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Purpose: Respiratory motion of patients during positron emission tomography (PET)/computed
tomography (CT) imaging affects both image quality and quantitative accuracy. Hardware-based
motion estimation, which is the current clinical standard, requires initial setup, maintenance, and cali-
bration of the equipment, and can be associated with patient discomfort. Data-driven techniques are
an active area of research with limited exploration into lesion-specific motion estimation. This paper
introduces a time-of-flight (TOF)-weighted positron emission particle tracking (PEPT) algorithm that
facilitates lesion-specific respiratory motion estimation from raw listmode PET data.
Methods: The TOF-PEPT algorithm was implemented and investigated under different scenarios: (a) a
phantom study with a point source and an Anzai band for respiratory motion tracking; (b) a phantom
study with a point source only, no Anzai band; (c) two clinical studies with point sources and the Anzai
band; (d) two clinical studies with point sources only, no Anzai band; and (e) two clinical studies using
lesions/internal regions instead of point sources and no Anzai band. For studies with radioactive point
sources, they were placed on patients during PET/CT imaging. The motion tracking was performed using
a preselected region of interest (ROI), manually drawn around point sources or lesions on reconstructed
images. The extracted motion signals were compared with the Anzai band when applicable. For the pur-
poses of additional comparison, a center-of-mass (COM) algorithmwas implemented both with and with-
out the use of TOF information. Using the motion estimate from each method, amplitude-based gating
was applied, and gated images were reconstructed.
Results: The TOF-PEPT algorithm is shown to successfully determine the respiratory motion for both
phantom and clinical studies. The derived motion signals correlated well with the Anzai band; correlation
coefficients of 0.99 and 0.94-0.97 were obtained for the phantom study and the clinical studies, respec-
tively. TOF-PEPTwas found to be 13–38% better correlated with the Anzai results than the COM meth-
ods. Maximum Standardized Uptake Values (SUVs) were used to quantitatively compare the
reconstructed-gated images. In comparison with the ungated image, a 14–39% increase in the max SUV
across several lesion areas and an 8.7% increase in the max SUVon the tracked lesion area were observed
in the gated images based on TOF-PEPT. The distinct presence of lesions with reduced blurring effect
and generally sharper images were readily apparent in all clinical studies. In addition, max SUVs were
found to be 4–10% higher in the TOF-PEPT-based gated images than in those based on Anzai and COM
methods.
Conclusion: A PEPT- based algorithm has been presented for determining movement due to respira-
tory motion during PET/CT imaging. Gating based on the motion estimate is shown to quantifiably
improve the image quality in both a controlled point source phantom study and in clinical data patient
studies. The algorithm has the potential to facilitate true motion correction where the reconstruction
algorithm can use all data available. © 2020 The Authors. Medical Physics published by Wiley Peri-
odicals LLC on behalf of American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.14613]
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1. INTRODUCTION

Positron emission tomography (PET) is a noninvasive imag-
ing modality widely used in clinical application to study
organ and tissue function and is used most often in conjunc-
tion with computed tomography (CT) to acquire anatomical
information and for emission data correction. Motion artifacts
caused by the natural breathing of the patient during a scan
are a major concern. Along with blurring and otherwise
degraded image quality, motion artifacts may result in inaccu-
rate localization of lesions, miscalculation of standardized
uptake values (SUVs), and overestimation of tumor size and
involvement.1 Respiratory motion is particularly problematic
for PET due to typical scan times of 2–5 min (8–20 min for
whole-body scans), leading to averaging of the image pixel
values across the range of motion.

The current clinical standard uses external measuring
devices to extract respiratory signals from the patient.
Dawood et al.,2 Qiao et al.,3 Lamare et al.,4 and Liu et al.5

presented methods using external devices. However, key
issues exist related to device cost, service, maintenance, and
more. The difficulties and the expense associated with the
use of external measuring devices have resulted in an
increased focus on data-driven methods for PET motion cor-
rection. Such methods provide a means to determine global
(or external) motion as well as lesion-specific (internal)
motion. This ability is important for proper quantification of
lesions since internal motion may not perfectly match the
external motion typically monitored.

To date, a wide range of data-driven approaches have been
studied including center-of-mass (COM) methods proposed
by Klein et al.6 and Bundschuh et al.,7 principal component
analysis (PCA) by Thielemans et al.,8 spectral analysis by
Visvikis et al.9 and Schleyer et al.,10,11 sinogram region fluc-
tuation (SRF) by Kesner et al.,12,13 geometric sensitivity gat-
ing (GSG) by He et al.,14 and combinations of different
methodologies by Büther et al.15,16 and others. None of these
earlier papers considered time-of-flight (TOF)17,18 informa-
tion. With modern scanners, TOF information can play an
important role in improving the data-driven motion estima-
tion as evident by more recent COM algorithms by Ren
et al.,19,20 Lu et al.,21 Xu et al.,22 Feng et al.,23 and Salomon
et al.,24 PCA techniques by Bertolli et al.25,26 and Walker
et al.,27 and a combination thereof by Wang et al.28,29 Except
for a few of these papers,19–21 only axial motion estimation
was demonstrated. None of the papers reported on motion
estimation for specific lesions.

