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Balance of Tfh/Tfr cell is critically important for the maintenance of immune tolerance, as
evidenced by the fact that T follicular helper (Tfh) cells are central to the autoantibodies
generation through providing necessary help for germinal center (GC) B cells, whereas T
follicular regulatory (Tfr) cells significantly inhibit autoimmune inflammation process
through restraining Tfh cell responses. However, signals underlying the regulation of Tfh
and Tfr cells are largely undefined. Regulatory B cells (Bregs) is a heterogeneous
subpopulation of B cells with immunosuppressive function. Considerable advances
have been made in their functions to produce anti‐inflammatory cytokines and to
regulate Th17, Th1, and Treg cells in autoimmune diseases. The recent identification of
their correlations with dysregulated Tfr/Tfh cells and autoantibody production makes
Bregs an important checkpoint in GC response. Bregs exert profound impacts on the
differentiation, function, and distribution of Tfh and Tfr cells in the immune
microenvironment. Thus, unraveling mechanistic information on Tfh-Breg and Tfr-Breg
interactions will inspire novel implications for the establishment of homeostasis and
prevention of autoantibodies in diverse diseases. This review summarizes the
dysregulation of Tfh/Tfr cells in autoimmune diseases with a focus on the emerging role
of Bregs in regulating the balance between Tfh and Tfr cells. The previously unsuspected
crosstalk between Bregs and Tfh/Tfr cells will be beneficial to understand the cellular
mechanisms of autoantibody production and evoke a revolution in immunotherapy for
autoimmune diseases.
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INTRODUCTION

Autoimmune disorders encompass a heterogeneous group of
diseases in which immune tolerance is broken and the self-
immune system mistakenly attack autologous tissues, leading to
local and/or systemic damage. In the majority of these diseases,
self-reactive lymphocytes and pathogenic autoantibodies are
pivotal in inflammation-mediated tissue and organ damage.

The generation of autoantibodies is mainly related to lymphoid
follicular germinal centers (GCs), which are microenvironment
structures where antigen-specific B cell clones through a
multistage differentiation process (1, 2). After priming by
antigen, naive B cells undergo somatic hypermutation, affinity
maturation, and class switch recombination in a T cell-dependent
mechanism in the GCs, and further differentiate into antibody-
producing plasma cells and memory B cells. Generally, the GC
response is regulated and contributes to the production of
antibodies specialized for preventing foreign pathogens. Multiple
factors including follicular dendritic cells (FDCs) (3, 4), regulatory
T cells (5), and microbiota (6) collaborate to regulate this response.
Particularly, T follicular helper (Tfh) cells (7) and T follicular
regulatory (Tfr) cells (8–10) are central to the production of
antibody in GCs. Tfh cells are characterized by CXC chemokine
receptor 5 (CXCR5) and lineage-defining transcription factor B-
cell lymphoma 6 (Bcl-6) (11–13). These cells differentiate from
naive CD4+T cells after priming by antigen-presenting cells and
can access B cell follicles in a CXCR5-dependent manner. During
the multistep process of GC reactions, Tfh cells emerge as superior
helpers, providing proliferation, selection, and survival signals to
cognate B cells, indicating their important role in antibody
production (14). However, this help from Tfh cells must be
restrained to prevent the production of autoantibodies which
underlie unwanted reactions to self-antigens. In 2011, three
separate studies initially found a specialized GC-located subset
of regulatory T cells (Tregs) required for suppression of the GC
response in mice and termed them as Tfr cells (8–10). Since then,
Tfr cells in the regulation of immunity have received intense
attention. Tfr cells constitutively expressed Foxp3 and CXCR5 and
have a phenotype similar to both Treg and Tfh cells. A popular
model of their function is to restrain the magnitude of the GC
reaction by inhibiting Tfh cell proliferation and self-reactive B cell
activation (8–10). Clinical studies have investigated Tfr and Tfh
cells in multiple autoimmune diseases and have found a decreased
frequency of circulating Tfr cells and an increased Tfh frequency
as well as an aberrant Tfh/Tfr ratio in rheumatoid arthritis (RA)
(15), systemic lupus erythematosus (SLE) (16) and myasthenia
gravis (17). Importantly, the Tfh/Tfr ratios is positively correlated
with serum anti-double stranded DNA (dsDNA) antibody level in
SLE patients (16). Moreover, previous study transferred Tfr cells in
vivo to demonstrate their function in restricting autoreactive GC
formation and reducing autoantibody-producing B cells (18).
Thus, dysregulation of Tfh and Tfr cells may contribute to the
production of autoantibodies in autoimmune diseases.

In addition to Tfh and Tfr cells, regulatory B cells (Bregs)
exhibit potent regulatory function in autoantibody production
through complex interactions with multiple lymphocytes
involved in the GC response. Bregs represent a heterogeneous
Frontiers in Immunology | www.frontiersin.org 2
population of B cells possessing immunosuppressive functions
through different mechanisms, and there is no lineage-specific
transcription factor for the identification of these cells (19).
Indeed, the well-established functions of B cells in immune
responses are antibody production, pro-inflammatory cytokine
secretion and antigen presentation. It was not until the 1970s,
that the existence of suppressive subsets of B cells was first
confirmed in delayed hypersensitivity reactions (20). In 2002,
Mizoguchi et al. (21, 22) reported that interleukin 10 (IL-10)-
producing B cells can suppress intestinal inflammation
progression in mouse models and first described these cells as
Bregs. Currently, various Bregs have been identified, such as
CD1dhiCD5+Bregs (23), CD25hiFoxP3hiBregs (24) and
Tim-1+Bregs (25). The potent regulatory functions of various
Bregs have been identified in immune-related pathologies,
including inflammation, autoimmunity, and transplantation
(22, 23, 26). Several research groups have shown the
association between numerically and/or functionally aberrant
Bregs and autoimmune diseases such as SLE (27), RA (28), and
multiple sclerosis (MS) (29).

There is increasing interest in exploring the regulatory
mechanisms of Bregs, especially the interaction with multiple
targets cells. CD19+CD24hiCD38hi Bregs function to maintain
the Th1/Th2 and Th17/Treg balance via IL-10 (28). Moreover,
IL-10-producing Bregs inhibit the function of natural killer (NK)
cells (30) and plasmacytoid dendritic cells (31). Recently, clinical
studies have shown that the dysregulated Tfr and Tfh cells were
correlated with impaired Bregs in many autoimmune disorders
(32–34). Immunological advance further suggests the regulatory
potential of Bregs on Tfr and Tfh cells in the germinal response
(26, 33, 35, 36), providing new implications for understanding the
production of autoantibodies in autoimmune diseases.

