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ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) is one of
the most used single-cell omics in recent decades.
The exponential growth of single-cell data has im-
mense potential for large-scale integration and in-
depth explorations that are more representative of
the study population. Efforts have been made to
consolidate published data, yet extensive charac-
terization is still lacking. Many focused on raw-
data database constructions while others concen-
trate mainly on gene expression queries. Hereby,
we present HTCA (www.htcatlas.org), an interactive
database constructed based on ∼2.3 million high-
quality cells from ∼3000 scRNA-seq samples and
comprised in-depth phenotype profiles of 19 healthy
adult and matching fetal tissues. HTCA provides a
one-stop interactive query to gene signatures, tran-
scription factor (TF) activities, TF motifs, receptor–
ligand interactions, enriched gene ontology (GO)
terms, etc. across cell types in adult and fetal tissues.
At the same time, HTCA encompasses single-cell
splicing variant profiles of 16 adult and fetal tissues,
spatial transcriptomics profiles of 11 adult and fetal
tissues, and single-cell ATAC-sequencing (scATAC-
seq) profiles of 27 adult and fetal tissues. Besides,
HTCA provides online analysis tools to perform ma-

jor steps in a typical scRNA-seq analysis. Altogether,
HTCA allows real-time explorations of multi-omics
adult and fetal phenotypic profiles and provides tools
for a flexible scRNA-seq analysis.

INTRODUCTION

The rapid advancement of biotechnologies in recent
decades has leveraged the measurement resolutions and di-
mensions to enable observations of biological events at the
single cellular level. Many new discoveries have been made
at the single-cell level (1–6), which led to a quick dominance
of single-cell omics in the current bioscience research. How-
ever, due to the high costs of single-cell omics, the number
of samples used in many studies was far less representa-
tive of their study populations. In the area of scRNA-seq,
the exponential increase in the number of single-cell stud-
ies in the recent decades with a dispersed focus in many ar-
eas of biology fosters opportunities for the research com-
munity to consolidate datasets and carry out large-sample
analyses to increase study statistical power and decrease the
number of false positives introduced by small sample stud-
ies. To date, for single-cell transcriptomics, scientists have
made substantial efforts in transforming online and/or their
in-house sequencing data into online databases (7–22) and
they mainly fall into three categories. (i) Databases con-
taining raw sequencing or raw/processed data gene-cell ma-
trix files, e.g. Gene Expression Omnibus (GEO) (7), Hu-
man Cell Atlas (8) and European Nucleotide Archive (9);
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(ii) individual tissue atlases for the depiction of study re-
sults, e.g. Heart Cell Atlas (10), Kidney Cell Atlas (11),
Covid19 Cell Atlas (12), Tabula Sapiens (13) and Descartes
atlas (14) and (iii) databases summarizing published stud-
ies, e.g. DISCO (15), CellMarker (16), JingleBells (17) and
PanglaoDB (18). Databases in category (i) are repository
sites to store raw/processed study data for the ease of raw
data retrieval and they do not serve as databases to present
any in-depth analysis of the data present. Data portal of
the tissue-specific atlases in category (ii) served to show-
case their independent study results and are very often
overviews of the cell type compositions from the study data.
An in-depth exploration or cross-comparison to other stud-
ies would require time and effort to download and an-
alyze the relevant data. In particular, Tabula Sapiens at-
las platform (13) contained extensive phenotypic charac-
terizations of tissues, yet many other phenotypic charac-
terizations such as receptor–ligand interactions, enriched
motifs, TF networks, etc., are still lacking. Descartes at-
las (14), on the other hand, is an atlas hosting a spectrum
of their subsequent study results (14) and provided easy
access to data downloads. Yet, Descartes showed less ex-
tensive features compared to Tabula Sapiens and in addi-
tion, in terms of human gene expression, Descartes con-
sisted of only datasets from a single study. Databases in
category (iii) generally consolidated datasets from various
studies and provide gene signature or expression queries to
users of their platforms. For example, DISCO is a multi-
tissue scRNA-seq database integrating diseased and healthy
human tissues, cell lines, and organoids to showcase cell
type- or gene-specific signatures. Mixing healthy, diseased
cells, cell lines, and organoids together for users to retrieve
cell type-specific phenotypes for each tissue type, especially
when each tissue consisted of mixtures of cells from various
disease types, might cause falsified interpretations and dis-
coveries that might jeopardize studies or future studies con-
cerned. Furthermore, for the database, DISCO only pro-
vided cell type constitutions, gene signatures, differentially
expressed genes (DEGs), gene expressions, and cell-type fre-
quencies. Some other databases from category (iii) gathered
published results and provide direct queries to study papers
and study results, with no/less integrative insights into tran-
scriptome profiles other than cell-type-specific DEGs sig-
natures, which is a common characteristic of the databases
from this category. Some served as databases only to pro-
vide external links to the studies they have consolidated.
So far, in terms of integrating and showcasing phenotypic
profiles of data from various studies, i.e. category (iii), these
databases did not make extensive use of the data they have
acquired to carry out vigorous assessments from various as-
pects of the scRNA-seq data.

