecutively. During the experiment, participants sat in the
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semi-dark test room with the screen 100 cm away from the eyes.
Moreover, participants were instructed to view these stimuli and
then determine whether the stimulus was positive, negative, or
neutral in mind. For valence and arousal dimensions, a one-
way ANOVA was measured. Post-hoc test contrasts revealed that
there were no distinct differences in arousal between positive
and negative stimuli. Besides, there were significant differences
between affective stimuli and neutral stimuli in both arousal and
valence (see Supplementary Table 1).

Electroencephalography Recording
Raw EEG was recorded using a 64-Ag/-AgCl electrode cap based
on the international 10–10 system and an EEG amplifier (all from
eegoTM). The EEG signal was amplified at a sampling rate of
1,000Hz. All electrode impedances were kept below 5 kΩ .

Electroencephalography Analysis
The raw EEG data were preprocessed by using the EEGLAB
toolbox (40). First, we re-referenced the EEG data to the averaged
mastoids (M1 andM2) and bandpass filtered the data to 1–49Hz.
Second, we applied SASICA (a plugin from EEGLAB) to correct
the blink artifact (7, 41). Finally, we segmented the continuous
EEG into the epoch from 350-ms pre-stimulus to 1,200-ms post-
stimulus and corrected the baseline to the mean amplitude of the
pre-stimulus interval. In this paper, the analysis focused mainly
on the P200 component, and the time windows for investigating
P200 is 180–280 ms.

The event-related phase coherence (ERPCoh) was used to
measure the degree of synchronization between two channels
across time in the specific frequency band and is related to the

TABLE 1 | Means and standard deviations for arousal and valence for each IAPS.

Mean valence

and arousal

ratings

IAPS

Positive Neutral Negative P

Valence 6.1540 ± 1.7842 4.9400 ± 0.1812 3.188 ± 0.6594 <0.01

Arousal 5.4160 ± 0.3135a 2.5673 ± 0.5062 5.4887 ± 0.3905a <0.01

aP < 0.05, compared with neutral stimuli.

communication between different brain regions (40).
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Fk(f,t) is the spectral estimate of trial k at frequency f and time
t by using a sinusoidal wavelet, whereas Fk(f,t)

∗ is the complex
conjugate of Fk(f,t). We focused on the theta (4–8Hz) and
alpha (8–12Hz). ERPCoh is gotten by the newtime f () function
from EEGLAB toolbox using Morlet wavelets in a 4- to 30-Hz
frequency band (from two cycles at the lowest frequency to six
cycles at the highest; the frequency is 4–30Hz, and the number of
output time is 100).

Koessler et al. (42) demonstrated the automated cortical
projection of EEG sensors. In that, the mean cortical projections
of FC1 and FC2 are on the superior frontal gyrus, and
AF7 and F8 are on the middle frontal gyrus. Similarly, P1
and P2 correspond to the precuneus, and CP5 and CP6
correspond to the supramarginal gyrus. To quantify the ability
of attention processing, we extracted theta and alpha ERPCoh
at the frontoparietal network. In that, the mean cortical
projections of FC1–P1 and FC2–P2 electrode pairs are on the
dorsal frontoparietal network, and the AF7–CP5 and AF8–CP6
electrode pairs correspond to the ventral frontoparietal network.
The FC1–CP5 and FC2–CP6 electrode pairs are projected on
communication between the dorsal and ventral networks (see
Figure 2).

Correlation Analysis
According to the conclusion of former research, an abnormally
high prolactin (PRL) level has a quite important influence on
cognitive functions, so that the Pearson correlation coefficient
between PRL level and ERPCoh was measured in patients.

Statistical Analysis
The homogeneity and normality test of variance was applied
in the frontoparietal theta and alpha coherence within the
P200 time window. To evaluate the difference of frontoparietal
coherence between patients and HCs, two-samples t-test was
used in the theta and alpha band ERPCoh. In addition, as

FIGURE 1 | Illustration of the stimulus paradigm applied.
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multiple comparisons were used, all p-values were corrected by
false discovery rate (FDR <0.05) to control for false positives.

