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ABSTRACT

PIWIl-interacting RNAs (piRNAs) and their partner-
ing PIWI proteins defend the animal germline against
transposable elements and play a crucial role in fer-
tility. Numerous studies in the past have uncovered
many additional functions of the piRNA pathway, in-
cluding gene regulation, anti-viral defense, and so-
matic transposon repression. Further, comparative
analyses across phylogenetic groups showed that
the PIWI/piRNA system evolves rapidly and exhibits
great evolutionary plasticity. However, the presence
of so-called piRNA clusters as the major source of
piRNAs is common to nearly all metazoan species.
These genomic piRNA-producing loci are highly di-
vergent across taxa and critically influence piRNA
populations in different evolutionary lineages. We
launched the initial version of the piRNA cluster
database to facilitate research on regulation and
evolution of piRNA-producing loci across tissues
und species. In recent years the amount of small
RNA sequencing data that was generated and the
abundance of species that were studied has grown
rapidly. To keep up with this recent progress, we
have released a major update for the piRNA clus-
ter database (https://www.smallrnagroup.uni-mainz.
de/piRNAclusterDB), expanding it from 12 to a total
of 51 species with hundreds of new datasets, and re-
vised its overall structure to enable easy navigation
through this large amount of data.

INTRODUCTION

PIWI proteins and piRNAs represent a mainly metazoan
system for the regulation of a range of target sequences
(1-4), including transposable elements (5,6), protein-coding
genes (7-11) and long non-coding RNAs (12). These tar-
gets can be regulated transcriptionally (13), as well as

post-transcriptionally (6,14) and are recognized through se-
quence complementarity by piRNAs, which guide their as-
sociated PIWI proteins to their destination. While in ver-
tebrates the PIWI/piRNA pathway is mostly restricted to
the germline, in invertebrate groups such as arthropods and
mollusks, piRNAs are in addition ubiquitously found in so-
matic tissues (15,16). Moreover, PIWI proteins and piRNAs
were identified in somatic stem cells of sponges and cnidar-
ians (17,18).

In general, piRNA-producing loci, called piRNA clus-
ters, are considered to lie at the very center of the PIWI
pathway (6). These loci are transcribed from one or from
both DNA strands into large precursor RNAs, which
in turn are processed into 23-31 nucleotide (nt) mature
piRNAs as they are loaded onto PIWI proteins. Fur-
ther, the ping pong amplification cycle, which acts during
post-transcriptional silencing, additionally contributes to
piRNA biogenesis (6,14). In a typical metazoan genome, up
to a few hundred piRNA clusters can be identified, rang-
ing in their size between a few thousand base pairs (kb) to
more than 100 kb. Though these regions make up overall
only small portions of a genome with 0.1-5%, they pro-
duce the vast majority of piRNAs. In Drosophila, over 90%
of all sequenced germline piRNAs can be derived from
these genomic loci (19). Similarly, in mammals, up to 95%
of pachytene piRNAs are produced from clusters, while
still >55% of pre-pachytene piRNAs can be attributed to
these distinct loci (5). Generally, piRNA clusters are more
or less dispersed in the genome, though they do not oc-
cupy similar regions in different phylogenetic groups. In
flies, piRNA precursors stem from mostly pericentric het-
erochromatic loci (6), whereas in mammals, (pachytene)
piRNA-producing loci are euchromatic A-MYB promoter-
dependent RNA polymerase II transcription units (20).

In all species studied so far, piRNA clusters evolve
rapidly, appearing and disappearing rather quickly on evo-
lutionary time scales and evolving neutrally on the se-
quence level (21-23). Therefore, each species has a unique
set of piRNA clusters with varying numbers of homolo-
gous clusters shared between linecages. Noteworthily, it has
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also been shown that piRNA clusters are highly divergent
within species, such as observed in human (24). Addition-
ally, in those clades in which somatic piRNAs are com-
mon, piRNA clusters show distinct expression levels in dif-
ferent tissues (19,16), similar to the differential activity at
various developmental stages that is observed more broadly
(5,13,25,26).