To address the current limitations of category (iii) and
utilize resources from categories (i) and (ii), we constructed
the database HTCA. HTCA was built based on a collec-
tion of scRNA-seq data from ∼3000 samples with a to-
tal of ∼25 million cells from 19 healthy adult tissues and
their matching fetal tissues (Figure 1). The final dataset con-
tained ∼2.3 million cells after quality control (QC). We car-
ried out in-depth assessments of the data we have consoli-
dated to provide extensive phenotypic landscape overviews
and data queries, including cell type constitutions, DEGs,

gene expressions queries, cell type frequencies queries, cor-
relations between adult and fetal tissue-specific cell types,
transcription factor activities, top TFs specific to each cell
types, enriched TF motifs (23), enriched GO terms (24,25)
(biological pathways, cellular components and molecular
functions), cell–cell and receptor–ligand interactions (Fig-
ure 1). In addition, HTCA is also a multi-omics atlas that
provides phenotypic queries to single-cell isoform expres-
sions of 16 adult and fetal tissues; gene expressions of spa-
tial transcriptomics in 11 adult and fetal tissues; and chro-
matin co-accessibilities and TF motifs of scATAC-seq in 27
adult and fetal tissues.

HTCA also provides easy-to-use online analysis tools
to allow users to process and analyze direct post-
quantification outputs, including QC assessments and fil-
tering, data imputation, data integration, dimension reduc-
tion, clustering, differential expression (DE) analysis, cell
type prediction, manual annotation, data splicing, and cell–
cell communication using various methods and database
repositories (Figure 1), which are all parameter-adjustable.
For example, the extent of filtering can be freely controlled
by the user based on the QC plots HTCA provided. Users
could compare and contrast their dataset with the data from
HTCA using the tools we provided to enable fast compar-
isons with datasets across multiple studies. All in all, HTCA
would serve as a one-stop solution to carry out quick and
in-depth assessments of multi-omics single-cell data across
tissues and cell types while enabling fast analysis of their
own data.

MATERIALS AND METHODS

Data screened and data cleaning

For scRNA-seq data, we screened and downloaded raw
data counts from various raw data resources (Figure 2A)
such as the GEO, the Human Cell Atlas, Kidney Cell At-
las, Heart Cell Atlas, etc. (7,9–12,26–36). A total of 24 652
615 cells, comprising 6 584 880 fetal cells and 18 067 735
adult cells across 19 adult and fetal tissues were consol-
idated (Figure 2B). We excluded diseased cells, and cells
from cell lines or organoids across the projects to give a
clean database with only healthy human single-cell tran-
scriptomes. We carried out stringent quality controls us-
ing Seurat (37), to remove low-quality cells with > 5% mi-
tochondrial counts, empty droplets with a low number of
genes detected (≤200), and doublets or multiplets with an
abnormally high number of genes detected (>20 000). To
further identify multiplets, DoubletDecon (38) was used
with rhop value set to 0.6. Gene annotation was standard-
ized to gene symbols, and samples with Ensembl ID (39) an-
notated were transformed using org.Hs.eg.db (version 3.8.2,
https://bioconductor.org/packages/org.Hs.eg.db). After the
quality control steps, we obtained 2 265 015 high-quality
cells, consisting of 1 641 102 adult and 623 913 fetal cells
across 19 adult tissues and their matching fetal tissues (Fig-
ure 2B). To obtain tissue-specific and cell-type-specific splic-
ing variants, raw sequencing data from 16 adult and fetal
tissues of the Human Cell Landscape (HCL) (19) was used.
Early processing was done using the customized script from
HCL (19). Alevin was used for alignment with UMI and cell