RESULTS

Event-Related Potentials
Grand average ERPs elicited by the negative, positive, and neutral
stimuli for the patients and HCs are presented in Figure 3. Under
the negative and the positive targets, we observed a significant
increase in the P200 peak of patients compared with HCs.

Event-Related Phase Coherence
The theta and alpha band ERPCoh from the AF8–CP6
electrode pairs are depicted in Figure 4. Visual inspection
showed that ERPCoh was significant within 180–280ms for
different stimuli across all participants. Moreover, the theta
and alpha ERPCoh in the patients were stronger than in HCs
between 180 and 280 ms.

FIGURE 2 | Electrode pairs for the frontoparietal network.

Figure 5A shows that there was no difference between patients
and HCs for all stimulus trials at the AF7–CP5 electrode pair. As
shown in Figure 5B, the alpha ERPCoh in the patients was larger
than in HCs for negative stimulus trials at the AF8–CP6 electrode
pair (negative: p = 0.0116). However, the alpha coherence of
the AF8–CP6 electrode pair for negative and neutral stimulus
trails approached marginal significance (positive: p = 0.0902;
neutral: p= 0.0942).

Figures 5C–F show the same pattern that the alpha band
ERPCoh in patients was significantly larger than in HCs at the
FC1–P1, FC2–P2, FC1–CP5, and FC2–CP6 electrode pairs.

As shown in Figure 6A, there were no significant differences
between patients and HCs at the AF8–CP6 electrode pair.
Figure 6B shows that the theta ERPCoh in patients was larger
than in HCs for negative and neutral trials, while no difference
was found in positive trials at the AF8–CP6 electrode pair
(negative: p= 0.0116; neutral: p= 0.0094; positive: p= 0.0902).

As shown in Figure 6C, there were no significant differences
between patients and HCs at the FC1–P1 electrode pair.
Figure 6D shows that the theta band ERPCoh in patients
was larger than in HCs for negative and neutral trials, while
no difference was found in positive trials at the FC2–P2
electrode pair (negative: p = 0.0454; neutral: p = 0.0276;
positive: p= 0.1168).

As shown in Figure 6E, the theta ERPCoh in the patients
was larger than in HCs for neutral stimulus trials at the FC1–
CP5 electrode pair (negative: p = 0.0404). However, there was
no difference for negative and neutral stimulus trials in theta
ERPCoh of the AF7–CP5 electrode pair (negative: p = 0.0623;
positive: p = 0.1513). Figure 6F showed that the theta ERPCoh
in patients was significantly larger than in HCs at the FC2–
CP6 electrode pair (negative: p = 0.0016; positive: p = 0.0095;
neutral: p= 0.0005).

Correlation Between Prolactin and
Event-Related Phase Coherence
Under negative and positive stimuli, we inspected a significant
pattern that the alpha band ERPCoh was significantly correlated
with the PRL in patients at the AF7–CP5, AF8–CP6, FC1–P1,
FC2–P2, FC2–CP5, and FC2–CP6 electrode pairs (see Table 2).

Under neutral stimuli, a significant correlation was also found
at the AF7–CP5, FC2–P2, and FC2–CP6 electrode pairs, while
there was no correlation at the AF8–CP6, FC1–P1, and FC1–CP5
electrode pairs (see Table 2).

FIGURE 3 | Event-related potential (ERP) waveforms elicited by negative, positive, and neutral stimulus at the Pz electrode.

Frontiers in Neurology | www.frontiersin.org 4 August 2021 | Volume 12 | Article 638851

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cao et al. Attention Processing in Prolactinomas

FIGURE 4 | Event-related phase coherence (ERPCoh) between the frontal and parietal electrodes. (A) The theta and alpha band ERPCoh from the AF896CP6

electrode pairs in patients. (B) The theta and alpha band ERPCoh from the AF896CP6 electrode pairs in HCs.