In this review, we briefly outline recent advances in the
biology of Bregs and their involvement in autoimmune
diseases. In particular, we focus on the interactions between
Bregs and Tfh/Tfr cells and how such interactions regulate
autoantibody production in autoimmune diseases. Finally, we
discuss the therapeutic implications based on Breg-mediated
regulation of Tfh/Tfr cells in autoimmune diseases and
propose several problems that needed to be solved regarding
this therapy. This will give rise to more effective therapies and
monitors for autoimmune disorders.
PHENOTYPES OF BREGS

Currently, Bregs are primarily defined by their immunosuppressive
function in vitro or in vivo, especially their capacity to produce the
anti-inflammatory cytokine IL-10. Diverse B cell subsets with
suppressive functions have been identified in experimental animal
models and human, although the unique phenotypic markers for
distinguishingBregs fromeffectorBcellshavenotbeenunified,due to
the strong heterogeneity of Bregs. In mice, Mauri et al. (37) showed
that CD1d+CD21+CD23+transitional 2-MZ precursor (T2-MZP) B
cells, which secrete IL-10 have immunosuppressive activity both
in vitro or in vivo. Studies have also identified CD21+CD23−CD24hi

MZ Bregs (38, 39) and CD1dhiCD5+ Bregs (40) with the capacity to
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produce IL-10 inmice. In addition, IL-10-producing CD19+CD138+

plasmablasts have been found in experimental autoimmune
encephalomyelitis (41). A study also indicated that the cluster of
differentiation 9 (CD9) is a functional marker of IL-10-expressing
Bregs in mice (42). In other studies, T cell immunoglobulin and
mucin-domain-containing protein (Tim-1) is an important marker
formurine IL-10-producingBcells (25, 43). In the studybyLino et al.
(44), LAG-3+CD138hi plasma cells mediated immune regulation in
mice. Similarly,CD24hiCD38hi immatureB cells (27),CD24hiCD27+
B cells (45, 46), and CD25hiCD71hiCD73lo Br1 cells (47) have been
reported in humans. Recently, human IL-10-producing IgA+ B cells
induced by a proliferation-inducing ligand have been shown to
inhibit T cell and macrophage responses (48).

Apart from the most investigated IL-10-producing Bregs, great
efforts have been made to identify expanding Breg subsets
independent of IL-10. For example, Liu et al. (49) found novel
CD11b+ Bregs can suppress CD4+ T-cell responses in mice with
experimental autoimmune hepatitis. Moreover, CD38+CD1d
+IgM+CD147+granzymeB+ B cells (50) and IL-35-producing
Bregs (51) have been identified in humans and mice, respectively.
It has alsobeendetermined thatmurinePD-L1hiBcells can suppress
humoral immunity (33). B cells expressing IgD at a low level have
been identified as a novel population of Bregs in humans (52).

Collectively, the phenotypes of Bregs in different species,
organs, and disease models are partially overlapping or
distinct, which might due to their adaption to special immune
environments (19). Additional studies are needed to determine
whether the immunomodulatory function of Bregs relies on
their phenotype.
ORIGIN AND INDUCTION OF BREGS

The inability to identify different Breg cell subsets in complex
immune microenvironment makes it difficult to understand the
generation and biological characteristics of Bregs more deeply. Up
to now, the origin of Bregs remains elusive and controversial. B
cells can be divided into two main populations according to their
distinct origins, B1 and B2 B cells. B1 B cells develop in the fetal
liver andmainly present in the peritoneal cavity. B2 B cells develop
in the bone marrow and further differentiate into marginal-zone
(MZ) B cells or follicular B cell after several transitional stages.
Some researchers proposed that Bregs with various phenotypes
rise from a special progenitor and lineage-defining transcription
factors determine their immunosuppressive nature. Early studies
have suggested the B1 lineage of IL-10 producing Bregs as B1 B
cells are the main source of B cell-derived IL-10 (53). Bregs can
also originate from B2 B cells. In one study, Gai2-deficient mice
developed a spontaneous colitis due to the absence of splenic T2-
MZP and MZ B cells, although follicular B cells were not altered,
suggesting the potential origin of Bregs from T2-MZP and MZ B
cells (54). Subsequent studies also demonstrated that T2-MZP can
convert into Bregs (37, 55, 56). Notably, the identification of
CD19+CD5+CD1dhigh thymic B cells with suppressive ability
suggest the thymic origin of partial Bregs (57). However, there is
no lineage-specific markers have been identified in the gene arrays
Frontiers in Immunology | www.frontiersin.org 3
of Bregs (47, 51), which does not support the hypothesis that Bregs
arise from a dedicated progenitor. Indeed, growing evidence has
demonstrated that multiple B cells at different stages of
development can acquire suppressive functions under special
microenvironmental stimulations (27, 41, 58). Moreover,
Maseda’s group (59) reported that antigen-specific in vivo
signals initiated genetic and phenotypic alternations in B10 cells
and led to the conversion of these cells into antibody-producing
plasmablasts. These facts strongly support the hypothesis that any
B cell has the potential to convert into Bregs in response to
appropriate stimuli and their regulatory capacity may change with
the environmental alternations.

A complete understanding of the differentiation of diverse Breg
is needed. Currently, great progresses have been made in
understanding the induction of Bregs by microenvironmental
molecules, especially inflammatory regulators. As extensively
summarized elsewhere, B cell receptor (BCR) recognition, CD40,
and Toll-like receptors (TLRs), contribute to the induction of IL-
10-producing Bregs (60). Pro-inflammatory cytokines such as IL-
6, IL-1b (61), IL-21 (62), interferon gamma alpha (IFN-a) (31),
and B cell-activating factor (BAFF) (63) are also potent inducers of
Bregs. Pro-inflammatory cytokines-mediated induction of Bregs
can be explained as a feedback mechanism that suppresses the
expansion of pro-inflammatory cells and restores immune
homeostasis. However, it appears that not all pro-inflammatory
cytokines play a role in the generation of Bregs. For example, the
deficiency of IL-17, a pro-inflammatory cytokine, led to an
increased number of CD19+IL-10+Breg in the spleen of a
murine model of lupus (64). Of note, IL-35 can induce IL-35-
producing Bregs as well (65), suggesting the potential role of anti-
inflammatory cytokines in the differentiation of Bregs. Moreover,
gut-microbiota-derived signals are important in the development
of IL-10-producing Bregs and drive their differentiation by
inducing the production of pro-inflammatory cytokines by DCs
and macrophages (61). This was corroborated by study showing
that the elimination of gut microbiota through antibiotic treatment
led to reduced IL-10-expressing Breg frequency in mice compared
to the controls (61). Subsequent studies suggested that intestinal
microbiota drove B cells into IL-10-producing Bregs via TLR2/
MyD88/PI3K signaling (66). Furthermore, stimulation from
bacteria-derived oligodeoxynucleotides bas been shown to induce
the generation of human CD24hiCD38hi Breg-like cells in vitro (67).
Similarly, the DNA of gut microbiota has been shown to mediate
the expansion of Bregs in MRL/lpr mice (68). More studies are
needed to determine the mechanism of underlying bacterial DNA-
mediated induction of IL-10-producing Bregs.

