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Abstract: Enterovirus genus has over one hundred genotypes and could cause several kinds of severe
animal and human diseases. Understanding the role of conserved residues in the VP1 capsid protein
among the enterovirus genus may lead to anti-enteroviral drug development. The highly conserved
residues were found to be located at the loop and ß-barrel intersections. To elucidate the role of these
VP1 residues among the enterovirus genus, alanine substitution reverse genetics (rg) variants were
generated, and virus properties were investigated for their impact. Six highly conserved residues
were identified as located near the inside of the canyon, and four of them were close to the ß-barrel
and loop intersection. The variants rgVP1-R86A, rgVP1-P193A, rgVP1-G231A, and rgVP1-K256A
were unable to be obtained, which may be due to disruption in the virus replication process. In
contrast, rgVP1-E134A and rgVP1-P157A replicated well and rgVP1-P157A showed smaller plaque
size, lower viral growth kinetics, and thermal instability at 39.5◦C when compared to the rg wild type
virus. These findings showed that the conserved residues located at the ß-barrel and loop junction
play roles in modulating viral replication, which may provide a pivotal role for pan-enteroviral
inhibitor candidate.

Keywords: Enterovirus; VP1; conserved residues; replication; antiviral

1. Introduction

The Enterovirus genus is comprised of fifteen species of small, non-enveloped, icosahe-
dral RNA viruses, whereby seven of them are important human pathogens [1]. In the past
decades, many newly identified enteroviruses have been shown to be widely present in
the environment and in various animals [2]. Enterovirus A71 (EV-A71) is considered the
most pathogenic enterovirus in humans since it is highly associated with severe diseases in-
cluding poliomyelitis-like paralysis, brainstem encephalitis, fatal cardiorespiratory failure,
pulmonary edema, and even death [3]. Many types of drugs have been available in clinical
trials, but the potency of the treatment was demonstrated to be ineffective or have side
effects [4]. There are no effective drugs or vaccines against different types of enteroviruses
currently [5]. Therefore, the development of a drug against all members of the Enterovirus
genus is an unmet need.
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Enteroviruses consist of four capsid proteins including VP1 to VP4. VP1, VP2, and
VP3 are surface-exposed proteins and VP4 is an internal protein. The main focus of this
report is VP1, the major capsid protein on the surface of enteroviruses. Once cellular
receptors interact with the VP1 protein, VP1 undergoes a conformational change, leading
to the disassembly of the viral particle and RNA release [6]. VP1 is one of the potential
targets for enterovirus treatment. It possesses a “jelly-roll” topology of eight-stranded
antiparallel ß-barrels (B to I) and its loops are named using two letters designating the ß
strands that the loop connects to [7]. Combining the secondary structure and the degree
of conservation, conserved residues were found in the canyon and interior areas of the
viral particle, and most of the residues interacted with other capsid proteins (unpublished
data). Previously in mouse-adapted EV-A71, VP1-145 was known as an important virulence
residue [8,9]. Huang et. al. reported that VP1-Q145E enhances the binding of EV-A71 to
mouse neuroblastoma. Despite many virulence residues being studied on VP1, the critical
function during infection still remains unclear [10].

Due to environmental pressures, many RNA viruses have high spike diversity on the
surface of viral particles. A broad-spectrum drug or vaccine development for RNA viruses
is limited. For example, the influenza virus has available vaccines, however, the vaccines
are targeted toward the most prevalent strains and thus require an annual update on their
composition. A large number of studies focused on the highly conserved stem region
of hemagglutinin. Targeting this conserved region could neutralize a broad range of all
influenza viruses [11]. Another example is the E2 protein, which is found on the surface of
hepatitis C virus (HCV) particles. Through structural models of E2 from different strains of
HCV, computational simulation discovered that the highly conserved and flexible regions
may be new vaccine candidates that could generate broad neutralizing antibodies [12].
Recently, with the SARS-CoV-2 pandemic, the virus’ ability to mutate and adapt is faster
than drug or vaccine development [13]. Therefore, the development of broad-spectrum
drug targeting conserved regions for long-term treatment strategies is an unmet need.