FIGURE 5 | Alpha ERPCoh between frontal and parietal electrode within 18096280ms. (A) Alpha ERPCoh between patients and HCs for all stimulus trials at the

AF796CP5 electrode pair. (B) Alpha ERPCoh between patients and HCs for all stimulus trials at the AF896CP6 electrode pair. (C) Alpha ERPCoh between patients

and HCs for all stimulus trials at the FC196P1 electrode pair. (D) Alpha ERPCoh between patients and HCs for all stimulus trials at the FC296P2 electrode pair. (E)

Alpha ERPCoh between patients and HCs for all stimulus trials at the FC196CP5 electrode pair. (F) Alpha ERPCoh between patients and HCs for all stimulus trials at

the FC296CP6 electrode pair. *pFDR−corrected ≤ 0.0367.

As for the correlations between frontoparietal theta ERPCoh
with PRL in patients, a positive correlation has also been found

in the right-lateralized frontoparietal network, including FC2–
P2 (negative: r = 0.55, p = 0.012; positive: r = 0.52, p =
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FIGURE 6 | Theta ERPCoh between the frontal and parietal regions in patients and healthy controls (HCs) under different emotional stimuli in ROI (the time window

ofnP200, theta band). (A) Theta ERPCoh between patients and HCs for all stimulus trials at the AF796CP5 electrode pair. (B) Theta ERPCoh between patients and

HCs for all stimulus trials at the AF896CP6 electrode pair. (C) Theta ERPCoh between patients and HCs for all stimulus trials at the FC196P1 electrode pair. (D) Theta

ERPCoh between patients and HCs for all stimulus trials at the FC296P2 electrode pair. (E) Theta ERPCoh between patients and HCs for all stimulus trials at the

FC196CP5 electrode pair. (F) Theta ERPCoh between patients and HCs for all stimulus trials at the FC296CP6 electrode pair. *pFDR−corrected ≤ 0.0454.

TABLE 2 | Correlations between frontoparietal alpha event-related phase coherence with prolactin in prolactinomas.

Stimulus Person_r p Stimulus Person_r p

AF7–CP5 Negative 0.61 0.0045 AF8–CP6 Negative 0.56 0.01

Positive 0.57 0.0082 Positive 0.47 0.038

Neutral 0.48 0.01 Neutral 0.17 0.48

FC1–P1 Negative 0.63 0.0031 FC2–P2 Negative 0.69 0.00071

Positive 0.63 0.0032 Positive 0.58 0.0077

Neutral 0.28 0.24 Neutral 0.47 0.035

FC1–CP5 Negative 0.65 0.0019 FC2–CP6 Negative 0.73 0.00024

Positive 0.49 0.029 Positive 0.58 0.0076

Neutral 0.39 0.089 Neutral 0.64 0.0026

Bold values mean significant correlation between Prolactin level and ERPCoh.

0.017) and FC2–CP6 (negative: r = 0.55, p = 0.011; positive:
r = 0.44, p= 0.052).

DISCUSSION

The current study is the first to demonstrate the altered attention
network in prolactinomas. The findings showed the correlation
between frontoparietal coherence and endogenous hormone
levels in prolactinomas. As for frontoparietal ERPCoh, patients
displayed enhanced alpha and theta ERPCoh compared with the
HCs, especially in the right-lateralized hemisphere, implying

changes within the frontoparietal network. Furthermore,
the frontoparietal ERPCoh was positively correlated with
PRL, indicating influences of endogenous hormones on
brain compensation.