The first release of the piRNA cluster database (27),
which was launched as a central resource for piRNA cluster
research, comprised >100 Sequence Read Archive (SRA)
datasets from 12 species. Noteworthily, while extensive anal-
ysis showed that many piRNA databases are contaminated
with non-coding RNA (ncRNA) fragments, especially when
concerning somatic tissues, the piRNA cluster database
stands out with a remarkably low amount of such con-
taminations (28), due to our stringent criteria for piRNA
definition and piRNA cluster identification (29). Further,
while different databases for piRNA sequences are main-
tained (30-32), it is to date still the only database that is
dedicated specifically to piRNA clusters. In recent years,
the amount of small RNA sequencing data has drastically
increased, while our understanding of the piRNA path-
way and the expression of piRNAs has grown continu-
ously. In order to incorporate this progress into the piRNA
cluster database, we have now released a major update,
which includes >350 SRA datasets from 51 species, com-
prising >15 000 piRNA clusters in total. This set of species
contains mollusks, arthropods, fishes, amphibians, reptiles,
birds and mammals. We further significantly improved our
small RNA transcriptome analysis, which now includes an
extensive set of non-coding RNAs, and we provide biblio-
graphic information, as well as easy access to reference data
used in our analysis.

DATA COLLECTION AND ANALYSIS
Dataset search and initial processing

We systematically searched the NCBI sequence read archive
(SRA) (33) for candidate small RNA sequencing datasets
from a range of different tissue samples from metazoan
species for which a reference genome is available. The raw
sequence reads were first subjected to processing with uni-
tas version 1.7.5 (34), including adapter trimming and low-
complexity read filtering (Figure 1). The clean reads were
then mapped with bowtie (35) to the corresponding refer-
ence genome, which was obtained from the NCBI Genome
resource (36).

The mapped reads were annotated using unitas with
reference datasets for coding sequences and non-coding
RNAs, such as microRNAs, tRNAs, rRNAs and long non-
coding RNAs. To determine the presence of piRNA-like
reads, we examined the length distribution, rates of uridine
at position 1 (1U) and adenine at position 10 (10A), as well
as the rate of 10 nt 5’ read overlaps, known as ping-pong
signature, of those reads that did not match to annotated
RNAs in the previous step. The first threshold that was ap-
plied is a minimum share of piRNA-sized (23-31 nt) reads
of 20%, while the largest peak was required to be within
the piRNA size range. Additionally, since piRNAs typically
show a high degree of sequence diversity with a considerable
amount of unique sequence reads compared to other small

RNA (sRNA) classes, a threshold for a minimum of 10% of
unique reads within all piRNA-sized reads was employed.
Finally, a 1U or 10A rate of at least 35% and a ping-pong
signature with a significant (P < 0.05) z-score of >1.65 (37)
were required to pass our filter.

Genome mapping and piRNA cluster prediction

In preparation for the identification of piRNA clusters, we
removed all previously annotated reads, as well as all reads
that do not fall into the piRNA size range of 23-31 nt
from the initial map file. A resulting map file with uniquely-
mapping filtered reads without seed mismatches, produced
by bowtie (35), and the corresponding genome was then
used, along with an available repeatmasker annotation and
a GFF gene set that were obtained from the NCBI Genome
resource, to predict piRNA clusters with proTRAC version
2.4.4 (29). We applied a minimum cluster size of 5 kb and
a minimum rate of 1U or 10A of 50%. Further, we used a
sliding window size of 5 kb with an increment of 1 kb and
defined a p-value of 0.01 for minimum number of normal-
ized read counts per kb. To ensure similar cluster predic-
tion power in all species, no assumptions on strand direc-
tionality were made (option: -clstrand 0). Finally, resulting
piRNA cluster loci with a distance smaller than 10 kb were
merged. However, if no piRNA clusters could be identified
the dataset was discarded.

Overall, 358 SRA datasets from 51 species passed all fil-
ters and could be used for successful piRNA cluster predic-
tion, totaling in 15 857 piRNA-producing loci with a me-
dian of 250 per species. The total number of unique clus-
tered piRNA sequences amounts to nearly 88 million with
a median of >1.1 million reads per species. All custom Perl
scripts used in the data processing are available at GitHub
(https://github.com/d-gebert/piR NAclusterDB).

HOW TO ACCESS THE DATA
Database structure and dataset access

We completely redesigned the overall structure of the
piRNA cluster database in order to accommodate to the
vast number of datasets and species that we added in this
major update. The primary entry point of the interface is
the species selector, which is represented as an interactive
phylogenetic tree (Figure 2A) on the one hand and as a tab-
ular list on the other hand with additional information on
taxonomy, number of piRNA clusters and total amount of
clustered piRNA sequences (Figure 2B). The table also pro-
vides links to the corresponding genome assembly data that
were used in our analysis, including genome, gene set (GFF)
and repeatmasker file. A graphical representation of the lo-
cations of piRNA clusters on chromosomes is linked to the
number of piRNA clusters in each species. Further, files on
piRNA cluster coordinates (GTF), sequence (FASTA), and
differential piRNA expression in reads per million (RPM)
for each dataset, as well as pooled clustered piRNA reads
are available for download. In addition to that, we provide
a comprehensive list of all publications that are associated
with small RNA (sRNA) datasets of the database, including
PubMed IDs and direct links (Figure 2C).
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Figure 2. Top section and primary entry point of the piRNA cluster database. (A) Interactive phylogenetic tree, comprising the 51 species that are included
in the database. (B) Complete tabular species list with quantitative information on piRNAs and piRNA clusters and associated download links, as well as
links to the assemblies used in the analysis. (C) List of publications underlying the SRA datasets with PubMed IDs.