The high diversity of VP1 is the main obstacle for broad spectrum enteroviral drug
development. Using a structure-based drug discovery approach, we can screen the potential
small molecular compounds to target specific structures. To understand the roles of highly
conserved residues, which may provide broad protection from infections and diseases,
our study here began with the alignment of the Enterovirus genus conserved sequences.
Following the exploration of the conserved residue distribution of VP1, four conserved
residues found in the ß-barrel and loop junction were chosen as candidates for this study. A
reverse genetics (rg) system was used to generate the rg variants of the selected conserved
residues. Furthermore, the viral properties of the rg variants including growth rate, plaque
size, temperature sensitivity, thermostability, and binding ability were investigated.

2. Materials and Methods
2.1. Alignment of GenBank Sequences

A total of 1632 VP1 of enterovirus sequences were download from Genbank. The
sequences included 368 EV-A71, 1098 Coxsackievirus A16, 32 EV-D68, 2 Coxsackievirus
A19, 2 Coxsackievirus A4, 1 Enterovirus C113, 1 Enterovirus G, and other enteroviruses. The
sequences’ search keywords were [VP1, and Enterovirus]. The sequence length range was
set from 296 to 297 to represent the full length VP1 sequences. The revision date was set from
1 January 2020 to 31 December 2021 to obtain state-of-art data. A *.fasta file was downloaded
from GenBank. The multiple sequence alignment was analyzed by CLUSTALW (https:
//www.genome.jp/tools-bin/clustalw, accessed on 12 December 2021). The *.aln file
was generated from CLUSTALW. The Easy Sequencing in Postscript 3.0 (ESPript 3.0)
was applied to enhance the alignment and structure information graphically [14]. The
output file was generated after submission. The PDF output file was saved for analysis
(Supplementary File S1).

https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
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2.2. Predicting Consensus Sequences and Protein Structure Modeling

Conserved amino acid sequences of the Enterovirus genus were applied by Consurf as
previously described [15,16]. A consensus sequence was obtained by WebLogo to generate
a sequence logo (http://weblogo.threeplusone.com/, accessed on 10 June 2018) [17]. The
dynamics of the protein structures were predicted using the CABS-flex 2.0 web server
interface for simulations of protein structure fluctuations (http://biocomp.chem.uw.edu.pl/
CABSflex2, accessed on 23 September 2021) [18]. The EV-A71 VP1 capsid protein structures
(PDB code 3VBS) were viewed using the UCSF Chimera program, version 1.9 [19,20].
Potential interactions between the indicated amino acid residues were identified among
neighboring atoms of the residues. All of the bioinformatics tool analysis conditions were
set as the default.

2.3. Preparation of Reverse Genetics VP1 Variants

EV-A71-4643-y12, generated from a C2 strain (rgVP1 WT) isolated in the 1998 out-
break from a child with fatal encephalitis in Taiwan, was used as the backbone [21]. The
alanine substitutions were produced by overlapping PCR and site-directed mutagenesis as
previously described [9], using the primers listed in Supplementary Table S1. Constructs
were confirmed by Sanger sequencing. Following linearization with BbVCI and BspEI,
viral RNA was in vitro transcribed using T7 polymerase (RiboMAX, Promega, Madison,
WI, USA) and transfected into RD cells using the TransMessenger Transfection Reagent
(Qiagen, Hilden, Germany). At 0, 2, 4, 6, 8, 24, 48, and 72 h after transfection, rgVP1 viruses
were harvested and analyzed.

2.4. Plaque Forming Assay

Human rhabdomyosarcoma cells (RD cells, ATCC CCL-136) were cultured in Eagle’s
Minimum Essential Medium (EMEM) supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin solution at 35 ◦C, 5% CO2. Plaque forming assay was performed
on RD cells as previously described [22]. Briefly, confluent RD cells were incubated at 35 ◦C
with a ten-fold serially diluted virus for 1 h. After removing the medium, the infected cells
were covered with 0.3% agarose for three to five days at 35 ◦C until the plaques could be
visualized under the microscope. Culture plates were fixed with 4% paraformaldehyde and
stained with crystal violet. The numbers and diameters of the plaques were measured with
Image J2 software [23]. The titer of virus stocks was also determined using a cell culture
infectious dose 50% (CCID50) assay by the Reed and Muench method [24].