https://bioconductor.org/packages/org.Hs.eg.db
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Figure 1. Schematic diagram of the HTCA database portal. HTCA incorporated phenotypic assessments from 19 adult tissues and their matching fetal
tissues to form a single-cell transcriptome database. The database consisted of three main categories, namely tissue-wise phenotypic landscapes, database
queries, and analysis tools.
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Figure 2. Workflow and cell summary of the HTCA database. (A) Diagram showing the workflow to construct the HTCA database, which consists of data
cleaning, processing, and phenotyping. (B) Cell count of each tissue in the HTCA atlas in log10 scale.

barcode adjusted according to HCL Microwell-seq proto-
col (19,40,41), followed by quantification using Scasa (42).
For spatial transcriptomics, post-quantification counts and
histology images were obtained from various sources (43–
50), and processed phenotypic profiles were obtained for
scATAC-seq (51,52).

Data processing

For gene and isoform counts of scRNA-seq data, we nor-
malized the expression counts for each cell by the total ex-
pression count of the cell and multiplies by a normaliza-

tion factor of 10 000 (37). This was followed by standard-
ization of expression values to a mean of 0 and variance of 1.
To determine the number of principal components enough
to cover most variance in the data, we performed principal
component analysis (PCA) analysis (37) prior to data in-
tegration for each tissue (Figure 2A). To account for tech-
nical and technological differences introduced by different
projects and technologies, data integration is needed to al-
leviate such variabilities across studies. Among 14 data inte-
gration methods (53), Harmony (54) was chosen for data in-
tegration as it was the most competent integration method
considering its performance on datasets with different tech-
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nologies as well as its low time complexity (53). Integration
was done using Harmony based on PCA embeddings, via
soft clustering and iterative embedding corrections (54) to
correct for data source differences. A corrected set of PCA
embeddings, known as Harmony embeddings, were used for
downstream analyses. For spatial transcriptomics data, sim-
ilar processing was done. Spot counts were normalized us-
ing a high-variance detection method, sctransform (37,55),
by fitting the expression counts to a regularized binomial
model to address for technical variations. For scATAC-seq,
processed data underwent data cleaning to extract informa-
tion on cell type, 2-dimension projection coordinates, en-
riched motifs, and co-accessibility regions.

Phenotyping: gene and isoform expression

For gene expression data of each tissue in scRNA-seq, non-
linear dimension reductions, tSNE and UMAP, were then
performed based on the first 30 batch-corrected Harmony
embeddings (Figure 2A), followed by unsupervised cluster-
ing via a shared nearest neighbor (SNN) modularity opti-
mization clustering procedure (54) with default resolution.
DE analysis was performed using Wilcoxon rank-sum test
(54) by comparing each cell cluster to the rest of the cells
present in the data in order to determine a list of DEGs
uniquely and significantly expressed in each cluster. Cor-
rection for multiple testing was done using Bonferroni cor-
rection (56). At absolute average log2-fold-change (log2FC)
values of > 0.5 and Bonferroni corrected P < 0.01, sig-
nificant DEGs in each cluster were used for cell-type an-
notation. Cell types were annotated with reference to Hu-
man Primary Cell Atlas (57) using SingleR (58), and man-
ually verified and corrected the final cell type identity for
each cluster by cross-checking the DEGs of each cluster in
each tissue across literature. We identified DEGs of each
cell type by comparing the gene expressions of each cell
type with all other cells in each tissue, using Wilcoxon rank-
sum test and Bonferroni correction similar to the previ-
ously described cluster-wise DE analysis method. To mea-
sure cell type similarities and differences between adult and
its matching fetal tissue, for each adult–fetal tissue pair, at
Bonferroni corrected P < 0.01, average log2FC > 0, and in
decreasing log2FC, we took the top 100 up-regulated genes
of each cell type in the tissue pair to perform correlation
analysis (Figure 2A) using neighbor voting (59). The corre-
lation values were hierarchically clustered within each tissue
pair to obtain the final clustering patterns between adult
and fetal cell types. For isoform expression data, similar
procedures were followed. Harmony was used for data in-
tegration of the same tissue. For both isoform and spatial
transcriptomics data, similar downstream procedures were
followed. Dimension reduction was done using tSNE and
UMAP based on Harmony embeddings for integrated data
in each tissue, and PCA embeddings for spatial transcrip-
tomics data or tissues with a single sample in isoform data.
Clustering was performed using SNN with default resolu-
tion. This was followed by DE analysis of clusters using the
Wilcoxon rank-sum test followed by multiple testing cor-
rections using the Bonferroni method. The same threshold
was used compared to gene expression data, to identify sig-
nificant DEGs in each cluster. For isoform expression data,

