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Abstract

Prediction of cancer recurrence in patients with non-small cell lung cancer (NSCLC) currently relies on the assessment of
clinical characteristics including age, tumor stage, and smoking history. A better prediction of early stage cancer patients
with poorer survival and late stage patients with better survival is needed to design patient-tailored treatment protocols.
We analyzed gene expression in RNA from peripheral blood mononuclear cells (PBMC) of NSCLC patients to identify
signatures predictive of overall patient survival. We find that PBMC gene expression patterns from NSCLC patients, like
patterns from tumors, have information predictive of patient outcomes. We identify and validate a 26 gene prognostic
panel that is independent of clinical stage. Many additional prognostic genes are specific to myeloid cells and are more
highly expressed in patients with shorter survival. We also observe that significant numbers of prognostic genes change
expression levels in PBMC collected after tumor resection. These post-surgery gene expression profiles may provide a means
to re-evaluate prognosis over time. These studies further suggest that patient outcomes are not solely determined by tumor
gene expression profiles but can also be influenced by the immune response as reflected in peripheral immune cells.
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Introduction

Lung cancer is the most common cause of cancer mortality

worldwide, accounting for 157,300 cancer deaths in the United

States alone in 2010 [1]. The overall five-year survival for lung

cancer is 16%, and prognosis is strongly associated with the disease

stage at diagnosis [2]. Non-small cell lung cancer (NSCLC)

accounts for 80% of all lung cancer cases.

Treatment protocols and prognostic assessments of patients with

NSCLC are based primarily on TNM stage. Surgical resection for

early stage disease (Stage I, II, and some Stage III) remains the

standard of care. Unfortunately, 30–60% of patients (depending

on stage) will develop a recurrence and die of their disease, leading

to a 5-year survival rate of 35–70% for patients after resection.

Clearly there is an unmet need for additional prognostic factors for

a more informed process of treatment.

There is significant heterogeneity in clinical outcomes for

patients with early stage NSCLC and the basis is unknown.

Several previous studies focused on gene expression in surgically

excised tumors to identify prognostic signatures were recently

reviewed [3,4]. None is yet approved for clinical application.

We previously showed that patients with NSCLC have

significant gene expression changes in their PBMC which provide

useful diagnostic markers (5) and this PBMC cancer signature is

reduced or eliminated in a subset of patients retested after tumor

resection [5]. Since the changes in PBMC gene expression are a

reflection of the interactions of the tumor and the immune system,

we have now analyzed our gene expression data and demonstrate

a signature associated with overall survival. We also show that

some PBMC genes associated with survival change their

expression in samples taken after tumor resection and might

provide an additional indicator of recurrence.

Materials and Methods

Study population
A total of 137 patients with newly diagnosed, histopathologically

confirmed, non-small cell lung cancer (NSCLC) were recruited

from the University of Pennsylvania Medical Center during the

period 2003 through 2007. Written informed consent was received

from all participants involved in the study and samples were

collected with approval of both University of Pennsylvania IRB

and Wistar IRB. For this analysis, only subjects with Stage I-IIIA

NSCLC who underwent surgical resection with curative intent

were included. Exclusion criteria included sub-lobar resection,

positive resection margins, and death within 30 days of surgery.

This resulted in the inclusion of 108 subjects in this analysis

(Table S1). All participants had blood collection prior to surgery
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and 15 of the 108 patients also had blood collected after surgery.

Table 1 summarizes the major prognostic parameters as

identified by the National Cancer Comprehensive Network

(NCCN) for our study population. Clinical outcome and survival

information was obtained via chart review, phone contact, or from

the Social Security Death Index (SSDI).

PBMC Collection and Processing
Blood samples were drawn at the University of Pennsylvania

Medical Center in two ‘‘CPT’’ tubes (Becton Dickinson).

Peripheral blood mononuclear cells (PBMC) were isolated within

90 minutes of blood draw, washed in PBS, transferred into

RNAlater (Ambion), and then stored at 4uC overnight before

transfer to 280uC. RNA purification was carried out using

TriReagent (Molecular Research), as recommended, and con-

trolled for quality using the Bioanalyzer. Only samples with 28S/

16S ratios of .0.75 were used for further studies. A constant

amount (400 ng) of total RNA was amplified, as recommended by

Illumina, for gene expression analysis.

Microarray preprocessing
Samples were processed and hybridized to the Illumina WG-

6v2 human whole genome bead arrays. All arrays were processed

at the Wistar Institute Genomics Facility as previously described

[6] and then gene expression values were log2 transformed for

further analysis. The array data used for these studies are publicly

available in the GEO database through the accession number

GSE13255. Table S1 lists the 108 subjects used for analysis.