2.5. Immunofluorescence Stain of rgVP1 Variants

Confluent RD cells cultured in 24-well plates with 10 mm2 coverslips were transfected
with the RNA derived from infectious clones using the TransMessenger Transfection
Reagent (Qiagen). After three days post-transfection, the coverslips were fixed with cold
acetone for 10 min, then incubated with the anti-EV-A71 mab979 antibody (1:1000-fold
diluted, Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C for 1 h. Afterward, a 1:1000 of Alexa-
488-conjugated goat anti-mouse IgG (Jackson Immuno Research Laboratories, Inc., West
Grove, PA, USA) was added and incubated for 1 h at 37 ◦C. The fluorescent cell numbers
were counted by fluorescence microscope under 200× magnification, and an average of
25 fields per slide were analyzed.

2.6. Real-Time RT-PCR

The quantitative analysis of viral RNA replication was carried out by real-time TaqMan
RT-PCR as previously described using the AgPath-ID™ One-Step RT-PCR Reagents with
modification (Applied Biosystems™, Waltham, MA, USA) [25]. The forward 5′-GAG AGT
TCT ATA GGG GAC AGT-3′ and reverse 5′-AGC TGT GCT ATG TGA ATT AGG AA-3′

primers were used. A TaqMan probe with 5′-FAM-ACT TAC CCA GGC CCT GCC AGC
TCC- TAMRA-3′ quencher was used.

http://weblogo.threeplusone.com/
http://biocomp.chem.uw.edu.pl/CABSflex2
http://biocomp.chem.uw.edu.pl/CABSflex2
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2.7. One-Step Growth Curves and Temperature Sensitivity Assay

The one-step growth curves for the rg wild type and variants were performed as
previously described with a multiplicity of infection (MOI) of 10 and 0.1 [23]. RD cells
were cultured in 12-well plates (1 × 105 cells/well) and infected with the viruses at 35 ◦C
or 39.5 ◦C. Virus titers were determined by the plaque forming assay after incubation at
1, 2, 3, and 4 days post-infection. Temperature sensitivity was expressed as the differ-
ence of Log10 PFU values at 35 ◦C and 39.5 ◦C (∆PFU). Temperature resistant (tr) and
temperature-sensitive (ts) phenotypes were defined as logarithmic difference <2.0, and
>2.0, respectively [26].

2.8. Thermostability

Viruses of 10,000 PFU/0.1 mL were aliquoted per tube in 1.5 mL microtubes, and then
heated in a water bath at 39.5 ◦C for 0, 0.5, 1.0, 1.5, or 2.0 h. The tube treated immediately
(0 h) served as the control. Plaque forming assays were performed for virus titration.

2.9. Binding Assay

RD cells were seeded in 96-well plates (1 × 105 cells/well) and incubated at 35 ◦C for
48 h. Cells were fixed with 4% paraformaldehyde and viruses of 1000 and 10,000 PFU per
100 µL were added into the cells and incubated at 4 ◦C overnight. Wells containing medium
only and wild type served as the controls. After incubation with the anti-EV-A71 mab979
antibody (1:1000, Sigma-Aldrich) for 1 h, alkaline phosphatase conjugated anti-mouse IgG
(1:1000, Thermo Fisher Scientific, Waltham, MA, USA) was then added and incubated
at room temperature for 1 h. After washing, p-nitrophenyl phosphate was added and
incubated at room temperature for 10 min. The reactions were quenched by adding 3.0 N
NaOH and the absorbance at 405 nm was measured by an ELISA plate reader.

2.10. Statistics

All statistical analysis was performed using the t-test. A p-value of <0.05 was con-
sidered statistically significant. Data are presented as the mean and standard deviation
(mean ± SD). The data were analyzed by the program GraphPad Prism 5.0 (San Diego,
CA, USA).