A recent study identified IL-10+LAG-3+CD138hi regulatory
plasma cells in germ-free mice, suggesting that gut microbiota is
not indispensable in the generation of all subsets of Bregs (44).
The study also found that these regulatory plasma cells were
naturally existed in the spleen and bone marrow of naive mice,
rather than develop in response to stimulation. They originate
from several B cell subsets including B1a, B1b, and B2 cells in a
BCR-dependent manner and produce IL-10 after activation by
TLR signals (44). Indeed, the existence of naturally occurring
CD19+CD25highCD27highCD86highCD1dhighIL-10high Bregs in
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humans has also been confirmed (69). A complete understanding
of these natural Bregs and their relationship with inducible Bregs
is needed. In addition, more studies are needed to explore the
origin and development of various Bregs, which will provide
novel insights into the therapeutic potential of Bregs in
autoimmune disorders.
SUPPRESSIVE MECHANISMS
AND EFFECTORS OF BREGS

The most investigated regulatory mechanism of Bregs centers
around their production of IL-10. Mice with IL-10 knocked-out
in B cells developed exacerbated arthritis accompanied by increased
antibodies and inflammatory Th1 and Th17 cells, suggesting the
important role of IL-10 in B cell-mediated immune regulation (70).
Consistently, human CD19+CD25high Bregs can inhibit the
expansion and function of autologous CD4+ T cells, and promote
the differentiation and activity of Tregs via secretion of IL-10 (71).
Moreover, CD1dhiCD5+Breg-derived-IL-10 inhibits the activation
of IL-13+ type 2 innate lymphoid cells (ILC2s) and thereby
suppressing the inflammation response in contact hypersensitivity
(72). In experimental allergic encephalomyelitis (EAE), regulatory
plasmablast-derived IL-10 also inhibits the production of IFN-a by
DCs, a key cytokine in the expansion of pathogenic T cells (41).

The IL-10-independent regulatory mechanisms of Bregs are
primarily mediated by IL-35 (51), transforming growth factor beta
(TGF-b) (73), and granzyme B (50). These cytokines act by
inducing Treg and inhibiting effector T cell differentiation (50,
51, 73). Moreover, programmed death-ligand 1 high (PD-L1hi)
Bregs inhibit the expansion of Tfh cells and effector T cells through
programmed cell death protein 1 (PD-1)/PD-L1 signaling (33).
CD1d+T2-MZP Bregs functioned to regulate the activity of
invariant natural killer (iNKT) cells through CD1d–lipid
presentation, thereby inhibiting excessive inflammation (74).
Notably, specific IgG4 antibodies produced by human
CD73−CD25+CD71+ IL-10-producing regulatory B cells also
play an important role in the suppression of antigen-specific
CD4+ T cell proliferation (47). Other molecules such as
glucocorticoid-induced tumor necrosis factor receptor ligand
(52, 75), intercellular adhesion molecule 1, and fasciclin 1 also
mediate the suppressive function of several populations of Bregs
(76). Recently, the importance of microbiota-derived butyrate, a
type of short-chain fatty acid (SCFA) in the function of IL-10-
producing CD19+CD21hiCD24hiB cells has been identified.
Butyrate activates transcriptional marker aryl-hydrocarbon
receptor (AhR) in a manner dependent on 5-Hydroxyindole-3-
acetic acid (5-HIAA) and therethrough indirectly supports
CD19+CD21hiCD24hiBreg cell function (77). Although butyrate
supplementation can support suppressive function of Bregs and
inhibits arthritis inmouse models, it is unclear which species of the
gut microbiota are involved in SCFA-mediated regulation of
Bregs. The efficacy of dietary invention with butyrate also
remains to be confirmed in RA patients.

Importantly, several transcription factors important for the
suppressive functions of Bregs have also been identified. A study
from Florian et al. (78) on the transcriptomicmeta-analysis of human
Frontiers in Immunology | www.frontiersin.org 4
Bregs identified two critical immune regulatory transcriptional
signatures, GZMB and IL10RA, among 126 differentially expressed
genes between Bregs and non-Bregs. Recent research also suggests an
important role for transcriptional repressor B lymphocyte-induced
maturation protein-1 (Blimp-1) in the function of activated B10 cells.
The authors found that Blimp-1 promoted the transcription of IL-10
when accompanied by phosphorylated signal transducer and
activator of transcription 3 (STAT3) (79). Another transcription
factor interferon regulatory factor 4, serves as a crucial modulator
of TLR signaling, promoting IL-10 secretion by plasmablasts in the
draining lymph nodes (LNs) (41). Studies have also identified the
high expression of AhR in Bregs, which maintains the phenotype of
splenic CD19+CD21hiCD24hiBregs by regulating IL-10 production
and by restricting pro-inflammatory gene expression. This is
supported by the fact that mice with AhR deletion developed
exacerbated arthritis accompanied by reduced IL-10-producing
CD19+CD21hiCD24hiBregs (80). Hypoxia-inducible factor-1a is
also a critical transcription factor which regulate IL-10 expression
in B cells (81). However, it is unclear whether these transcriptional
determinants of Breg immunosuppressive functions are shared by
different Breg subsets. To date, Breg-cell-specific transcription factors
are largely undefined, and more studies are required in the future.

The potential role of Bregs in regulating Tfh and Tfr cells may
also contribute to suppressing inflammation (33). However, this
regulation appears more complex and will be discussed below. In
summary, diverse mechanisms of Breg function are associated
with the complex interactions between Bregs and other immune
cells. Further studies are need to explore the transcriptional
mechanisms underlying these interactions.
INVOLVEMENT OF TFH AND TFR
IN AUTOIMMUNE DISEASES

Tfh and Tfr Control Autoantibody Production
Autoantibodiesare serologicalmarkersandpathological contributors
to many autoimmune diseases. Autoantibodies can lead to the
deposition of immune complex in various organs, thereby
activating the complement system and/or activating immune cells,
resulting in severe inflammatory damage. Moreover, autoantibodies
cause direct damage of target tissue via antibody-dependent cell-
mediated cytotoxicity (82). Generally, high-affinity antibodies
generated in the GC during humoral immunity are responsible for
providing long-term protection against the multiple pathogens.
Upon antigen recognition, mature naïve B access the GC and
further interact with T cells to differentiate into antibody-
producing plasmocyte (1). A central step of high-affinity antibody
maturation is somatic hypermutation (SHM) of BCR genes.
However, in addition to enhancing affinity, this process can give
rise to self-reactive BCRs at the same time (83), which underlines
autoantibodies production. Although multiple checkpoints exist,
including central (84) and peripheral tolerance (85), elimination of
massive autoreactive B cells, more direct regulations at the GC level
are necessary to prevent autoantibody production.