Statistical Methods
Risk factor analysis. Univariate Cox regression analysis was

performed to test the association of clinical risk factors and

individual gene expression with overall survival. Multivariate Cox

regression was used to test the association of a combination of

factors. Statistical significance was defined as P,0.05. False

discovery rate for gene association with overall survival was

determined according to Storey et. al. [7]. Association of overall

survival with tumor stage was done both by treating stage as a

continuous variable and as two groups: stage I and a combined

stage II plus III. The results were significant for both approaches

with the univariate and multivariate regression analyses. Because

the number of stage II tumors was small (14 patients) and even

smaller when the data was split into training and independent

validation sets, we decided to combine stage II and III to have a

larger group size in the validation step. We used the combination

of stage II and III throughout the manuscript for consistency.

Kaplan-Meier curves. Kaplan-Meier curves were plotted

using Matlab v7.2 based on censored survival data. Patients were

stratified by factor median unless stated otherwise.

Gene panel selection. To identify a set of genes associated

with overall survival we split the 108 sample dataset into training

and testing sets of equal size (54 random samples in each). The

training set was first analyzed to identify an outcome-informative

gene panel by identifying probes with the lowest mean univariate

Cox regression p-value across 50 tests of 40 random samplings

(75% of the training set). The top 100 genes were then used for

multivariate Cox regression with L1 and L2 penalized estimations

[8]. The final l1 and l2 hyperparameter pair selected gave the

best performance using 10-fold cross-validation on the training set.

This method results in a model consisting of N genes that have

non-zero regression coefficients c1…cN. Those coefficients along

with corresponding gene expression data for any patient i (X1i…

XNi) were used to calculate a gene prognostic score (GPS) for the

patient as follows: GPS = c1X1j+…+cNXNj.

Independent validation of the predictive gene

panel. The 54 patients set aside and not used for predictive

gene selection were used as an independent test set for evaluation

of the model developed on the training set. Significance of the

GPS as a prognostic factor on the external validation set was

estimated by univariate Cox regression. Independence of the GPS

and Stage factors were tested by multivariate Cox regression.

Testing robustness of the gene panel selection. To show

that the significance of independent validation (performance) of

the GPS model on the testing set did not depend on the particular

training-testing data split, we performed 100 random splits and

showed the quality of separation between low and high-risk

patients in testing sets is independent of any particular data split.

(Figure S1)

Testing efficacy of prognostic indicators. Efficacy of the

prognostic indicators was tested by comparing hazard ratios and

concordances. Hazard ratios were calculated between high and

low risk groups. Concordance was estimated using the R package

clinfun [9].

Gene enrichment analysis. Testing for biological functions

and pathways overrepresented in a gene list was done using

Table 1. NCCN factors tested for association with survival.

Variable Variable Details
Univariate
Cox p-value HR [95% CI]

Multivariate Cox p-value/
HR

Stage Stage.I = 66, Stage.II/III = 42 0.002 2.49 [1.39–4.47], Stage.II/III vs Stage.I 0.002, HR = 2.47

Age min = 45 yo, med = 68 yo, max = 87 yo 0.03 1.04 [1.00–1.07], per year increase 0.03, HR = 1.04

Gender F = 55, M = 53 0.74 1.10 [0.62–1.97], Female vs Male not tested

Race AA = 9, Caucasian = 99 0.32 2.06 [0.50–8.49], AA vs Caucasian not tested

COPD present = 50, absent = 54 0.2 1.47 [0.81–2.67], present vs absent not tested

Histology AD = 67, LSCC = 34 0.4 1.31 [0.70–2.44], AD vs LSCC not tested

Tobacco use previous = 87, current = 15 0.99 0.99 [0.44–2.23], previous vs current not tested

Adjuvant Chemo no = 52, yes = 34 0.19 1.58 [0.80–3.14], no vs yes not tested

Pack years min = 0 py, med = 40 py, max = 188 py 0.87 1.00 [0.99–1.01], per pack increase not tested

Variable details show number of patients for categorical variables and minimum (min), median (med) and maximum (max) values for continuous variables. HR = hazard
ratio, CI = confidence interval, F = female, M = male. AD = lung adenocarcinoma, LSCC = lung squamous cell carcinoma. AA = African American, yo = years old, py = pack
years.
doi:10.1371/journal.pone.0034392.t001

Prognosis for NSCLC Patients from PBMC Expression
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DAVID software [10] with thresholds set at false discovery rate

(FDR) FDR,20% and enrichment .2 fold. For a gene list with

high false discovery rate (52% for 1704 genes associated with

overall survival) we report only results that pass a threshold of

FDR,1% and also show significant enrichment by GSEA

algorithm [11,12] with FDR,25% cutoff.

Enrichment of immune cell-type specific genes. We

obtained a list of genes specifically expressed in 8 categories of

immune cell types, including T cells, B cells, NK cells, Dendritic

cells, Monocytes, Neutrophils, Lymphoid cells and Myeloid cells,

from the Immune Response in Silico (IRIS) database [13,14]. We

tested if these genes were overrepresented in our list of 1704 genes

significantly associated with overall survival. We used the Fisher

Exact test for every cell type for 3 different groups of genes

separately: 1) all significantly associated with overall survival, 2)

genes with significant HR.1 and, 3) genes with significant HR,1.