3. Results
3.1. Identification of Critical Highly Conserved Residues

To investigate the role of the conserved residues of VP1, we analyzed a total of 1632 pro-
tein sequences in VP1 of Enteroviruses from GenBank. Consistent with the Consurf server
was used as per our previous unpublished data. A total of 28 residues was identified in
EV-A71 VP1 (PDB code 4AED). To narrow down the study candidates of VP1 conserved
residues, we further referred to the study of Wang et al. [27]. We then focused on the
conserved residues that were located at the β-barrel and loop intersection as our study
candidates. Six conserved residues where amino acids were over 99% identity among en-
teroviruses, VP1-86R, VP1-134E, VP1-157P, VP1-193P, VP1-231G, and VP1-256K, were used.
To further visualize the six conserved residues, these designated sequences were confirmed
by WebLogo (Figure 1A). To define the potential structure effect of the selected conserved
residues in the VP1, the secondary structure was visualized by using the backbone style
with NGL viewer [15,16]. Interestingly, all six conserved residues were close to each other
and were located in the interior of the canyon (Figure 1B). According to the structure-based
sequence alignment of VP1 of EV-A71 particles, six residues were shown in the cartoon
representation, of which four residues (VP1-86R, VP1-157P, VP1-193P, and VP1-231G) were
located at the β-barrel and loop intersection, except for VP1-134E and VP1-256K, which
were located at ß-barrels D and I, respectively (Figure 1C). Conserved residues that are
close to the ß-barrel may be associated with maintaining conformation stability and may
play roles in modulating certain virus properties. According to our unpublished study,
conserved residues and ß-barrel areas have low protein flexibility. To further examine
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the fluctuation situation of the six residues, we evaluated the fluctuation angle of individ-
ual residues in four VP1 capsid proteins of enterovirus (PDB code 4AED, 3VBS, 4CDQ,
and 1H8T). The result demonstrated a low fluctuation angle (mean 0.61 ± 0.32 Å) in five
conserved residues, which were located at the ß-barrel and at the junction. However,
only VP1-86R located in the N-terminus and at the junction of ß-barrel B demonstrated a
higher fluctuation angle (mean 1.43 ± 0.41 Å) (Figure 1D). According to our findings, con-
served residues among the Enterovirus genus were located at the β-barrel and the junction,
surrounding the inside of the canyon areas, which demonstrated low flexibility.

Figure 1. Diagram of highly conserved residues of VP1 among the Enterovirus genus. (A) After retriev-
ing 90 reference sequences of enterovirus for alignment, amino acid conservation was demonstrated
with WebLogo. Six conserved residues of this study are denoted with red arrowheads. (B) Consurf
server with amino acid (PDB code 4AED) is shown in a relative steric position of the VP1 capsid
protein structure of EV-A71. The six conserved residues are indicated. Highly conserved residues
are shown in red and variable residues are shown in blue. (C) The representative cartoon diagram
indicates the relative locations of the six conserved residues on VP1. (D) CABS-flex server was
used to predict the protein backbone fluctuation profile among these conserved residues. Flexibility
simulations in the VP1 protein structure of enteroviruses were produced. The 3-dimensional (3D)
structures of the VP1 protein of four enterovirus strains (three EV-A71 and one echovirus 11) were
generated using X-ray crystallography (PDB code 4AED, 4CDQ, 3VBS, and 1H8T). The fluctuation
angles of the individual six residues are shown (***, p < 0.005).
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3.2. Conserved Residues Adjacent to β-Barrel and Loop Intersection Affect Viral Replication

To investigate the role of the conserved residues of VP1 close to the β-barrel and
loop intersection during infection, we used alanine substitution mutagenesis from the
EV-A71 infectious clone. The primer sequences are listed in Table S1. Reverse genetics
EV-A71 VP1 variants of the six identified conserved residues were generated by RNA
transcript transfection. After transfection, the cytopathic effect (CPE) in the following days
was observed. Obvious CPE was presented in both rgVP1-E134A and rgVP1-P157A at
two to three days post-transfection. No obvious CPE was seen in rgVP1-R86A, rgVP1-
P193A, rgVP1-G231A, and rgVP1-K256A at five days post-transfection. Additionally,
no CPE was observed after passaging five times. The infected cells were confirmed by
immunofluorescence (IF) staining, as shown in Figure 2A,B. As a result, no CPE and
0–1 positive fluorescence stains were observed in rgVP1-P193A and rgVP1-K256A. Only
rgVP1-R86A and rgVP1-G231A presented weak fluorescence signals after one passage,
but no signal in later passages (P2-P5). Through CPE and IF observations, the results
suggest that the conserved residues located at the β-barrel and loop intersection affect viral
replication (Table 1).