Since the discovery of Tfh and Tfr cells, the immunological
mechanism underlying autoantibody generation in autoimmune
diseases gradually becomes clear. Tfh cells are specialized
March 2021 | Volume 12 | Article 641013
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CD4+ T lymphocytes required for the initiation of GC response in
humoral immune responses. CXCR5, BCL6 and IL-21 are
functional markers commonly used to define these cells. Within
the follicle, Tfh cells provide signals for GC-B cell survival, affinity
maturation, proliferation, and differentiation (86). These signals
include cytokines such as IL-4 and IL-21 (14), and cellular
interaction through surface molecules including CD40L (14, 87,
88), ICOSL (89) and PD-1 (90). The interaction between Tfh and
GC-B cells is not well defined. It has been reported that the
frequency and antigen affinity of B cells determine their capacity
to receive help from T cells (91). Normally, only high-affinity B cells
successfully compete for Tfh help and undergo rounds of selection
to differentiate into antibody-producing plasma cells, whereas other
B cells without this help may die rapidly. A series of studies have
indicated that excessive Tfh cell response leads to the production of
autoantibodies (92–94). It is possible that self-reactive B cells can
receive help from excessive Tfh cell signals and escape from
tolerance, leading to the generation of autoantibodies.

Conversely, Tfr cells act as negative regulators of autoantibody
generation. Tfr cells are mainly differentiated from thymic forkhead
boxprotein 3 (Foxp3)+Tregprecursors and characteristically express
Foxp3andCXCR5.Moreover, othermolecules suchasBcl-6andPD-
1 are also expressed in Tfr cells (8). Tfr cells are critically involved in
regulating the GC response. On the one hand, Tfr cells inhibit the
proliferation and function of Tfh and B cells in GC in a cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4)-dependent manner (95,
96). Deletion of CTLA-4 on Tfr cells results in impaired class-switch
recombination to IgG1, as well as unrestrained proliferation of Tfh
cells (97). On the other hand, Tfr cells act by secreting anti-
inflammatory cytokines including IL-10 (98), TGF-b (10, 99), and
granzymeB(10) (Figure1).Additionally, Tfr cells seem to impair the
B-cell response to Tfh cell stimulation by inhibiting B-cell metabolic
pathways, thereby leading to decreased antibody production (96).
Importantly, studies of infectionmodels have indicated that Tfr cells
eliminate autoreactive B cells in the GC response, suggesting the
important role of these cells in maintaining B-cell tolerance (100).
This is supported by the fact that ablation of Tfr cells promotes
autoantibodyproduction inhousedustmitemodels (101). Inanother
study, mice with impaired GC-Tfr cells due to conditional knockout
of nuclear factor of activated T-cells 2 showed increased pathogenic
anti-dsDNA and developed lupus-like disease after immunization
with chromatin (102). Thus, it could be possible that abnormalities in
Tfr cells numbers and functions lead to impairednegative selectionof
autoreactive B cell and enhanced Tfh activity, which ultimately
promotes autoantibodies production in autoimmune diseases.

Given theopposing roles ofTfh andTfr cells, a balanceof themis
indispensable forfine tuning theGCresponse.Multiple factors such
as microRNAs (103), gut microbiota (104), and cytokines
[especially IL-10 (26), IL-2 (100, 105) and IL-21 (18, 106)], are
crucial in regulating the Tfr/Tfh balance. Indeed, the interactions of
Tfh and Tfr cells are more complex than discussed above. Recent
evidence indicates that Tfh cells can convert into Tfr cells in an IL-2
dependent manner, providing new insights into regulation of Tfr/
Tfh balance (107).Moreover, in a breakthroughdiscovery,Wuet al.
(108) found a distinct subset of Tfh cells that could promote Tfr cell
differentiation by blocking the Wnt-b-catenin axis in a sclerostin
Frontiers in Immunology | www.frontiersin.org 5
domain-containing protein 1-dependent (SOSTDC-1) manner.
Elucidating the cellular and molecular mechanisms underlying
the activities of Tfh and Tfr cells in the GC response as well as
predominant determinants of the Tfr/Tfh balancewill contribute to
the regulation of autoantibody production.

Dysregulated Tfh/Tfr in Autoimmune Diseases
Investigations of the function of Tfh and Tfr cells in regulating
antibody production have promoted the discovery of detailed
roles for these cells in the pathogenesis of autoimmune diseases.
In various established mouse models of autoimmune diseases,
both Tfh and Tfr cells are dysregulated. For example, the
frequency of Tfr cells in the spleens of BXD2 mice is reduced,
whereas Tfh frequency is significantly increased and positively
correlated with the frequency of GC B cells (109). It has also been
demonstrated that mice deficient in Tfr cells are more prone to
developing experimental Sjögren’s syndrome (ESS) than wild-
type mice (110). By contrast, the transfer of Tfr cells into BXD2
mice suppressed GC development (18), indicating the crucial
role of these cells in immune tolerance.

Studies on Tfh and Tfr cells in human autoimmune diseases
are largely restricted to circulating Tfh (cTfh) and Tfr (cTfr) cells,
given the difficulty obtaining human secondary lymphoid
organs, although the GC response usually occurs in lymphoid
organs. cTfh cells can home to LNs and have the superior
capacity to provide help for B-cell activation, whereas cTfr
cells have a much lower suppressive capacity than LN Tfr cells
(98). Notably, these cells are derived from peripheral lymphoid
tissues (111) and have comparable Foxp3 expression with tonsil-
derived Tfr cells (112). After special activation, cTfr cells can be
recruited to GCs to exert suppressive function (98). As a
consequence, cTfh and cTfr cells are also closely related to the
GC response. It is possible that cTfh cells and cTfr cells vary with
alterations in the germinal center, making them indicators of
humoral activity and disease severity (111).

Alterations in cTfr cells and cTfh cells occur in a variety of
human autoimmune diseases. Patients with autoimmune diseases
such as RA (15, 113), SLE (16, 114), myasthenia gravis (MG) (17),
primary biliary cholangitis (PBC) (115), and antineutrophil
cytoplasmic antibody-associated vasculitis (116) often have an
uncontrolled expansion of Tfh cells and decreased Tfr cells in the
blood. In MS patients, the functions of cTfr cells are significantly
impaired (112) and the cTfr/cTfh ratio is conversely related to IgG
production (117). More importantly, the ratio of cTfh/cTfr is
inversely correlated with disease activity in many autoimmune
diseases (15, 118, 119). Taken together, these findings raise the
possibility that impairment of Tfr cells as well as excessive Tfh
activity are implicated in the pathogenesis of autoimmunity.