Our aim is to study a modified version of the positron
emission particle tracking30–32 (PEPT) algorithm with appli-
cation to lesion/internal region specific movement tracking
due to respiratory motion. PEPT has been mostly used in
industrial applications such as flow patterns30,31 and velocity

measurements.32 Other than our patent33 and preliminary
early work,34–36 a variant of the PEPT algorithm was pre-
sented under the moniker positron emission tracking (PeT-
rack) for use in radiotherapy as well as cardiac PET studies
using external markers.37,38 PeTrack requires an initial esti-
mate of the marker positions and has several user-defined
threshold parameters. We modified the original PEPT algo-
rithm to make its implementation data-driven and use TOF-
based weighting. We refer to the resulting algorithm as TOF-
PEPT and show its application using respiratory PET/CT
data.

Our overall contributions are as follows: (a) proposing a
PEPT-based data-driven motion tracking technique for esti-
mating both external and internal motion signals due to respi-
ratory motion; (b) utilizing TOF information to introduce
weighting factors into the algorithm and determine control
parameters; (c) applying the TOF-PEPT algorithm to list-
mode data to estimate motion signals subsequently used for
gating; (d) validating our recommendation of TOF-based
weighting factors; and (e) validating the performance of the
TOF-PEPT algorithm using the Anzai band while comparing
against the COM algorithm by Ren et al.19

2. MATERIALS AND METHODS

2.A. Time-of-flight-based positron emission particle
tracking (TOF-PEPT)

The PEPT algorithm estimates the location of a radioac-
tive tracer particle by iteratively determining the point in
space for which the sum of distances to a set of LORs is min-
imized. For the idealized case of a single radioactive tracer
particle with no radioactive background, all LORs are
expected to intersect at the location of the tracer. In reality,
many LORs represent random events and Compton scatter-
ing. Also, emitted positrons travel a finite range before anni-
hilation. All these lead to uncertainties in measuring the
accurate location of the tracer particle. The PEPT algorithm
aims at obtaining the location estimate by iteratively keeping
a fraction of LORs which is more likely to provide a truer
estimate.

Mathematically, let Li∈Ω be the set of LORs considered
for the current iteration, and let δ Li,pð Þ represents the perpen-
dicular distance from a specific LOR, Li to some point p. The
particle location is then estimated as

pm ¼ argminp ∑
Li∈Ω

δ Li,pð Þ (1)

LORs, for which the distances to pm exceed the mean distance
of the set by a user-defined threshold, are discarded before the
process is repeated. The iteration stops when less than a pre-
specified fraction of the initial set of LORs remains.
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We have modified the PEPT algorithm to incorporate
TOF-based weighting of the point distance, use of squared
distance to solve the problem analytically, and use of data-dri-
ven rules for discarding LORs and stopping the iteration.

TOF information is commonly used in PET to narrow
down the location of an emission event.17 The location of the
annihilation along an LOR can be determined by examining
the differences in the TOF of each gamma ray. The location
estimate is associated with an uncertainty σT that can be
modeled by a Gaussian, whose FWHM is a function of the
system coincidence timing resolution. For the Biograph mCT
(Siemens Healthineers, USA), the timing resolution has been
reported to be 527–580 ps28,39–41 with lower values possible
for individual LORs.42

The proposed TOF-PEPT algorithm uses σT to define a
weighting factor for each LOR as well as to obtain a statisti-
cally based stopping criterion. That is,

pm ¼ argminp ∑
Li∈Ω

wiδ
2 Li,pð Þ (2)

where

wi≜1þmax 0,1� pi�pmj jj jffiffiffi
2

p
σT

� �2
( )

∈ 1,2½ � (3)

Here, pi denotes the TOF estimate of the annihilation loca-
tion for Li. The weighting factor, which is based on a first-
order Taylor series expansion of a Gaussian function, places
higher emphasis (up to 2x) on LORs for which the annihila-
tion event is close to the current estimate of pm than LORs
that are further away (1x). We chose the weighting factors to
be in the range of [1, 2] so that all the selected LORs con-
tribute to the location estimate with the more probable LORs
carrying more weight. The definition of the weighting factor
is validated by the results presented in Sections 3.C and 4.