Prolactinomas may have difficulties in attracting attention
resources rapidly and automatically. Hence, prolactinomas
may decrease processing efficiency, but we postulate that
prolactinomas can compensate for the lower efficiency through
increased connectivity of the frontoparietal network. Increased
connectivity may come from the compensatory mechanisms of
the brain; however, to some extent, the compensation ability
will decrease if the structural and functional connectivity is still
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progressively impaired due to the abnormal hormone levels or
tumor compression. Our team previously found that increased
thalamocortical and cerebellar–cerebral functional connectivity
(FC) was associated with endogenous hormone levels, which
supports a functional compensatory mechanism that occurs
before the cascade of structural damage (43). Yao et al. (43)
found that prolactinoma patients showed increased FC mostly
between the posterior brain regions and temporal lobes, namely,
the cerebellum, precuneus, posterior cingulate cortex (PCC), and
bilateral temporal fusiform cortex (TFusC). As a result, enhanced
connections of posterior brain regions in these patients might
be used as an imaging biomarker for cognitive dysfunctions
(44). Although these prolactinomas in the research of Yao
showed increased FC between these brain regions, there are
limitations in dictating whether these patients suffer from
the dysfunctions of attention processing due to the absence
of using tasks that require attention processing. Therefore,
combined with the results of the present experiment, it could
be initially considered that pituitary patients may have attention
processing impairments. Besides, attentional control particularly
activates the right hemisphere, including ventral frontal cortices
and temporoparietal junction (45). This research supported
the existence of a right-lateralized frontoparietal network that
is involved in directing attention to a stimulus. A general
frontoparietal network in the right hemisphere has been reported
to be related to orienting and maintaining attention to a new
stimulus (46). In humans, there is a denser concentration of
noradrenaline in the right than in the left thalamus, which
might be related to the right lateralization of the frontoparietal
network (47). Therefore, we speculate that if the frontoparietal
network, especially the right-lateralized one, is damaged, the
coherence between frontal and parietal regions may be enhanced
to complete basic cognitive functions. This phenomenon
may reflect compensatory activity within the frontoparietal
network. The compensatory mechanism above is beneficial
in maintaining the normal physiological function, which has
been regarded as a common phenomenon in some psychiatric
diseases (48–50).

We found a significant pattern that the alpha and theta
ERPCoh between frontoparietal regions were positively
correlated with the PRL in patients. Previous research reported
that PRL overproduction could lead to cognitive impairments
(51). Furthermore, the overproduction of PRL has been
found to impair the efficacy of cognitive processing via the
dopamine pathway, which was altered in prolactinomas due
to the anti-correlation between PRL release and dopamine
production (52). Biologically, the overproduction of PRL
could have negative effects on myelin oligodendrocyte
glycoprotein via enhancing the number of cells secreting
antibodies, and then impair neuronal changes and plasticity
(53). Expression of PRL is widely distributed in the cerebral
cortex, thalamus, hypothalamus, amygdala, etc. (54). Besides,
it has been reported that testosterone exerts neuroprotective
effects on structural and functional connections by allowing
actin cytoskeleton involvement (55). Since testosterone level
in serum can be suppressed by excess PRL in serum due to
prolactinomas, the lower testosterone level may also induce

the impaired connectivity in the brain. Therefore, patients
with neuroendocrine tumors may have cognitive impairments
because of their abnormal hormone levels. Our team has
demonstrated that higher PRL levels are correlated with worse
cognitive function (6–8, 56). Yao et al. (13) revealed that
prolactinomas demonstrated a gray matter volume (GMV)
decrease in the prefrontal cortex, reflecting that abnormally
elevated PRL levels have a detrimental influence on the cortex
relevant to attention processing. Our interesting findings on
the hyperactive coherence within the frontoparietal networks
may be one of the potential pathophysiological factors that
impair attention processing impairments in prolactinomas.
Electrophysiological findings in this research were almost
consistent with previous magnetic resonance imaging (MRI)
studies by showing that significantly increased functional
connectivity between distinct brain regions and endogenous
hormone levels were also positively correlated with increased
functional connectivity (43). Hence, abnormally high PRL
levels exert negative effects on brain structures, then leading to
increased frontoparietal coherence. These findings demonstrated
the significance of endogenous hormones for functional
compensation in prolactinomas.

There weremultiple limitations discussed in this research. The
present study cannot precisely figure out which neuroanatomical
regions are damaged in prolactinomas because of the spatial
limitation of scalp EEG. Thus, combining neuroimaging
techniques, such as structure MRI and fMRI, is promising in
the future to map more detailed neural circuits, which may be
potentially impaired in prolactinomas (57).

CONCLUSIONS

Overall, alterations in frontoparietal coherence linked to
attention processing between prolactinomas and HCs
have been observed. Our findings demonstrated increased
frontoparietal coherence in prolactinomas, especially in the
right-lateralized hemisphere. Importantly, the frontoparietal
coherence was positively correlated with altered endogenous
hormone levels, implying the significance of PRL for adaptive
brain compensation in prolactinomas. Thus, the altered
frontoparietal coherence as electrophysiological features
may potentially predict the impaired attention processing
in prolactinomas.
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