Inconsistent with the above findings, recent studies have
described an increase of cTfr cells in SLE (120), RA (121), Sjögren
syndrome (111, 122), and AS (123), as well as unchanged frequency
of total cTfh cells in muscle-specific kinase MG (MuSK-MG)
patients (124). This can be explained by the heterogeneity of
patients in different studies. Alternatively, the increase in Tfr cells
can also be considered as feedback to enhance the Tfh response in
these patients; however, this feedback might be insufficient. In a
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study of RA, the Tfr/Tfh ratio decreased, despite increases in both
cTfh and cTfr cells (118). Another explanation for cTfr increasing in
some studies may be that the proportion of activated cTfr cell
subsets is reduced, although overall cTfr cells are increased,
ultimately leading to an excessive GC response. Consistently,
studies of SLE patients have indicated that the active phenotypes
of cTfh and cTfh cells are altered and might lead to autoimmunity,
whereas overall cTfh and cTfr cells are not significantly different
between patients and healthy controls (107). The recent description
of Th2- and Th17-like cell subsets of cTfr cells representing ongoing
humoral responses in pSS also supports the imbalance of cTfr
subsets in autoimmune diseases to some extent (125). Moreover,
observations from Li et al. (124) in MuSK-MG patients support a
key role of Tfh17 cells in blood, but not total Tfh or activated Tfh
cells, in the activation of B cells, which indicated cTfh subpopulation
are also imbalanced in autoimmunity.

Taken together, besides the alternations in frequency and
function, the imbalance of specific Tfr cell subsets and Tfh cells
subsets in circulating also appears to account for the
uncontrolled GC response in autoimmune diseases. The
functional diversity of Tfh and Tfr cells in different complex
immune compartments such as spleens, Peyer’s patches, CLN,
joints synovia of RA, and salivary glands of patients with SS are
Frontiers in Immunology | www.frontiersin.org 6
largely unknown. Although difficult, isolation of Tfh and Tfr cells
from human tissue will greatly contribute to uncovering the
function and underlying mechanism of these cells in
autoimmune diseases in the future.
REGULATION OF BREGS BY TFH
AND TFR CELLS

The development and function of Bregs are likely to be regulated
by Tfh cells. One of the early lines of evidence fromMRL/lpr mice
revealed that B10 cells in the spleens were expanded and the
percentage of these cells had a strong positive correlation with Tfh
percentage (126). In vitro data also showed that supernatants from
cultured Tfh cells induced IL-10 production by B10 cells, and this
impact could be eliminated by neutralization of IL-21 (126). In this
regard, the author speculated that Tfh cell-derived cytokine IL-21
drove the differentiation and IL-10 production of B10 cells.
Further data showed that this mechanism was related to the
activation of phosphorylated -STAT3 by IL-21 (126). A similar
study also revealed that cTfh cell from SLE patient contributed to
the expansion of CD19+CD5+CD1dhiBregs (34). This finding
FIGURE 1 | Dynamics of Tfh and Tfr cells in GC response. Naïve T cells and thymus-derived Treg can differentiate into Tfr and Tfh cells, respectively, after the
priming by dendritic cells. Differentiated Tfr and Tfh cells gradually migrate into follicles in a CXCR5-dependant manner to exert profound impacts on GC B cells.
Follicular stromal cells such as FDC provide an important plat form for various cellular interaction. In GC, Tfh cells support B cells differentiation and antibodies
production by providing essential signals to B cells through direct interactions mediated by PD-1, CD40L, and ICOS, as wells as cytokines such as IL-4 and IL-21.
By contrast, Tfr cells uniquely inhibit the differentiation and function of Tfh cells through secreting several anti-inflammatory cytokines (including IL-10, TGF-b,
granzyme B) to suppress the GC response. The crosstalk between Tfr and Tfh cells is complex. Tfh cells can convert into Tfr cells after stimulation by IL-2.
Moreover, SOSTDC1-producing Tfh cells can serve as an inducer of Tfr cells.
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proposed that the induction of CD19+CD5+CD1dhiBregs by Tfh-
derived IL-21 was regulatory feedback. Indeed, the importance of
IL-21 in promoting CD19+CD5+CD1dhiBregs generation has
already been identified in mice with MS (62). Moreover, Tfh
cells as the predominant origin of IL-21 in GC have also been
reported (127). This study on SLE linked IL-21 to Tfh-mediated
regulation of B cells, providing important evidence that Tfh cells
can induce CD19+CD5+CD1dhiBregs, possibly through IL-21 in
autoimmune diseases. Most recently, it was found that CD25+
Foxp3+ Treg-like Tfh cells, a specific subset of Tfh cells with the
capacity to produce IL-21 during chronic hepatitis B virus (HBV)
infection, not only promote the differentiation of B cells into IL-
10+CD10-CD27-CD19+ Bregs but also enhance the suppressive
function of Breg (128). It is conceivable that excessive Tfh cell
responses evoke reactive differentiation of Bregs both in
autoimmunity and infection. The upregulation of Bregs by Tfh
cells can be considered as a potential regulatory feedback
mechanism to inhibit proinflammation response. We speculate
the function of these Tfh cell-induced Bregs are likely impaired,
which eventually led to autoimmunity.

Studies regarding the regulatory properties of Tfr cells on Bregs
in autoimmune diseases are rare. However, in acute respiratory
distress syndrome, expanded Tfr cells reportedly significantly
increase IL-10+Breg cell frequency significantly in vitro,
extending the understanding of Tfr cell function in immune
suppression (129). A recent study in atherosclerosis also
indicated that Tfr cells are able to promote B220+CD43-

CD1dhiCD5+Bregs generation both in vivo and in vitro. In this
study, transfer of Tfr cells into mice with atherosclerosis triggered
a significant expansion of B220+CD43-CD1dhighCD5+Bregs
(130). In vitro studies implicating the Tfr cell-mediated increase
of B220+CD43-CD1dhighCD5+Bregs requires direct cellular
contact and was in proportion to the number of Tfr cells (130).
Besides, this effect relies on the presence of Tfh cells (130). It is
possible that excessive Tfh activity initiate a series of Tfr-mediated
anti-inflammatory responses, the expansion of B220+CD43-

CD1dhighCD5+Bregs Bregs is one of them. Yet Breg expansion
in this study may also due to the direct induction by Tfh cells. To
date, similar findings in autoimmune diseases have been absent.
Further studies are needed to determine how Tfr cell functions to
regulate Bregs and whether this impaired regulation correlates
with the development of autoimmune diseases.
NOVEL INSIGHTS INTO BREG-MEDIATED
REGULATION OF TFH AND TFR IN
AUTOANTIBODY PRODUCTION

Bregs Regulate the Differentiation
and Function of Tfh and Tfr Cells
As a potent regulator, Bregs have extensive impacts on various
immune cells in complex immune microenvironment (19). The
interactions between Bregs and their target cells is a hot topic in
immune regulation. Recent evidence suggests the emerging role of
several Breg cell types in the regulation of Tfh cell differentiation
Frontiers in Immunology | www.frontiersin.org 7
and function. Tfh and B cells co-culture experiment has shown
that the addition of CD19hiIgD+CD38hiCD24hiCD40hiPD-L1+IL-
21R+ human Bregs in the system significantly inhibit Tfh cell
maturation, while Tfr cells proportion was increased significantly
(35). These Bregs also preclude mature Tfh cells-mediated plasma
cell survival and IgM, IgG, and IgA production, suggesting an
important role of Breg in inhibiting Tfh cell function (35).
Consistently, in a variety of diseases, the number and function
of Bregs are decreased, and they are also strongly correlated with
the frequency and function of Tfh cells. For example, the study
conducted on pSS patients have described an inverse relationship
between Tfh percentage and IL-10+CD19+CD24+CD38hi Breg
percentage in the circulating (32). The authors further
confirmed that IL-10-producing ability of these Bregs in pSS
patients was significantly impaired than that in healthy controls,
and these Bregs could not effectively inhibit autologous Tfh cell
expansion (32). Studies performed in mouse models of EAE (33)
and atherosclerosis (36) have further confirmed that PD-L1+ Bregs
and MZB cells could inhibit the development of Tfh cells and Tfh
cell-mediated proatherogenic response, eventually abrogating the
acceleration of diseases. Thus, Bregs regulate Tfh cell response and
this regulation are more likely to be impaired during various
inflammatory diseases.