Cluster browser

Once a species of interest is selected, the user can browse
piRNA-producing loci along all datasets from the chosen
species in the cluster browser section (Figure 3). The avail-
able loci are provided in a list with selectable piRNA cluster
IDs (Figure 3A), which contains additional information on
location, size and reads per million. The cluster view incor-
porates tracks for gene and repeat annotation alongside of
piRNA read coverage in rpm for plus and minus strands,
which all can be individually inspected to receive further in-
formation, for example on gene or transposon name and

repeat class, as well as exact rpm per position (Figure 3B).
Finally, each SRA dataset can be individually selected and
deselected to produce a customized view of piRNA cluster
expression across different datasets, tissues, or developmen-
tal stages.

SRA dataset section

The third section of the database presents detailed anal-
yses of processed, filtered, mapped and annotated sSRNA
reads for each SRA dataset from a selected species, which
were generated by unitas (34). SRA datasets are selectable
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Figure 3. Cluster browser section of the piRNA cluster database. (A) List of all piRNA cluster loci of the selected species with coordinates, size and
maximum rpm. (B) Browser with gene and repeat annotation tracks and piRNA clusters read coverage. Track elements are selectable for additional

information.

from a list that includes information on the tissue of origin,
number of reads and PubMed ID of the associated publi-
cation (Figure 4A). For each of the annotated RNA types,
such as miRNA, rRNA, tRNA-derived sSRNA, IncRNA,
mRNA and more, a table offers read counts, as well as links
for the download of reads in FASTA format and info files
with length distribution and positional nucleotide composi-
tion (Figure 4B). The fraction that most likely represents or
contains to a large part piRNAs can be accessed under the
type ‘unknown’, as these sequences could not be annotated
as any other known sRNA. Moreover, graphical output on
read composition, length distribution, positional nucleotide
composition and ping-pong signature are provided for total
sRNA reads and piRNA reads, which gives an accessible in-
sight into the SRNA make-up of each SRA dataset and the
contribution of piRNAs to the total pool of reads.

DISCUSSION

Unsurprisingly, the first species in which piRNAs and
piRNA clusters were identified and characterized were mice
(Mus musculus) (1-4) and flies (Drosophila melanogaster)
(6,14). Subsequent studies focused on other model organ-
isms (38) and eventually extended towards non-model or-
ganisms, especially in recent years, including hitherto less
well-studied taxa (15-18,25,26). Besides, many sSRNA stud-
ies, e.g. in which miRNAs are the main focus, produced
readily available piRNA fractions that were not yet exam-
ined.

This has created both the necessity and opportunity
to considerably expand and restructure the piRNA clus-
ter database to open up further potential for piRNA re-

search. It is now clear that the PIWI pathway and piRNA-
producing loci in particular evolve rapidly, leading to
greatly different sets of clusters across taxa (21-23). The
vast number of species included in this substantial update of
the piRNA cluster database will enable evolutionary studies
on an unprecedented scale, including previously less stud-
ied phylogenetic groups. In the past, studies in non-model
organisms regularly yielded unexpected and novel insights
into different aspects of the piRNA pathway (15,16,18,25).

Despite the considerable progress that has been achieved
in recent years, many aspects especially concerning the evo-
lution of piRNA clusters are still not fully understood. It
has yet to be determined how exactly piRNA clusters ini-
tially emerge and what drives their genesis, their mainte-
nance across evolutionary times and their demise. Further-
more, intriguing differences between phylogenetic groups,
such as flies and mammals, regarding transposon enrich-
ment or genomic location are likewise still not elucidated.
For instance, it is conceivable that the very nature and ori-
gin of the transposon-rich, heterochromatic and pericen-
tromeric piRNA clusters of Drosophila (6) are inherently
different from those of mammalian clusters, which are more
dispersed in the genome and less enriched for transposon se-
quences (5). Similarly, clusters of recently identified somatic
piRNAs in non-vertebrates (15,16) remain to be thoroughly
studied, to detect putative functions that might be different
from those in gonads. Finally, differences in piRNA biol-
ogy of male and female germline have not yet been widely
studied but have so far yielded important insights (39). We
believe that these outlined areas of research will greatly ben-
efit from the resources that this update of the piRNA cluster
database provides.
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