Figure 2. Analysis of alanine substitution of reverse genetics enterovirus. (A) Immunofluorescence
stain of rgVP1 variants. RNA transcript was transfected into RD cells, the viral capsid protein
expression of EV-A71 was detected by mab979 monoclonal antibody three days post-transfection.
The green/red fluorescence indicating viral protein expression and Evan’s blues counter stain were
examined under fluorescence microscope at a 200×magnification. (B) A total number of 25 fields
per slide was used to analyze the number of positive green fluorescent cells under a fluorescence
microscope. (C) Viral replication titers after RNA transcript transfection at days 1, 2, and 3, viral
particles in the medium containing reverse genetics variants were measured by CCID50. (D) Viral
RNA expression after RNA transcript transfection at days 2 and 3. The generative viral RNA from
the medium was measured by real-time RT-PCR assay. The data were expressed as the mean ± SD of
each group (n = 3). n.s., no significance, *, p < 0.05, **, p < 0.01, and ***, p < 0.005.
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Table 1. Cytopathic effect and immunofluorescence stain of the rgVP1 variants.

Variants rgVP1-
R86A

rgVP1-
E134A

rgVP1-
P157A

rgVP1-
P193A

rgVP1-
G231A

rgVP1-
K256A

P0 1 CPE 2/5 2 5/5 5/5 1/5 3/5 0/5
IFA 1 3/5 5/5 5/5 1/5 3/5 1/5

P1
CPE 1/5 5/5 5/5 — 1/5 —
IFA 1/5 5/5 5/5 — 1/5 —

P2–P5 3 CPE — 5/5 5/5 — — —
IFA — 5/5 5/5 — — —

1 P, passage; CPE, cytopathic effect; IFA, immunofluorescence assay. 2 The total number of positive CPE or IFA
results/The total number of experiments. 3—, no CPE or IFA positive results demonstrated after passaging
five times.

3.3. Conserved Residues Adjacent to β-Barrel and Loop Intersection Affect RNA Level and Viral
Infectious Titer

To investigate the infectious titer and RNA level of the rg VP1 variants, CCID50 and
real-time RT-PCR were performed after transfection. Results showed that infectious titer
and RNA level significantly increased at days 2 and 3 in rgVP1-E134A and rgVP1-P157A
(Figure 2C,D). There was no significant change in the RNA level in rgVP1-R86A, rgVP1-
P193A, rgVP1-G231A, and rgVP1-K256A (Figure 2D). Notably, rgVP1-P193A had a higher
RNA level compared to other variants on day 2. We further investigated rgVP1-P193A
RNA levels in a time course of 0, 2, 4, 6, 24, 48, and 72 h (Figure 3). The results indicated that
rgVP1-P193A rapidly plateaued 24 h after transfection, and no longer had RNA replication
kinetics 48 and 72-h post-transfection. Of note, compared to rgVP1(WT), rgVP1-P193A had
significantly lower RNA levels at 72 h. Three of four highly conserved residues adjacent to
the β-barrel and loop intersection, VP1-86R, VP1-193P, and VP1-231G, play a role in viral
infectious titer and RNA level in the viral replication process.

Figure 3. Viral RNA expression of rgVP1-P193A and rgVP1 wild type. Viral RNA replication after
RNA transfection from reverse genetics variants were measured by real-time RT-PCR assay. The data
were expressed as the mean ± SD of each group (n = 3). *, p < 0.05 and ***, p < 0.005.

3.4. The Viral Properties of the rgVP1 Variants

To further elucidate, the first passage of the rg variants was prepared as viral stocks
for the analysis of the viral properties. However, only the stocks of rgVP1-E134A and
rgVP1-P157A were available, while stocks of the other four rgVP1 variants could not be
obtained due to the lack of further replication ability. Plaque sizes of rgVP1-P157A variants
were significantly smaller than rgVP1-E134A (Figure 4A). To investigate the effect of the
substitutions in the rgVP1 variants on viral replication, we analyzed the virus growth
kinetics at MOI of 10 and 0.1. At MOI of 10, the variants had similar endpoint titers at
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24 h. The rgVP1-E134A had the highest titer log phase compared to rgVP1-P157A and
rgVP1(WT). We also found that rgVP1-P157A had a significantly lower viral titer than
rgVP1-E134A from 10 to 12 h post-infection at MOI of 10. However, the growth rate of
rgVP1-E134A, rgVP1-P157A, and wild type were similar at MOI of 0.1 (Figure 4B).