The detailed Breg regulatory mechanism of Tfh cells
differentiation and function are largely undefined and are
suggested to rely on direct Breg-Tfh cell contacts and several
soluble factors (35). Particularly, Breg-derived IL-10 may play a
central role in Tfh cells regulation. Lin et al. (32) found that
CD19+CD1dhiCD5+Breg from mice suppressed Tfh cells
differentiation in an IL-10-dependent manner in vitro. Adoptive
transfer of IL-10−/− B cells into ESS mice led to higher GC Tfh
and plasma cell accumulation than control mice transferred with
WT B cells. They also detected high expression of IL-10 receptor
on Tfh cells in mice andman, suggesting the potential role of IL-10
in the regulation of Tfh (32). Importantly, IL-10 downregulated
the expression of transcription factor achaete-scute homologue 2
(Ascl2) in Tfh cells (32). Ascl2 is a key regulator during Tfh cells
development (131). Downregulation of Ascl2 is thought to inhibit
CXCR5 expression, which results in impaired Tfh differentiation
and function as CXCR5 is constitutively expressed in Tfh cells and
is critical for the maturation and activity of these cells (86, 132,
133). Notably, p-STAT5 inhibition can eliminate IL-10-mediated
suppression on Tfh cells (32). These findings suggest the
important role of the IL-10-pSTAT5-Ascl2-CXCR5 axis in Tfh
cell differentiation and function. Moreover, PD-1/PD-L1 signaling
is also involved in Breg-mediated inhibition of Tfh cells. Splenic B
cells show the enhanced capacity to promote functional
transcription factor Bcl-6 expression in Tfh cells after blocking
PD-L1 on B cells (134). PD-L1- abrogated MZB cells are unable to
limit the proatherogenic Tfh response and caused severe
atherosclerosis (36). The author further found that MZB cells
suppress Tfh cell motility in a PD-L1-mediated manner, which
may be associated with the impaired capacity of Tfh cells to
provide help for B cells (36).This is in agreement with a previous
study which indicated that PD-L1hi Bregs require the high
expression of PD-L1 to repress Tfh expansion in EAE mouse
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models (33). Notably, it is possible that Tfr cells participate in Breg-
mediated regulation of Tfh cells, given that the differentiation and
function of Tfh cells are restricted by Tfr cells. However, after the
transfer of PD-L1hi Breg, the percentage and number of Tfh cells in
mice were markedly decreased without an increase in Tfr cells,
suggesting that this Breg cell type might act directly on Tfh cells
rather than via Tfr cells (33). Additionally, MZB cells inhibit the
accumulation of Tfh cells and GC B cells in the spleen to achieve
atheroprotective effects, and the activating transcription factor 3
plays a central role in this effect (36).The expressionof transcription
factor CTLA-4 is downregulated in Tfh cells when MZB cells are
deficient,makingTfh cells susceptible to being activated, suggesting
the important role ofMZB cells in suppressing the activation of Tfh
cells (36). Notably, CTLA-4 expressed at a high level in Tfr cells is
critically linked to the suppressive capacity of these cells (135).
Considering the role ofMZB cells in themaintenance ofCTLA-4 in
Tfh cells, it will be interesting to determinewhetherMZBcells affect
the function of Tfr cells.

Notably, current studies indicate that Tfh cells contain three
subsets with different expression of chemokine receptors,
including Tfh1, Tfh2, and Tfh17 (136). Thus, studies on the
impact of various Bregs on Tfh cells should evaluate the level of
these cellular subsets. In patients with idiopathic pulmonary
fibrosis, a decrease in circulating CD3-CD19+CD24hiCD27+Bregs
has been observed, accompanied by the altered profile of Tfh-cell
subsets, in which the proportion of Tfh2 cells and PD-1+ICOS+-
activated Tfh cells are elevated while Tfh17 cells are decreased
(137). Similarly, Tfh2 skewing and CD19+CD24hiCD27+Bregs
decrease also occurs in the peripheral blood of patients with
allergic rhinitis (AR) and AR combined with Asthma (138, 139).
The %Tfh2 cells per %CD19+CD24hiCD27+Bregs had a positive
correlation with the levels of biomarkers of allergic airway
inflammation, making it an exaggerating factor during AR
progression to AR with asthma (138). Furthermore, the cTfh2/
CD19+CD24hiCD27+Bregs ratio correlates with plasma levels of
CXCL13 in asthma (139). Studies in autoimmune diseases
previously showed that CXCL13 indicated the disease activity
(140–142). Thus, the cTfh2/CD19+CD24hiCD27+cBreg ratio
might represent a useful biomarker for diagnosis, severity, and
treatment efficacy of autoimmune diseases. Taken together, these
data raise a question about the impact of Bregs on different subsets
of Tfh cells, especially Tfh17 and Tfh2, two subsets of Tfh cells
reported to be correlated positively with antibody production in
several autoimmune diseases such as myositis (136), vasculitis
(143) and Sjögren’s syndrome (144). It is possible that the
functional and/or numerical deficit of Bregs contributes to the
polarization of Tfh2 and underlies the development of
autoimmune diseases. However, after asthma treatment, the
symptoms and cTfh2 skewing were improved, while the
percentage of CD19+CD24hiCD27+Bregs was not significantly
different (139). This finding indicates other mechanisms,
independent of Bregs function, operate in the regulation of Tfh
cell subsets, which require more in-depth studies.