For the results reported below, we used σT = 6.53 cm
based on an idealized individual LOR timing resolution of
512 ps. At the end of each iteration, we discard LORs, whose
distances to the new point estimate are farther than 1 standard
deviation away from the mean distance of the set. The itera-
tion stops when the number of LORs kept drops below the
number of LORs for which the TOF-based emission loca-
tions are within a sphere of radius σT surrounding the particle
location estimate.

2.B. Method implementation and data processing

A PET scan can produce millions of LORs with emissions
originating from many locations within the patient. In order
to perform the computation on a specific region, we imple-
mented a user-based selection of the ROI that limits which
LORs will be considered during the computation. A graphi-
cal user interface was developed in MATLAB to allow visu-
alization of DICOM files and to enable manual drawing of a
box-shaped ROI around the source of interest. DICOM
images were reconstructed using Biograph mCT (Siemens
Healthineers, USA) software for a pixel size of 4.0728 mm ×

4.0728 mm with a slice thickness of 2.0084 mm. Each ROI
was drawn by visual inspection to be approximately two to
three pixels larger on each side than the source of interest.
The size and location of the ROIs were mapped to the scan-
ner geometry to facilitate LOR selection.

The listmode data was divided into chronological time
frames of 500 ms. The TOF-PEPT algorithm was then
applied to each time frame to estimate movement. Plotted as
a function of time, the frame particle location provided
motion signals along X, Y, and Z directions for the duration
of the scan; below, we denote Left–Right (LR), Anterior–-
Posterior (AP), and Superior–Inferior (SI) directions by X, Y,
and Z, respectively. The motion signal was smoothed by a
low pass filter, the cutoff frequency of which was determined
from the frequency corresponding to the peak magnitude.19

The peak frequency magnitude varied from patient to patient
ranging from ~0.167 to 0.3 Hz for the data studied.

2.C. Validation and evaluation

For gold standard comparison, we used a clinically
approved respiratory band (Anzai Medical, Japan) which pro-
vided motion information related to inspiration and expira-
tion. Comparison against another data-driven method was
based on the COM algorithm proposed by Ren et al.19. To
ensure a fair comparison, the COM algorithm was imple-
mented using the same ROI restriction methodology as used
for TOF-PEPT. We compared against COM using TOF (re-
ferred to as TOF-COM) and COM without using TOF (re-
ferred to as COM).

A quantitative comparison of the motion signals extracted
by the TOF-PEPT and COM algorithms was performed
against the gold standard Anzai band results. The analysis
was conducted by calculating the following quality control
measurements: Pearson correlation coefficient (CC),13 root
mean square error (RMSE), and mean shift in the peak loca-
tion. To conduct the comparison, tracked data were resampled
at the Anzai band sampling rate (20 ms) using MATLAB
built-in “resample” function. The mean shift in peak location
was calculated by taking the mean of shifts in peak locations
w.r.t. the Anzai band data for each cycle normalized by the
corresponding cycle duration of the band data.

Additionally, CC was used to study the performance of
TOF-PEPT with and without the TOF-based weighting pro-
posed in this paper as well as with and without the TOF-
based LOR exclusion proposed for the PeTrack method. The
latter discards LORs for which the distance from the TOF-
based annihilation location to the current estimate of the par-
ticle location exceeds a user-defined threshold.37,38

To further validate our method, respiratory gating was
implemented using the motion signals from each method.
Amplitude-based gating is a widely practiced approach43 and
we adopted the gating in a way where for each individual
cycle, all events that lie within the baseline amplitude to the
35% of the peak amplitude were kept. Using Biograph mCT
software and the e7 processing tooling, the listmode data
were rebinned into sinograms, which were then processed by
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the manufacturer provided OSEM algorithm [with three itera-
tions, 24 subsets, 5 mm Gaussian filter, UltraHD (TOF +
PSF)] found on the mCT Flow PET/CT platform. The final
reconstructed image corresponded with the phase of the cycle
where the object statistically spent the greatest amount of
time during the acquisition (usually the point of expiration
for most patients). Using RadiAnt44 and Inveon Research
Workplace visualization software (Siemens Healthineers,
USA), ROIs were drawn on the gated images to quantitatively
compare data and assess the impact of motion correction.
The images had the same resolution as the DICOM images
mentioned previously.

Lastly, we assessed sensitivity of the TOF-PEPT algorithm
to changes in the key user-defined parameters, namely, frame
duration and ROI size. These two parameters control how
many, and which, LORs are kept for each frame. The assess-
ment focused on how the quality control measurements
described above varied with the parameters. Five different
frame durations of 200, 400, 600, 800, and 1000 ms were
used. Controlled by the radius of the circumscribing sphere,
the ROI was varied in size using scaling factors of 1.5, 2, and
2.75. Parameter sensitivity was studied for the TOF-PEPT
algorithm only, as analysis for the COM algorithm was out of
the scope of this work.