Figure 4. Viral plaque size, growth kinetics, temperature sensitivity, and stability of reverse genetics
variants. (A) Diagram of the plaque size of 10−5- and 10−6-fold serially diluted viruses. The plaque
area was measured by Image J2. Mean of plaque area is shown in the right figure. The rgVP1-P157A,
rgVP1-E134A, and rgVP1(WT) growth kinetics assays were performed in triplicate at (B) 35 ◦C in
MOI of 10 and 0.1 after the indicated time course and (C) at 39.5 ◦C. The data were expressed as the
mean ± SD of each group (n = 3). n.s., no significance, *, p < 0.05, **, p < 0.01, and ***, p < 0.005.

3.5. The Viral Temperature Sensitivity and Stabilty of the rgVP1-P157A Variant of VP1

To observe the temperature sensitivity of rg variants during virus replication, we
applied the same replication kinetic at 39.5 ◦C (Figure 4C). The results showed similar
replication kinetics at MOI of 10, however, rgVP1-P157A was not able to further replicate at
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a MOI of 0.1 in the time course. This reveals that the low viral load of VP1-157P is sensitive
at 39.5 ◦C during viral replication (Table 2).

Table 2. Analysis of the thermal sensitivity of rgVP1(WT) VP1 variants.

Viruses
(MOI = 0.1)

Titer at: (log10 PFU/mL)
∆log 1 Phenotype

35 ◦C 39.5 ◦C

rgVP1-E134A 7.70 6.5 1.20 TR 2

rgVP1-P157A 8.18 0 8.18 TS 2

rgVP1(WT) 7.70 6.5 1.20 TR
1 ∆log = log(35 ◦C)–log(39.5 ◦C). 2 TR: temperature resistant, defined as logarithmic difference <2.00;
TS: temperature-sensitive defined as logarithmic difference >2.00.

To elucidate whether rgVP1-P157A viral particles affect the thermal stability, we tested
the thermal inactivation kinetics of the rg variants with the titers of 10,000 PFU/0.1 mL.
Viruses were heated at 39.5 ◦C in a water bath for 0.5, 1, 1.5, and 2.0 h. Both rgVP1-E134A
and rgVP1(WT) showed a decrease in plaque numbers from 8.6% to 29.2% after treatment
for 1 h, while rgVP1-P157A dramatically decreased by 91.7% in titer (Figure 5). According
to the results, highly conserved residues affect the plaque size, viral replication, thermal
sensitivity, and stability. This indicates that the mutation of conserved residues might be
lethal and could affect the viral properties.

Figure 5. Effects of rgVP1-E134A and rgVP1-P157A variants on virus thermal stability. Thermosta-
bility assay was performed at 39.5 ◦C for 0.5, 1.0, 1.5, and 2.0 h. The data were expressed as the
mean ± SD of each group (n = 3). *, p < 0.05, **, p < 0.01.

3.6. Effect of Amino Acid Interactions after Alanine Substution

To further examine the effects of alanine substitutions on capsid protein interaction, we
utilized the UCSF chimera as a protein structure analysis tool to predict the capsid protein
interaction. The results indicated that VP1-E134A and VP1-G231A showed no change in
interaction with other residues; however, VP1-R86A, VP1-P157A, VP1-P193A, and VP1-
K256A resulted in interaction alternation with the capsid proteins, as shown in Figure 6.
Most of these residues demonstrated interaction loss after alanine substitution. The VP1-
R86A and VP1-K256A not only presented a positive charge change, but also demonstrated
interaction dismissed with VP3 and VP4, respectively. The data also demonstrated the
loss of interactions with VP1 protein for the VP1-P157A, and the loss of one of the two
interactions with the VP1 protein for the VP1-P193A (Figure 6).
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Figure 6. Effects of amino acid side-chain interaction after alanine substitution in six highly conserved
residues of VP1. The hydrogen bonds interacting with other residues of six variants in UCSF chimera
were shown. The wild-type residues are shown on the left and alanine substitutions on the right.
The VP1 protein is shown in orange; the VP2 is shown in blue; the VP3 is shown in green; the VP4
is shown in yellow; the residues in the study are shown in red; the interaction bonds are shown as
red lines.