Although Tfr cells have similar phenotypes to Tfh cells, studies
regarding the role of Bregs in regulating Tfr cell generation are
rare. IL-10 deficiency in B cells caused decreased Tfr cells in the B
Frontiers in Immunology | www.frontiersin.org 8
cell follicles (26). One in vitro assay cultured Tfh and
CD19hiIgD+CD38hiCD24hiCD40hiPD-L1+IL-21R+ Bregs sorted
from humans showed that the proportion of Foxp3+ cells was
increased, suggesting this type of Bregs can induce Tfr cells (35).
The increased level of TGF-b in the cocultures and diminished
frequencies of Foxp3+ T cells after anti-TGF-b blocking antibodies
indicated the requirement for TGF-b in the induction of Tfr cells
by these Bregs (35). Remarkably, the effects of several Bregs types
on Tregs, a subset of T cells known to differentiate into Tfr cells (8,
10), have been extensively described. CD19+CD24hiCD38hi Bregs
(28) and CD19+CD25hi Bregs (71) from human as well as IL-
10+CD1dhiCD5+ Bregs (145) and B220+CD23+T2-MZP B cells
(37) frommice all have the capacity to induce Tregs through IL-10
production. Thus, it is conceivable that Bregs promote the
development of Tfr cells via inducing Treg cells. Studies have
also shown that IL-10 deficiency in B cells leads to impaired Tfr
cells differentiation and prevent tolerance to the allogeneic cardiac
allograft, indicating an important role for IL-10 in B cells-
mediated regulation of Tfr cells (26). Notably, IL-10 production
is not unique to Bregs. Tfh and Treg cells reportedly produce IL-10
(146, 147). The possibility that IL-10 produced by these cells is also
involved in the Tfr cells regulation cannot be excluded.

Interestingly, the ability of different subsets of Bregs to
regulate Tfr cells appears to be distinct, due to their different
functional markers. For example, human IL-10-producing
CD19hiIgD+CD38hiCD24hiCD40hiPD-L1+IL-21R+ Bregs expand
Tfr cells (35), while CD3-CD19+PD-L1hi Bregs in mice exhibit a
negative effect on the generation of Tfr cells (33). Considering that
Tfr cells express large amounts of PD-1 which inhibit Tfr cell
development (135), this difference might be attributed to the
interactions between Tfr cells and PD-L1hi Bregs through PD-1/
PD-L1. Certainly, species differences might also account for this
difference, which needs further confirmation.

Collectively, all these data support the fact that multiple Bregs
regulate the function and differentiation of Tfh cells and Tfr cells
through complex mechanisms (See Figure 2). Possibly, Bregs
balance Tfh and Tfr to ensure central tolerance and prevent
autoantibodies production, and dysregulation of Tfh/Tfr cells in
autoimmune diseases may due to defective Bregs regulation.
Notably, different subsets of Breg and/or different contexts of
diseases may cause distinct regulatory effects on Tfh and Tfr cells.
The detailed mechanisms of underlying this regulation need
further study.

Bregs Appear to Be Critical to the
Distribution of Tfh and Tfr Cells
In addition to the function and frequency, the spatial distribution
of Tfr cells in the immune environment also appears to be critical
to the induction of immune tolerance (99). In particular, Tfr cells
at the T-B border and within the follicle, but not in the GC, have
the most efficient ability to mediate immune suppression (99).
Studies using tolerogen-treated mice have shown that selective
deletion of IL-10 in B cells results in reduced localization of both
Tfr and Tfh cells in B cell follicles, and, in contrast, increased
Th17 cells in the GCs of lymph node (LN) and the spleen (26).
This distribution of Tfr and Tfh cells can be restored by adoptive
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transfer of IL-10+ MZP B cells (26). This study showed that the
distribution of Tfh, Tfr, and Th17 cells in secondary lymphoid
organs was at least partly controlled by Bregs and this function
might be mediated by MZP B cells-derived IL-10, indicating a
novel regulatory mechanism for T cell distribution in the GCs.
However, it remains largely unknown whether a similar
migratory behavior is performed in human. Moreover, the
question of what detailed mechanisms are involved in this
migration remains. CCR7 are crucial chemokine receptors
directing T cells residing in the T zone and down-regulation of
CCR7 is indispensable for the follicular positioning of Tfh cells
(133). It is possible that MZP B cells downregulate the expression
of CCR7 so that Tfh cells can migrate into B cell follicles.
However, B cell depletion leads to reduced CCR7 in Tfh cells
accompanied by decreased migration of Tfh cells into B cell
follicles (26). Thus, the function of MZP B cells in supporting the
migration of Tfh cells through CCR7 needs further confirmation.
Notably, cTfh cells with low CCR7 expression are increased and
have been described as an indicator in autoimmune diseases
including AIH (148) and pSS (125), as well as chronic HBV
infection (149). CCR7intTfh cells in the blood are closest to
tonsillar Tfh lineage cells and exhibit a more potent capacity to
induce memory B cells to differentiate into antibody-producing
cells than CCR7highTfh cells (150). Therefore, downregulating
CCR7 may be important for Tfh cells in promoting antibody
Frontiers in Immunology | www.frontiersin.org 9
production. The effective regulation of GC response may be
achieved by altering Tfh cell distribution in the future.

Indeed, the migration of Tfh and Tfr cells into the GC is a
complex mechanism with multiple factors involved. Besides
CCR7, other elements are also being elucidated. CXCR5 is one
of the important molecules guiding the residence in GCs (10, 86,
133). Multiple types of stromal cells in secondary lymphoid
organs, including FDCs and fibroblastic reticular cells, which
expresses directing signals and provide an important platform
for cellular interactions, are also critically determine the GC
localization of Tfh and Tfr cells (151). Importantly, activated
FDCs express amounts of CXCL13, the ligand for CXCR5,
inducing the migration of CXCR5-expressing T and B cell into
follicles (132, 152). Whether Bregs change the expression of
CXCRL13 in FDCs to mediate the migration of Tfh and Tfr cells
warrants further study (26). Notably, positive regulator
sphingosine-1-phosphate receptor 2 (153) and negative
regulator ephrin-B1 (154) are also involved in the retention of
Tfh cells in the GC microenvironment. Thus, the mechanism by
which Bregs to regulate the distribution of Tfr and Tfh cells may
not be confined to CXCR5. The presence of CXCR5-deficient Tfr
cells in the GC also suggest that CXCR5-independent
mechanisms operate in their location in the GC (155).