2.D. Data

Validation and performance evaluations were done using
two phantom studies and six clinical studies. For the first
phantom study, a single radioactive point source was attached
to a respiratory phantom consisting of an elliptical disc rotat-
ing at a frequency of 0.18 Hz. The point source was placed
on top of the platform, and the Anzai band was wrapped
across the point source. The phantom exhibited the greatest
range of movement in the Y direction (approximately
9–10 mm). The second phantom study was performed with a
servo motor and a small arm attached to the motor. The motor
was controlled using an Arduino board45 which was pro-
grammed to move the arm up and down for 15 min at three
different frequencies, namely, 0.167, 0.25, and 0.5 Hz,
respectively for 7.5, 5, and 2.5 min with corresponding
amplitude ranges of about 6, 3, and 1.5 mm in the Y direc-
tion. A point source was attached to the arm. The Anzai band
was not used for this study.

The clinical studies were performed under the auspices of
a University of Tennessee Graduate School of Medicine Insti-
tutional Review Board approved protocol (#3941). Patient
imaging was performed on a 64-slice Biograph mCT Flow
PET/CTusing full 64-bit listmode data acquisition. We exam-
ined three scenarios each with two clinical studies. Clinical
Studies 1 and 2 were conducted with the Anzai band placed
on the abdomen using three radioactive point sources and
one radioactive point source, respectively, attached close to
the band. Clinical Studies 3 and 4 used a single point source
each but no Anzai band. Clinical Studies 5 and 6 were per-
formed solely using internal data, namely, the left cardiac
ventricle and a ~1.5 cm3 lesion in the lung area, respectively.

Whether tracking an external point source or an internal
region, the location estimate was always the one that mini-
mized the sum of squared distances to all LORs that were
within the selected ROI. Motion estimation from multiple
point sources/internal regions was performed independently
by selecting an ROI for each and using the set of LORs
within that ROI. Table I provides additional details for all
studies.

The point sources used consisted of zeolite beads (approx-
imately 2 mm in diameter) soaked in an 18F-fluorodeoxyglu-
cose solution for approximately 10 min. For the clinical
studies with a single point source, it was placed on the center
of the abdomen. For the clinical study with three point
sources, they were placed on the center, left, and right side of
the abdomen, approximately 13–18 cm apart from each other.
Use of external markers for motion estimation has previously
been studied.46

3. RESULTS

3.A. Analysis of extracted motion signals using
TOF-PEPT

3.A.1 Studies with Anzai tracking system

Phantom Study 1: Point source and Anzai tracking: The
range of movement observed in the estimated motion signal
matched closely with the actual range of movement of the
phantom. Furthermore, the signal correlated almost perfectly
with the signal derived from Anzai band for the entire dura-
tion of the scan. Figure 1 provides a phase and displacement
comparison between the motion signals derived from the

TABLE I. Description of the experimental studies conducted.

Study

Anzai
band
used

Number of
external
point
sources

Radioactivity
(approx.)
(kBq/mL)

Scan
duration
(min)

ROI
circumradius

(mm)

Phantom
Study 1

Yes 1 Point
Sources:
74–185

3 42.99

Phantom
Study 2

No 1 15 17.59

Clinical
Study 1

Yes 3 5 26.02, 21.71,
24.43

Clinical
Study 2

Yes 1 3 24.28

Clinical
Study 3

No 1 3 23.32

Clinical
Study 4

No 1 3 31.10

Clinical
Study 5

No N/A 3 57.28

Clinical
Study 6

No N/A Lesion:
10–15

3 24.39
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Anzai band and the TOF-PEPT algorithm for the Y direction.
Motion estimates for the Z direction correlated equally well.

Clinical Studies 1 and 2: Point sources and Anzai
tracking: Figure 2 compares the Anzai band and TOF-PEPT
motion estimates in the Y direction for one point source from
Clinical Study 1. Between 20–30 s and 65–90 s, the patient
incidentally moved, with the movement visible in both the
Anzai band signal and the TOF-PEPT motion estimate. Com-
pared with the sudden increase in the TOF-PEPT motion, the
Anzai band signal appeared flattened, possibly due to

wraparound of measured values that exceeded the pressure
thresholds of the sensor. The motion estimates for the two
other point sources correlated equally well with the band as
did the Clinical Study 2 estimates. A detailed quantitative
comparison is provided in Section 3.C for both studies.