Viruses 2022, 14, 364 11 of 14

4. Discussion

To date, there are no effective antiviral drugs against the highly diverse enteroviruses.
According to our unpublished data, highly conserved residues of VP1 capsid protein among
the Enterovirus genus (1) are important for viral structure stability; (2) interact with other
capsid proteins; and (3) exist adjacent to the β-barrel and loop intersection. Additionally,
most of these residues are close to the interior area. In this study, through reverse genetics
variants of the conserved residues, we emphasized that the highly conserved residues in
the junction of the ß-barrel and loop are important for virus replication kinetics, thermal
sensitivity, and thermostability. We suggest that the enterovirus genus shares the same
structure and conserved residues close to the inside of the canyon. According to the
influenza virus study, focusing on a hemagglutinin stem structure may develop a broad
spectrum drug for influenza virus infection. Small molecular drug development, which
targets the inside of the canyon region, may also serve as a broad spectrum drug candidate
for enterovirus treatment.

Our findings are consistent with a previous study by Yuan et al. (2016) using positive
charged-to-alanine mutations of VP1-86R and VP1-256K. The study indicated that the
VP1-86R mutation had a lower replication ability, and that the VP1-256K mutation had a
lethal consequence [28]. Our results provided additional information based on the previous
study such as the fact that not only positive charge amino acids are critical for replication,
but the conserved residues in the ß-barrel and loop junction may also be important for the
viral life cycle. VP1-86R had a higher flexibility than the other five residues. According
to our previous data, a higher conservation score showed a lower flexibility. In addition,
most highly conserved residues were located at the ß-barrel when compared with the
loop (55% vs. 43%). In this study, we found that the highly conserved residues adjacent
to the ß-barrel and loop intersection demonstrated a low fluctuation angle. The higher
fluctuation angle of VP1-86R may represent its structure flexibility. VP1-86R was located
at the N-terminus and ß-barrel B intersection, and the N-terminus did not connect to
other rigid structures, which may lead to higher flexibility in VP1-86R. This observation
indicates that not only the secondary structure, but the location of the residue also affects
the structure flexibility. The data for rgVP1-P193A presented a higher RNA replication rate
when compared with other rg variants, but no obvious CPE or viral titers were found on
day 2. We believe that the RNA transcripts of VP1-P193A were packaged by lipofectamine
and transfected into RD cells at the first replication cycle. The initial translation started
immediately without an uncoating and RNA release process. The mature viral particles
were subsequently released in a non-lytic way. The second round of the infectious process
may fail due to receptor binding, uncoating, or RNA release [29]. This implies that the
possible role of VP1-193P residues may relate to the initiation of viral infection or non-lytic
release viral particles. In the analysis of the amino acid interaction simulation, we found
that rgVP1-E134A demonstrated no effect on viral replication because there was no change
in interaction with the other residues. Nevertheless, rgVP1-G231A also had no change in
the interaction of the amino acid after alanine substitution, but the rgVP1-G231A variant
was lethal. According to our study, the rgVP1-E134A was found located at the ß-barrel.
Although there was no change in interaction after alanine substitution, the VP1-G231A was
located in the junction between the ß-barrel and loop, which may have a pivotal role in
capsid conformation stability.