Whether abnormal distribution impacts on the effector
functions of Tfh cells and Tfr cells remains unclear. A recent
FIGURE 2 | Regulation of Tfh and Tfr cells by Bregs. Several types of Breg are involved in the regulation of the differentiation, function, and distribution of Tfh and Tfr
cells. Firstly, CD40 and TLR9 might favor the migration of CD19hiIgD+CD38hiCD24hiCD40hiPD-L1+IL-21R+ human Bregs into GC by promoting CXCR5 expression.
CD19+CD1dhiCD5+Bregs-derived IL-10 downregulates the expression of CXCR5 in Tfh cells by inhibiting Ascl2, the positive regulator of CXCR5, leading to impaired
maturation and Il-21 production of Tfh cell. Moreover, MZB cells play a crucial role in the maintenance of CTLA-4 in Tfh cells. The location of Tfh cells can affect their
function. IL-10+ MZP B cells direct this migration of Tfh cells out of follicles possibly through altering the expression of CCR7 (crucial chemokine receptors required
for the localization of T cells in the LN) in Tfh cells. In turn, Tfh cell activates p-STAT3 in an IL-21-depadent manner therethrough driving the differentiation of
CD19+CD5+CD1dhiBregs. CD19hiIgD+CD38hiCD24hiCD40hiPD-L1+IL-21R+ human Bregs can promote Tfr cell differentiation and TGF-b play an important role in this
process. Possibly, these Bregs induce Treg through IL-10 production and thereby increase Treg conversion into Tfr cells.
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study conducted in fresh human adenoids showed that Tfh cells
in distinct locations differed in their motility and functions (156).
In outer zones of GC, Tfr cells are fast-migrating and exhibit
brief cellular interaction while the majority of Tfr cells in the
central GC zone are static with long-lasting capacity to interact
with each other (156). Thus, it is possible that the altered location
of Tfh and Tfr cells in the GC of secondary lymphoid organs may
lead to their changes in function, in parallel. Notably, studies
conducted in sarcoidosis have indicated that cTfh cells can
migrate into granulomas to play an inflammatory role (157).
Thus, the migration of Tfh cells not only exists in the GC
microenvironment in one lymphoid tissue or organ but also
occurs between different secondary lymphoid organs. Whether
Bregs also play a role in directing this distribution between
different lymphoid tissues or organs is unknown. Moreover,
the impact of Bregs on the migration of Tfh and Tfr cells in
the blood and their counterparts in non-lymphoid tissue such as
joint synovia of RA patients and salivary glands of patients with
pSS warrant further study.
THERAPEUTIC PROSPECTS OF BREGS-
MEDIATED TFR/TFH REGULATION

Given the considerable role of autoantibodies in the development of
autoimmune diseases, current therapies focus on eliminating
autoantibodies and/or blocking their function in a more precise
manner. Particularly, targeting key cells involved in autoantibodies
production ismore popular due to the high efficacy and less adverse
effects. In this regard, Tfr and Tfh cells modulation strategies have
potent potential, for the contrasting roles of Tfr and Tfh in the
regulation of GC response (158). However, therapies targeting Tfr
and Tfh cells directly are extremely limited, due to a poor
understanding of their development and function.

Strikingly, specific subsets of Bregs hold considerable promise
to regulate Tfr/Tfh balance (26, 32, 33, 35, 36). As mentioned
above, defective Bregs may lead to aberrant differentiation,
function and distribution of Tfr and Tfh cells in diseases.
Indeed, Breg number is decreased and the cross-talks between
Breg and their target cells are also compromised in multiple
autoimmune diseases (27, 159–161). For instance, in SLE,
CD19+CD24hiCD38hi Bregs were unable to restrain IFN-a
production by pDCs. pDCs also failed to drive these Bregs
differentiation (31). In pSS, CD19+CD24+CD38hi Breg were
defective in suppressing the expansion of Tfh cells (32).
IL-10+CD19+CD24hiCD38hi Bregs from thyroid associated
ophthalmopathy patients also failed to activate IFN-g+ and IL-
17+ T cells (162). Accordingly, therapies of selectively
transferring and/or inducing Bregs, such as CD1dhiCD5+Breg
and CD19+CD25+CD1dhiIgMhiBreg, have been developed to
restore homeostasis and shown some success in mice disease
models, which provide evidence for the application of Bregs in
the treatment (40, 55, 163, 164). Importantly, in mice models of
experimental Sjögren’s syndrome (ESS), adoptive transfer of
CD19+CD1dhiCD5+ Bregs effectively suppressed the Tfh cell
response, leading to the amelioration of diseases progression (32).
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It is noteworthy that multiple strategies to induce Breg cell through
key molecules, such as anti-CD40 mAb (163), BAFF (63), enteric
microbiota (61, 66), and bacteria-derived oligodeoxynucleotides
(CpG-ODN) (67), may also indirectly affect the balance of Tfh/Tfr
cells; however, studies in this regard are scarce. Furthermore, as
discussed above, the immunosuppressive function of Breg is mostly
related to IL-10 secretion. IL-10 would be promising to regulate the
differentiation, function andmigrationofTfr andTfh cells.However,
IL-10alsoacts as aBcell growth factorandcanpromoteautoantibody
production (165). The application of IL-10 into Tfr and Tfh cells
regulation may cause unwanted pro-inflammatory effects. In
addition to treatment, Bregs may be an excellent indicator for
evaluating the efficacy and prognosis of diseases. A higher ratio of
pre-transplant cTfh/IL10+CD19+CD24+CD38+ Bregs is reportedly
correlated with graft rejection (166). It may be worth to determine
whether this ratio contributes to assessing disease activity and
correlates with the level of autoantibody in autoimmune diseases.

However, considering the exact mechanisms underlying the
interplays of Breg, Tfh cells, and Tfr cells in health and patients are
largely unknown, it is still of great challenge to achieve precise
regulation of Tfh and Tfr cells through Bregs. For example,
selectively induction of immunosuppressive B cells without
activating effector B cells in vivo is still difficult, although the great
plasticity of Bregs makes it possible to induce these cells in the various
microenvironment. Meanwhile, it is hard to know how to make an
adequate induction of Bregs. Excessive or insufficient induction of
Breg may lead to various dysregulation of the immune system. The
safety and efficacy also needed to be determined in more animal and
clinical trials in the future. Moreover, Bregs have vast plasticity in
disease microenvironments and can differentiate into other kinds
of B cells subset including effector B cells. The maintenance of
Bregs immunosuppressive function in vivo after transferring and/
or inducing these cells in patients must be taken into
consideration. Another limiting factor for Breg immunotherapy
is the identification of multiple immunosuppressive Bregs types in
humans. Bregs are extremely heterogeneous and not all types of
Bregs equally regulate Tfh and Tfr cells.

Taken together, Breg-mediated Tfr/Tfh regulation provides novel
insights in limiting the exaggerated autoantibody production without
broad immunosuppression in autoimmune diseases.
CONCLUSIONS

As demonstrated in numerous reports within the literature, Tfh/
Tfr balance is necessary to maintain proper antibody production,
and this balance has strong links with several types of Breg, such
as PD-L1hiB cells, IL-10+CD19+CD24+CD38hi Bregs, and MZB
cells. These Bregs not only regulate the differentiation and
function of Tfr and Tfh cells but also appears to affect their
distribution in the immune microenvironment. More
importantly, Bregs may achieve the fine tune of Tfh and Tfr
cells in the level of subpopulations, which contribute to restore
the balance of Tfr and Tfh subpopulation in autoimmune
diseases. Thus, Breg-based therapy has theoretical feasibility
and clinical application prospect to regulate the activity of Tfh
and Tfr cells and autoantibody production in autoimmune
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diseases. However, A number of questions on the development,
phenotype, and function of Bregs remain to be answered, which
restrain the translation of Bregs into clinical application. A
complete understanding of Breg-Tfh cell and Breg-Tfr cell
cross-talks in health and autoimmune diseases is needed,
which will provide the rationale for designing more effective
immunotherapy in autoimmune disorders.
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