3.A.2. Studies without Anzai tracking system

Phantom Study 2: Point source and no Anzai tracking: A
servo motor moved an arm with an attached point source up
and down at three different frequencies for three different

FIG. 1. Phase and displacement comparison of estimated motion signals by TOF-PEPTversus Anzai band for phantom study 1: (a) Displacement in Y for a 60-s
time frame; (b) Displacement in Y for the full 3-min scan. For visualization purposes, the Anzai band data amplitude was normalized by its maximum value. The
TOF-PEPT estimate was kept in the original mm-scale. The phase, displacement, and peak trigger location can be seen to correspond well. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 2. Phase and displacement comparison of estimated motion signals by TOF-PEPT versus Anzai band for Clinical Study 1: (a) Displacement in Y for a 60-s
time frame; (b) Displacement in Y for the full 5-min scan. For visualization purposes, the Anzai band data amplitude was normalized by its maximum value. The
TOF-PEPT estimate was kept in the original mm-scale. Similarity in phase, displacement, and peak trigger location is evident except for a few places where there
were unusual breathing patterns and missing trigger issues from the Anzai band. [Color figure can be viewed at wileyonlinelibrary.com]
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amplitude ranges. Figure 3 provides time and Fourier domain
analysis of the estimated motion signals. The three frequen-
cies are seen to be correctly identified by the TOF-PEPT
algorithm with the signal suffering almost no random noise/
fluctuations. Although the three frequencies were detected by
the TOF-COM algorithm as well, the derived signals were
noisier especially during the last segment where the phantom
moved with the smallest amplitude range. Only the two low-
est frequencies were identifiable by regular COM. Further-
more, the true range of displacement for the entire duration
was successfully captured by TOF-PEPT only.

Clinical Studies 3 and 4: Point sources and no Anzai
tracking: Figure 4 provides a visual comparison of the esti-
mated motion signals in the time and Fourier domains for
Clinical Study 3. The motion estimate obtained by the TOF-
PEPT algorithm exhibited less noise compared with the
COM algorithms. Similar results were obtained for Clinical
Study 4.

Clinical Studies 5 and 6: Lesions/internal regions and no
Anzai tracking: Here tracking was performed using data
from regions selected within the patient to study the ability of
the TOF-PEPT algorithm to estimate motion without use of a
manufactured, external point source. Clinical Study 5 used
the left cardiac ventricle. Clinical Study 6 used a small lesion
in the lung area. Figures 5 and 6 provide time and Fourier
domain plots of the corresponding motion signal estimates.

Figure 5 shows that the TOF-PEPT algorithm identified both
the respiratory and the cardiac motion frequency components
respectively at around 0.3 and 0.7 Hz. The latter was missing
in the signals provided by the TOF-COM and COM algo-
rithms. Figure 6 shows the lesion-specific motion estimate
obtained by the TOF-PEPT algorithm to suffer less noise than
those obtained by the TOF-COM and COM algorithms. The
latter, in particular, was obscured by noise to the point of
almost being undetectable.

3.B. Qualitative and quantitative comparison of
gated images using signals from different methods

In this subsection, we present and evaluate the perfor-
mance of each method in producing gating triggers and
motion-compensated gated images for Clinical Study 1,
which was based on motion estimation from a point source
and the Anzai band, and Clinical Study 6, which was based
on motion estimation from a lesion only.

Figure 7 compares images reconstructed using ungated
data and data gated using motion estimates obtained with the
Anzai band as well as the TOF-PEPT and COM algorithms
for Clinical Study 1. Motion signals estimated from the point
source placed on the center of the abdomen were used to gate
the data. Data from after the patient’s incidental movement
during the scan were considered. The max SUV indicated for
the lesion marked by an arrow shows that the uptake
increased in the gated images with the max SUV being high-
est in the TOF-PEPT image; this SUV was higher than the

FIG. 3. Comparison of TOF-PEPT, TOF-COM, and COM estimated motion signals for Phantom Study 2: (a) Time domain plots for full 15-min scan with base-
line shift added to the TOF-COM and COM signals for visualization purposes; (b)–(d) 60-s frames for the three different frequencies and amplitude ranges;
(e)–(g) Fourier domain plots for full 15-min scan. [Color figure can be viewed at wileyonlinelibrary.com]
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SUVs obtained for the ungated image by about 16% and the
other gated images by 4–10%. A sole comparison with the
ungated data showed an increase of 14–39% in maximum
SUV across several lesions in the TOF gated data, depending

on the amount of motion blurring that had occurred in that
region.