cell type annotations from HCL were used, and the same
method for DE analysis of cell types was used to identify
DEGs in each cell type in each tissue.

Phenotyping: gene regulatory network (GRN) inference

The activities of TFs across cell types in the tissues were
evaluated based on GRN inference and cell state identifica-
tion method (23). For each tissue, we carried out soft gene
filtering by retaining genes with expression counts >3 in at
least 1% of the total cell and also genes that were detected in
at least 1% of the cells. Subsampling was done to reduce the
computational burden. Genes co-expressed with TFs were
first identified and re-evaluated based on cis-regulatory mo-
tif analysis using RcisTarget (23), to eliminate false posi-
tives and retained upstream TF bundles with significantly
enriched motifs (23). TFs were then assigned with cell-type-
specific activity scores in terms of AUROC values using AU-
Cell (23). We retained the final active TFs signatures for
each cell type based on AUROC >0.1 and tissue-specific
TFs based on regulon specificity scores (23) (RSS) >0.1 and
incorporated them as part of the HTCA database (Figures
1 and 2A), together with the enriched motifs obtained from
cis-regulatory motif analysis for each cell type.

Phenotyping: cell–cell communication

To investigate communication patterns between cell types in
each tissue, CellPhoneDB ligand–receptor repository (60)
was used to predict their interactions based on receptor–
ligand interactions.

For each tissue, pairwise receptor–ligand expression com-
parisons were made between every two cell types to obtain a
co-expression mean value for each receptor–ligand pair. Re-
peated permutation of cell type labels was then performed
to disrupt the biological significance between cells to form
a background null distribution of expression values specific
to each interaction pair of the two cell types. Interaction
pairs with co-expression values significantly higher than the
background (P < 0.05) were retained and receptor–ligand
profiles for each cell type in every tissue were incorporated
into the HTCA database (Figures 1 and 2A).

Phenotyping: test for over-representation of GO Terms

Based on absolute log2FC >0.25 and Bonferroni corrected
P <0.05, top 1000 up/down-regulated DEGs (ranked by
decreasing log2FC for up-regulated gene sets and ranked
by increasing log2FC for down-regulated gene sets) were
served as inputs to GO functional analysis (Figure 2A). This
was done separately for each tissue, cell type, and regulation
group (i.e. up or down-regulation) using Limma (61). For
each cell type in each tissue, multiple testing was corrected
using Benjamini-Hochberg (BH) false discovery rate (FDR)
controlling procedure (62). We retained enriched GO terms
with BH FDR <0.05.

Methods used in the analysis tools

The main purpose of the analysis tools is to facilitate quick
analysis of data from the user or to carry out integrative
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analysis of the user data with the data from HTCA. In the
QC step, the percentage of mitochondrial genes expressed
in each cell, number of genes, and RNA molecules detected
per cell will be calculated to remove possible empty droplets,
doublets, artifacts, and damaged cells present in the sam-
ple as a result of experimental procedures (37). In the data
imputation step, ALRA (63) was used for true expression
signal amplification based on the low-rank matrix approxi-
mation (63) computed using singular vector decomposition
(SVD) (64). In the data integration step, if more than one
sample is submitted, Seurat or Harmony integration will be
performed based on the filtered data and batch information
provided by the user. Samples will be normalized and stan-
dardized prior to integration. Depending on the integration
method, dimension reduction steps will be performed based
on the pre-calculated PCA embeddings if Seurat integration
was performed. Otherwise, dimension reduction steps will
be performed based on Harmony embeddings. For unsuper-
vised clustering, k-NN and SNN modular optimization will
be performed (37) on the integrated data with user-defined
clustering resolution. For each cluster, DE analysis using
Wilcoxon rank-sum test will be performed and multiple-
testing will be corrected using Bonferroni correction. Cell
type identity will be predicted based on the clustering re-
sults (58) using Human Primary Cell Atlas (57) as the de-
fault annotation reference, or alternative reference provided
by the user. For cell–cell communication analysis, LIANA
was used to run the analysis using different methods and
data repositories (65,66).