In our unpublished data, a quarter of the highly conserved residues were found to
be composed of arginine and proline in enterovirus VP1, where proline was located at the
junction of the ß-barrel and loop and may maintain the capsid protein structure stability.
VP1-157P and VP1-193P are located at the EF loop to ß-barrel F intersection and the ß-barrel
G to GH loop intersection, respectively. It is worth noting that both are proline residues.
In our experiment, we demonstrated that alanine substitutions of VP1-157P changed viral
replication, thermal sensitivity, and stability. Proline residues are often found at the first
residue of an alpha helix and in the edge strands of the ß-barrel of human proteomics [30].
The same phenomenon was observed in VP1 of the Enterovirus genus. Proline also plays
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important roles in viruses. For example, according to previous studies on mouse hepatitis
virus (MHV; murine coronavirus), single and double proline mutations in fusion peptides
of the spike protein are important for cell–cell fusion and pathogenesis [31,32]. Another
previous study also showed that SCARB2 binds to the EV-A71 interactive complex structure
by using cryo-electron microscopy, suggesting that conserved proline and glycine are key
residues involved in the binding footprint of the EV-A71 canyon [33]. The critical amino
acid proline residues in the conserved PXXXP motif of envelope glycoprotein I (gI) of
herpes simplex virus 1 (HSV-1) are involved in viral spread and pathogenesis [34]. The
identification of proline hot spots may facilitate the design of mimic therapeutics, which
are less likely to generate resistance quickly. Proline is also important for vaccine efficiency.
Pallesen et al. (2017) reported two proline substitutions (K986P and V987P) at the S protein
apex of Middle East respiratory syndrome coronavirus (MERS-CoV), resulting in the
induction of a much greater antibody titer than wild-type S protein in mice [35]. Nowadays,
the design strategy of having two proline substitutions at the S protein is used in several
vaccines against the coronavirus disease of 2019 (COVID-19). Our study suggests that the
conserved VP1-157P and VP1-193P residues may play a role in Enterovirus genus replication
and virulence.

Since the enterovirus species show remarkable structural similarity, we tried to identify
the most conserved residues for efficient treatment strategies that may cover a wider range
of enteroviruses. In this study, we identified that alanine substitutions at VP1-86R, VP1-
193P, VP1-231G, or VP1-256K would lead to severely impaired viral replication. Alanine
substitutions at VP1-157P resulted in thermal instability. Both rgVP1-E134A and rgVP1-
P157A can replicate and produce infectious viral particles, even though rgVP1-P157A
showed reduced replication, despite a normal binding ability. No significant differences
in virus binding ability was observed among the variants, indicating that these residues
may not be involved in the binding process during infection (data not shown). This
may be due to the fact that the residues are not exposed on the surface of the capsid.
Therefore, we believe that rgVP1-P157A is a low virulence variant and may bind to cells
prior to initiating the first step of infection and potential antiviral immune response. This
entails the possibility that the variant may serve as a potential backbone for future vaccine
development. The data of VP1-157P have been shown to be temperature sensitive and
unstable at 39.5 ◦C. Proline amino acid structure is important for protein thermostability
and can be found in a high percentage of thermophilic organisms [36]. The loss of proline
residues may be the reason as to why rgVP1-P157A is temperature sensitive. Although the
link between temperature sensitivity and attenuation may not be straightforward, it could
serve as an indicator of virulence in enterovirus [37].

The residues in the junction between the ß-barrel and loop play an important role in
viral replication and structural stability. Cyclophilin A, peptidyl-prolyl cis-trans isomerase,
is involved in the pathogenesis of EV-A71 infection [38]. Proline isomerase also modulates
protein stability in oncogenic viruses, like HBV, HIV, and HTLV-1 [39]. Previous studies
have reported that cyclophilin inhibitors could serve as potential novel HCV therapy
drugs [40]. Our study suggests that highly conserved proline, adjacent to the ß-barrel
and loop intersection, may participate in proline isomerization during the VP1 folding
or assembling process. Proline isomerase inhibitors may be a potential tool for the broad
spectrum of anti-enteroviral drug development.

5. Conclusions

In conclusion, highly conserved residues were distributed in the interior of the canyon
of enteroviruses. According to the deduced amino acid sequence, six residues among
the Enterovirus genus were identified by alignment. We identified four residues adjacent
to the ß-barrel and loop intersection surrounding the interior canyon. Through alanine
substitution, four residues affected viral replication. VP-157P was further identified to
affect viral replication, plaque size, and thermostability. This study will help explore the
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importance of amino acid residues or areas in VP1 that may provide potential targets for
developing new antiviral therapy in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14020364/s1, Table S1: Overlap extension PCR primers used for
site-directed mutagenesis. File S1: Structure-based sequence alignment of VP1 in enteroviruses. The
secondary structural elements for EV-A71 are shown, above the EV-A71 sequence are also symbols
that show features described as follows. The residue numbers are for EV-A71. A total of 1632 protein
sequences were aligned with the VP1 protein (PDB code 4AED). Red block marks conserved residues.
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