Figure 8 compares ungated and gated images recon-
structed using the lesion-specific motion estimates produced

FIG. 4. Comparison of TOF-PEPT, TOF-COM, and COM estimated motion signals for Clinical Study 3: (a) Time domain plots; (b)–(d) Fourier domain plots.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Comparison of TOF-PEPT, TOF-COM, and COM estimated motion signals from left cardiac ventricle for Clinical Study 5: (a) Time domain plots show-
ing only the respiratory motion by having applied a low pass filter with cutoff frequency of 0.5 Hz; (b)–(d) Fourier domain plots. [Color figure can be viewed at
wileyonlinelibrary.com]
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by the TOF-PEPT, TOF-COM, and COM algorithms. The
lesion can be seen more elongated and motion blurred in the
ungated image as well as in the TOF-COM- and COM-gated
images compared with the TOF-PEPT-gated image. This can
also be seen from the Gaussian line profile fits provided for
all four methods. FWHM across the lesion was lowest for the
TOF-PEPT-based gated image. In comparison with the
ungated image, a 12.17% reduction in FWHM was observed.

The maximum SUV was higher than the ungated, COM, and
TOF-COM results by 8.7%, 7.1%, and 5.6%, respectively.

3.C. Quantitative comparison of extracted signals
with Anzai respiratory band

Table II gives a quantitative comparison of the motion sig-
nals estimated by TOF-PEPT, TOF-COM, and COM with the

FIG. 6. Comparison of TOF-PEPT, TOF-COM, and COM estimated lesion-specific respiratory motion signals for Clinical Study 6: (a) Time domain plots;
(b)–(d) Fourier domain plots. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 7. Comparison of the (a) ungated and (b)–(e) amplitude-gated images for Clinical Study 1 using motion estimates based on TOF-PEPT, Anzai band, COM,
and TOF-COM, respectively. Sharper images and increased maximum SUVs are observed in the data reconstructed using the signal from the TOF-PEPT
algorithm.
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Anzai band by means of the correlation coefficient (CC), the
root mean squared error (RMSE), and the mean shift in peak
location.

For Clinical Study 1, we used motion signals tracked
from three point sources. For Clinical Study 2, we used
the signal from a single point source. A frame duration
of 500 ms was used in both cases. We compared the sig-
nals along the direction in which movement of the point
sources was most significant, namely, the Y direction for
the point sources placed on the center of abdomen, and
the Z direction for the point sources placed on the side
of the abdomen. TOF-PEPT exhibited the highest degree
of correlation with the Anzai band, as well as, the lowest
RMSE and mean shift in peak locations (shown in bold).
There were average improvements of 13.5% and 38.7%
in correlation compared to the TOF-COM and COM
algorithms, respectively. For Clinical Study 1, TOF-PEPT
performed notably better than TOF-COM and COM for
one point source (PS2) that had relatively lower activity.
We believe that the iterative process of selecting LORs
and estimating the particle location led to better
tracking than taking the average of all LORs within the
ROI.

FIG. 8. Comparison of the (a) ungated and (b)–(d) amplitude-gated images for Clinical Study 6 using motion estimates based on TOF-PEPT, COM, and TOF-
COM, respectively. The arrow indicates the maximum SUV in the lesion. (e) Result of Gaussian fitting applied to line profile data (a-d vertical lines). [Color fig-
ure can be viewed at wileyonlinelibrary.com]

TABLE II. Quantitative comparison of TOF-PEPT, COM, and TOF-COM
estimated motion signals with Anzai band.

Phantom

Clinical
Study 1
(PS1a)

Clinical
Study 1
(PS2a)

Clinical
Study 1
(PS3a)

Clinical
Study 2

Correlation
coefficient
(CC)

TOF-
PEPT

0.995 0.966 0.94 0.947 0.976

TOF-
COM

0.992 0.834 0.788 0.876 0.881

COM 0.99 0.892 0.509 0.839 0.655

Root mean
squared
error
(RMSE)

TOF-
PEPT

0.035 0.096 0.116 0.142 0.092

TOF-
COM

0.078 0.148 0.183 0.217 0.144

COM 0.056 0.138 0.203 0.228 0.229

Mean shift
in peak
locations
(normalized)

TOF-
PEPT

0.002 0.017 0.021 0.026 0.019

TOF-
COM

0.006 0.061 0.072 0.043 0.045

COM 0.008 0.046 0.124 0.043 0.077

aPS1, PS2, and PS3 refer to point sources placed on center, left, and right respec-
tively.
Values shown in bold indicate the highest correlation coefficient, and the lowest
RMSE and mean shift in peak locations for each study.
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Table III provides CCs with the Anzai band for TOF-
PEPT implemented with/without TOF-based weighting (pro-
posed in this paper) and with/without TOF-based LOR exclu-
sion (proposed in the PeTrack paper). We observe that the
highest CC values (shown in bold) were obtained with TOF-
based weighting and no LOR exclusion. The opposite sce-
nario produced the worst performance in every case. For the
low activity point source (PS2) used in Clinical Study 1,
TOF-based weighting produced a 4.6% increase in CC while
TOF-based LOR exclusion caused a 7.9% decrease. We
expect the improvement from TOF-based weighting to be
even more significant for PET scanners that have better tim-
ing resolution than the one considered here.