Database construction

Database queries were written in R and hosted by RShiny.
The database of HTCA was stored in the RShiny server and
the interactive part of tissue-wise phenotypic landscapes
(Figure 1) was hosted using Rshiny. Analysis tools were im-
plemented using R and hosted by RShiny. The backbone of
HTCA was supported by HTML and Javascript.

RESULTS

Overview of HTCA and its analysis tools

HTCA is a database comprising in-depth phenotypic pro-
files of single-cell transcriptomes across 19 healthy human
adult tissues and their matching fetal tissues. It also serves
as a database query for cell-type-specific and tissue-specific
splicing variants. In addition, HTCA is also a multi-omics
database containing spatial transcriptomics and scATAC-
seq phenotypic profiles in adult and fetal tissues. HTCA
consisted of three major components, individual scRNA-
seq tissue atlases depicting tissue-wise phenotypic land-
scapes, interactive database queries for different cellular
profiles across tissues and omics, and online analysis tools
to facilitate instantaneous analysis and visualizations of
single-cell transcriptomics data (Figure 1).

Within each tissue atlas, HTCA provides interactive vi-
sualization of cell type constitutions of the tissue for users
to click and zoom on different cell clusters. Other pheno-
type profiles present in the atlas include visualizations of the
correlations of cell types of each adult tissue with cell types
from the matching fetal tissue, DEGs signatures of each cell

type, TF modules, TF signatures, and topmost specific TFs
for each cell type, as well as enriched motifs and GO terms
with search functions.

For database queries, seven sub-databases were created,
including gene expression, cell type, TF activity, cell–cell
interactions with receptor–ligand interactions, isoform ex-
pression, spatial transcriptomics profiles, and scATAC-seq
profiles. For each of these query options, the gene expres-
sion query allows a user to search for a gene of interest
(GOI) and the expression of the GOI in each cell type across
tissues will be interactively visualized. To aid fast reference,
a description of the gene from GeneCards (67) and genomic
locations, and distribution of exons across transcripts of
the GOI from the UCSC genome browser (68) will also be
shown to the user. For the cell type query, the search of any
cell type present in the HTCA database will interactively
display the distribution of this cell type and its related cell
type of lower granularity across tissues (only tissues with
this cell type), as well as both up and down-regulated DEGs
of this cell type across tissues, including fold-change, the sig-
nificance level of post-DE testing for each DE gene, and the
GRCh38 (69) genomic location of the gene. Users could re-
arrange, search or filter in the DEGs list based on a GOI
or other filtering criteria. TF activity query allows users to
interactively visualize the activity of a TF of interest (activ-
ity score in AUROC or in short AUC value) in the cells of
a particular tissue on a tSNE plot, an interactive cell type
tSNE will also be displayed. In the cell–cell and receptor–
ligand query, users could search for a tissue of interest to
observe the interaction patterns between cell types from the
same tissue. Top receptor–ligand interactions between cell
types will also be shown and users could filter, search and
sort within the list of interactions. For isoform or splic-
ing variant query option, UMAP constructed based on iso-
form expressions for each tissue will be displayed and users
could select to view cell clusters, cell types, or expression
of particular isoform across cells in each adult or fetal tis-
sue. DE isoforms in table form will be shown for clusters
or cell types depending on user selection. For spatial tran-
scriptomics, the clusters mapped onto the histology image
of each tissue will be shown, together with a volcano plot il-
lustrating the fold-change (in log2 scale) of each gene in each
cluster. DEGs in table form will be shown simultaneously.
For querying scATAC-seq, the UMAP of each tissue with
color coding indicating cell types will be shown, together
with chromatin coaccesibility (if available in processed data)
in each cell type, as well as cell-type-specific enriched motifs
across tissues.

Analysis tools available on the HTCA include QC, data
integration, data imputation, dimension reduction, cluster-
ing, DE analysis, cell type prediction, manual annotation,
data splicing, and cell–cell communication, basically cov-
ering all the major steps in a typical scRNA-seq analysis
workflow. All steps come with adjustable parameters and
plots to visualize the analysis steps and examples are avail-
able for users in each tool to carry out fast exploration
with sample files (and/or meta files) available for download.
To provide users with publish-ready figures, the height and
width of the plots can be expanded or shrank, the colors of
the plots, size of the points in the scattered plots, and size of
the labels can be changed. All plots are available for down-
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Figure 3. A walkthrough of the step-by-step online analysis tools. (A) Quality control step to enable manual filtering of cells based on their number of genes
(i.e. nFeature RNA), number of RNA molecules (i.e. nCount RNA), and the percentage of mitochondria (Percent Mito). (B) Data imputation step based
on SVD, to predict missing values due to inadequate sequencing depths. (C) Data integration step to eliminate potential batch effect present in the data.
(D) Dimension reduction, clustering, and DE analysis steps based on post-integration results. Cluster resolution can be freely adjustable to facilitate the
aim of a project. (E) Cell type annotation step to allow automated or manual annotation of each cluster based on their DEGs. (F) Cell-cell communication
step to predict possible interactions between defined cell types or clusters. All steps come with visualizations and download of intermediate files to enhance
the flexibility and practicability of the tools for the users.

load in PNG or editable PDF formats and output files in
.RDS format. In the QC tool, a user could upload the direct
input of 10X Genomics (50,70) .h5 filtered matrix files, or
gene-to-cell matrix files in .csv/.txt format from other tech-
nologies, or Seurat object in .RDS format (one sample in
one .RDS file). For a multiple-samples project, a meta file
containing the batch and group information of each sample
is required and the user could follow the format indicated in
the sample meta file. Once uploaded, the user could visual-

ize the number of genes, number of mRNA molecules, and
percentage of mitochondrial genes in each cell (Figure 3A).
The user will decide on the QC filtering cut-offs based on
the plots to remove any cells that are most probable dam-
aged cells, doublets or debris. Once they have decided, they
could click ‘create filtered dataset’ to trigger the download
of the post-filtering .RDS format Seurat object. The data
imputation tool is an optional procedure for users to im-
pute sparse single-cell data to enhance true biological sig-
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nals. A single post-QC Seurat object in .RDS format can
be uploaded to the tool and post-imputation plots show-
ing singular values in each rank and singular value spac-
ings between ranks will be displayed (Figure 3B). An opti-
mal rank will be chosen and shown in the plots as vertical
lines. Post-imputation data is downloadable and is compat-
ible with subsequent tools. For a multiple-samples project,
the user could proceed with the data integration step in the
analysis tools by simply uploading the post-filtering .RDS
Seurat object from the previous step and choose an inte-
gration method of interest. For faster runtime, Harmony is
recommended. Once the file has been uploaded, the inte-
gration will be done automatically and the download of the
post-integration .RDS Seurat object will start right after the
completion of the integration process. Dimension reduction
plots of before and after integration will be shown in tSNE
and UMAP formats. For dimension reduction, users could
upload the post-integration (for multiple samples) or post-
filtering (for a single-sample project) .RDS Seurat object,
and select the type(s) of dimension reductions to carry out
(PCA, and/or UMAP, and/or tSNE) and the selected di-
mension reduction plots displaying batch information be-
fore and after integration will be shown (Figure 3C). In the
clustering step, unsupervised clustering will be carried out.
Users are required to upload the post-dimension reduction
.RDS file from the previous step and proceed with the clus-
tering analysis. The user could decide the number of clus-
ters to set using the resolution option based on the tSNE
or UMAP visualizations shown (Figure 3D). Depending
on their final clustering degree (i.e. the resolution or num-
ber of clusters), DE analysis will be carried out to iden-
tify DEGs of each cluster. For the cell type prediction tool,
the user will upload his post-clustering .RDS Seurat object,
and the identity of each cell will be predicted based on its
gene expression profile. Post-prediction tSNE or UMAP vi-
sualizations will also be shown to the user. For a multiple-
groups or multiple-samples project, group-wise dimension
reduction plots can also be shown, to allow users to com-
pare between the groups via direct visualization (Figure
3E). To carry out a manual check on the cell type iden-
tity of each cluster, the user could refer to the DEGs list
to validate the cell type annotations or proceed on with
the manual annotation tool to annotate cells on their own.
Users could produce data subsets using the data splicing
tool to further analyze their cells of interest. For the cell–
cell communication tool, a list of cell interaction methods
and database repositories made available by LIANA will
be provided to the user. Analysis can be done across differ-
ent methods using different database resources at the same
time and a cell–cell interaction network plot (Figure 3F)
and a table of top receptor–ligand interaction pairs will be
shown.