3.D. Analysis of algorithm parameters

ROI size and frame duration were varied and the TOF-
PEPT motion estimates were compared against the Anzai
band. Figures 9 and 10 show the corresponding plots of CC,
RMSE, and normalized mean shift of peak location. As the
ROI was made larger, performance of the TOF-PEPT algo-
rithm seems to degrade. We suspect that when the ROI
becomes too large, LORs are included that do not pertain to
the point source/lesion emissions. As for the frame duration,
performance is negatively impacted both for short and for
long time windows. The former is likely a result of not having
enough LORs available while the latter is possibly due to the

TABLE III. Implementation of PEPTunder different conditions.

TOF-based LOR weighting TOF-based LOR exclusion

Correlation coefficient (CC)

Phantom Clinical Study 1 aPS1 Clinical Study 1 PS2 Clinical Study 1 PS3 Clinical Study 2

No No 0.9946 0.9614 0.8986 0.9318 0.9665

No Yes 0.9945 0.9580 0.8270 0.8960 0.9413

Yes No 0.9946 0.9661 0.9400 0.9468 0.9765

Yes Yes 0.9945 0.9592 0.8391 0.9015 0.9443

aPS: point source.
Values shown in bold indicate the highest correlation coefficient for each study.

FIG. 9. Quantitative comparison of (a) correlation coefficient, (b) RMSE, and (c) normalized mean shift in peak location for different ROI circumradius scaling
factors. Measurements degraded with increasing ROI size. Here, PS1, PS2, and PS3 indicate point sources placed on center, left, and right, respectively. [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Quantitative comparison of (a) correlation coefficient, (b) RMSE, and (c) normalized mean shift in peak location for different frame durations. Most
favorable values lie in the range of 400–800 ms frame durations. Here, PS1, PS2, and PS3 indicate point sources placed on center, left, and right, respectively.
[Color figure can be viewed at wileyonlinelibrary.com]
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sampling rate being too low. These trends remained the same
when the two parameters were varied simultaneously. Table
IV shows the number of LORs considered and iterations
needed with this varying parameter setup. We only show the
numbers for a single point source for Clinical Studies 1 and
2. LOR count increased both for increasing frame duration
and ROI size, whereas iteration count increased for latter
only. This trend was observed for the other motion estima-
tions as well.

4. DISCUSSION

The TOF-PEPT algorithm is a new data-driven approach
for PET motion estimation that facilitates tracking of point
sources as well as lesions and other internal regions directly
from raw listmode data. Tracking accuracy was validated
against an Anzai band, which is widely used in clinical stud-
ies. Comparison with two versions of a data-driven COM
algorithm was also performed.

For studies performed with the Anzai band, the TOF-
PEPT algorithm was found to produce motion estimates that
correlated well with the band while outperforming the COM
algorithms to varying degrees with respect to all quantitative
and qualitative measures studied. For a frame duration of
500 ms, the motion signals from TOF-PEPT correlated with
the band with CCs in the range of 0.94–0.97 for the clinical
studies. In contrast, motion signals from the COM algorithms
correlated with the band with CCs in the range of 0.51–0.92.
For studies performed without the Anzai band, the TOF-
PEPT motion estimates were found to be less noisy than the
COM estimates both with respect to time and Fourier domain
analysis in every case.

Reconstructed images generated from motion signals
tracked using the TOF-PEPT algorithm also excelled when
compared to the COM algorithms. Given the fact that all the
gated images were subjected to similar count loss and noise
characteristics from the use of amplitude-based gating meth-
ods, TOF-PEPT-based gated images showed a 6–9% increase
in max SUV measured in lesions affected by motion.

The analysis with respect to frame duration and ROI size
aided in studying the robustness of our algorithm. For 200 to
1000 ms frame durations, the TOF-PEPT algorithm provided
good motion estimates with CCs in the range of 0.91–0.97.
Tracked signals correlated with the band with CCs in the
range of 0.88–0.97 up to the ROI circumradius scaling factor

of 2 except for one case with the low activity point source.
Good tracking performance was thus achieved for a wide
range of frame durations and ROI sizes.

The number of LORs considered and the number of itera-
tions needed to do so varied with the ROI size and frame
duration. As expected, the number of LORs increased almost
linearly with larger ROIs and frame durations. More interest-
ingly, the mean perpendicular distance from the LORs to the
source particle/lesion increased in proportion to the size of
the ROIs. This in turn increased the number of iterations
required for the algorithm to discard more distant LORs. On
the other hand, increasing the frame duration did not change
the number of iterations needed. LORs were included in each
frame in a way that did not affect much the mean perpendicu-
lar distance and thus the number of iterations.

Since the method allows tracking the motion along all the
three axes at a time, it was possible to further study the prin-
cipal axis of movement and its variation with respect to the
point source/lesion/internal region location. Point sources
placed on the abdomen showed principal movement in the Y
direction, whereas point sources on the side of the abdomen
showed movement mostly in the Z direction. The lung lesion
and myocardium regions had their significant movements
along Z direction. The ability to simultaneously track in all
three dimensions facilitates use of the algorithm in body and
head-neck studies since in such cases, the principal move-
ment does not occur only in the axial direction.21 Finally, the
motion amplitude range observed with the TOF-PEPT algo-
rithm matched the true range of motion more closely than the
TOF-COM and COM algorithms.

An unexpected observation in comparing the other methods
was that regular COM performed better than TOF-COM in
one case. We had anticipated that use of TOF information
would always lead to more precise tracking. With the TOF-
COM algorithm using the average of the TOF annihilation
location estimates within the ROI, large error/uncertainty may
have affected performance. For the scanner used, the TOF
FWHM was on the order of 6 cm and thus quite large com-
pared to the 2 mm point source tracked. Another observation
regarding the TOF-COM and COM algorithms was that they
were found to be more sensitive to the ROI selection than the
TOF-PEPT algorithm. In fact, the regular COM method could
not provide satisfactory motion signal with the selected ROI
for lesion motion tracking. The ROI size had to be decreased
via further visual inspection in order to obtain a viable result.

TABLE IV. Number of LORs and iterations for varying frame durations and ROI scaling factors.

Frame duration
(ms)

Clinical Study 1 Clinical Study 2

ROI scaling
factor

Clinical Study 1 Clinical Study 2

LORs
(approx.) Iterations

LORs
(approx.) Iterations

LORs
(approx.) Iterations

LORs
(approx.) Iterations

200 450 7 700 4 1 700 5 3000 4

400 800 7 2000 4 1.5 1000 7 4000 4

600 1200 7 3000 4 2 1800 8 5000 5

800 1500 7 4000 4 2.75 2400 9 8500 7

1000 2000 7 5000 4

Medical Physics, 48 (3), March 2021

1141 Tumpa et al.: Respiratory motion estimation using TOF-PEPT 1141



We compared our TOF-based LOR weighting with the
TOF-based exclusion implemented for the PeTrack algo-
rithm. We observed that the LOR exclusion produced
degraded performance in every case. In contrast, LOR
weighting produced improved performance consistently. In
particular, we noticed a 12.5% difference in CC when the
point source had relatively lower activity (Clinical Study 1-
Point Source 2). We speculate that hard-thresholding based
on TOF (that has its own error in measurement) either
removed LORs that should have been kept or caused LORs to
be kept that should have been removed.

The proposed TOF-based weighting factor serves to
emphasize the contribution of the more probable LORs. The
more accurate the TOF information, the better the TOF-PEPT
algorithm’s ability to produce an accurate motion estimate. In
this paper, we used data from a state-of-the-art photomulti-
plier (PMT)-based PET/CT system. Next generation SiPM-
based PET systems should increase LOR position accuracy
with their improved TOF measurement capabilities.

We have shown successful lesion-specific motion tracking
based on activity concentrations of 10–30 kBq/mL. Adding
additional data corrections, such as attenuation correction
and scatter correction, may help improve the lower limits of
detection as well as the positional accuracy. This is the focus
of future work along with further validation in routine clinical
use and characterization across a wider range of imaging con-
ditions than considered here.

5. CONCLUSIONS

Respiratory motion negatively impacts PET/CT images
both qualitatively and quantitatively. Most hardware and
data-driven motion tracking methods only serve to estimate
external and global respiratory motion patterns. A global
motion estimate may not fully capture lesion-specific/local-
ized internal motion. The presented TOF-PEPT algorithm
provides a framework for more accurate estimation of lesion/
internal region motion for use by reconstruction algorithms
and event-by-event motion correction. The scope of the work
was to investigate feasibility of the proposed technique when
applied to data obtained from a standard clinical PET/CT
imaging system with emphasis on respiratory gating and
lesion/internal region motion tracking. We compared perfor-
mance against a standard Anzai band as well as two COM
algorithms. The TOF-PEPT algorithm was found to produce
results that were equivalent to the Anzai band and better than
the COM algorithms. We have shown that lesion-specific
tracking can be performed, which may have applications in
routine clinical PET/CT, radiation therapy planning, as well
as for providing more robust tracking information for use in
fine-tuning motion correction algorithms.
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