HTCA also consisted of a source page for viewing the de-
mographics of HTCA interactively. A forum page is avail-
able to allow users to post questions, suggestions, or prob-
lems they have encountered while using the database so
that HTCA could continue to expand, improve and include
more features for the greater benefit of the research commu-
nity. Many database portals or atlases do not provide such
a function. We also provide a download page for users to
download tissue-wise scRNA-seq datasets in HTCA.

DISCUSSION

Over the past decades, we have seen how single-cell tech-
nologies gained their dominance in biomedical science re-
search, leading to new insights and putting forward new
methods and applications driven by the new forms of high-
dimension data. However, the high cost of sequencing data
at the single-cell level caused a phenomenon that, the num-
ber of study samples in the majority of single-cell studies
were not representative of their study populations. There-
fore, data generated by studies could be consolidated and
analyzed together to increase the statistical power based on
the increase in sample/cell number, this is especially im-
portant for cell types that are present in minute amounts
naturally in organism bodies, and the consolidation of the
datasets may help to reveal their presence. To this end, we
constructed HTCA, a comprehensive healthy human cell
database. The platform hosts in-depth phenotypic profiles
for 19 adult tissues and matching fetal tissues from scRNA-
seq datasets to allow users to interactively explore these
features. Users could query directly from the database de-
pending on the type of phenotypes (i.e. gene expression,
receptor–ligand interactions) they are interested in. HTCA
also provided phenotypic queries of splicing variations, spa-
tial transcriptomics profiles, and chromatin accessibility
profiles across adult and fetal tissues. Analysis tools on the
HTCA portal will enable users to carry out quick anal-
yses on their data sets or to compare the data sets with
the ones provided by HTCA. We hope that our one-stop
single-cell multi-omics database and analytic tools could
help researchers to save time and effort digging into var-
ious data sources just to observe specific phenotypic fea-
tures. HTCA will continue to expand through the incorpo-
ration of more tissue types, analytic tools, and omics types,
to piece up a more complete and diverse landscape of multi-
omics healthy human landscape at the single-cell level.
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Blaxall,B.C., Grimes,H.L., Singh,H. and Salomonis,N. (2019)
DoubletDecon: deconvoluting doublets from single-cell
RNA-Sequencing data. Cell Rep., 29, 1718–1727.

39. Cunningham,F., Allen,J.E., Allen,J., Alvarez-Jarreta,J., Amode,MR.,
Armean,IrinaM., Austine-Orimoloye,O., Azov,AndreyG., Barnes,I.,
Bennett,R. et al. (2021) Ensembl 2022. Nucleic Acids Res., 50,
D988–D995.



D1028 Nucleic Acids Research, 2023, Vol. 51, Database issue

40. Patro,R., Duggal,G., Love,M.I., Irizarry,R.A. and Kingsford,C.
(2017) Salmon provides fast and bias-aware quantification of
transcript expression. Nat. Methods, 14, 417–419.

41. Srivastava,A., Malik,L., Smith,T., Sudbery,I. and Patro,R. (2019)
Alevin efficiently estimates accurate gene abundances from
dscRNA-seq data. Genome Biol., 20, 65.

42. Pan,L., Dinh,H.Q., Pawitan,Y. and Vu,T.N. (2021) Isoform-level
quantification for single-cell RNA sequencing. Bioinformatics, 38,
1287–1294.

43. Garcia-Alonso,L., Lorenzi,V., Mazzeo,C.I., Alves-Lopes,J.P.,
Roberts,K., Sancho-Serra,C., Engelbert,J., Marečková,M.,
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