Overall, 24 tests (8 cell types63 gene groups) were performed and

we report p-values adjusted for multiple testing with Bonferroni

correction.

Gene overlaps. Significance of overlaps between two groups

of genes (with A and B number of genes) selected from the same

pool of C = 20,341 expressed genes was tested using the

hypergeometric test. The expected number of overlapping genes

was calculated as (A6B)/C.

Results

Association of overall survival with clinical risk factors
Various factors were tested for association with survival by

univariate Cox regression, including tumor stage, age, gender,

race, presence of COPD, tumor histology, tobacco use and

adjuvant chemotherapy (Table 1). We found that two factors,

advanced age and tumor stage, were significantly associated with

survival with hazard ratios of 1.04 per year increase and 2.49 for

tumor stage respectively. Figure 1 demonstrates Kaplan-Meier

curves for the two factors. When these two variables were tested

together in a multivariate Cox regression model, both of them

remained statistically significant (Table 1) indicating that they are

independently associated with survival in our study population and

that our data set conforms to predicted markers of clinical

prognosis.

Prediction of overall survival by a panel of PBMC genes
In order to identify and independently validate a compact gene

panel, that could be used to predict overall survival, we divided

our 108 samples into 2 randomly selected groups of 54 samples.

We used a training set of 54 samples to select the prognostic gene

panel, and then confirmed its utility on the remaining 54 of

samples reserved as a test set. We applied multivariate Cox

regression with L1 and L2 penalized estimations [8] to the training

set, and identified 26 genes (Table 2) whose expression patterns

when combined in a linear model, best predicted the observed

survival data. For each subject, this model provides a Gene

Prognostic Score (GPS) that is calculated as a linear combination

of the expression values of the 26 prognostic genes. The GPS

assigned to each patient was found to be significantly associated

with his survival for the 54 subjects in the training set with

P = 361025. The performance was confirmed on the validation set

(P = 0.009) demonstrating that the PBMC derived GPS is a

statistically significant predictor of overall survival on new patients.

Kaplan-Meier curves for patients from the validation set and their

assignments into either a high-risk or low-risk category based on

the median GPS are shown in Figure 2A. These studies show that

PBMC expression levels for the 26 gene probes developed on our

training set could also successfully predict survival in the validation

set and, by extension, on any new patients.

Gene expression and tumor stage data are independent
predictors of survival

We further assessed whether the GPS provided additional value

to the clinical risk factors for survival we had tested. Of these, only

age and tumor stage were found to have significant prognostic

values for our data set. Although age was significantly associated

with survival in analysis using all 108 patients’ information

(Table1), it did not have significant prognostic value when

applied to the test set of 54 samples (P = 0.34). For this reason, we

did not include the age variable in the following analyses.

Based on the data from the validation set, the stage predictor

alone generated a hazard ratio of 3.0 (P = 0.0095, 95% CI of 1.3 to

6.9). When used in the multivariate Cox regression model, both

Stage and GPS were significant (P = 0.004 for stage and P = 0.003

for GPS), indicating that the two variables are independent

predictors of overall survival and that using them together should

Figure 1. Kaplan-Meier curves for patients stratified by (A) Age and (B) Tumor Stage.
doi:10.1371/journal.pone.0034392.g001

Prognosis for NSCLC Patients from PBMC Expression
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Figure 2. Performance of the Gene Predictive Score (GPS). A. Kaplan-Meier curves for patients from the test set stratified by the median of
GPS calculated from expression of 26 genes. p-value for univariate Cox regression is shown. B. Kaplan-Meier curves comparing survival probabilities
for patients from testing set stratified by Stage alone and combination of Stage and GPS with 35 patients in the lower risk group (number of stage I
patients) and 19 higher risk group (number of stage II/III patients).
doi:10.1371/journal.pone.0034392.g002

Table 2. The 26 gene probes used in a calculation of the gene predictive score (GPS).

# Gene Symbol c cnorm P

1 coronin 6 CORO6 2.51 0.39 0.02

2 PREDICTED: similar to Nuclear protein 1 (prot p8) LOC650200 22.21 20.38 0.001

3 PM1-EN0060-201000-002-c07 EN0060 cDNA BF846242 24.26 20.37 0.01

4 transcription elongation factor A (SII)-like 4 TCEAL4 21.08 20.31 361025

5 matrix metallopeptidase 1 (interstitial collagenase) MMP1 0.82 0.22 0.02

6 cDNA clone IMAGE:6621749 5 BU854460 2.22 0.2 0.01

7 family with sequence similarity 20, member A FAM20A 0.5 0.2 0.0003

8 T cell antigen receptor alpha chain TCRVA2 20.48 20.19 0.0001

9 thioesterase domain containing 1 THEDC1 1.34 0.18 0.01

10 cDNA clone IMAGE:3643602 3 BF194881 1.55 0.16 0.05

11 glial high affinity glutamate transporter SLC1A3 0.18 0.12 0.05

12 ADAM metallopeptidase with thrombospondin type 1 motif, 2 ADAMTS2 0.73 0.12 0.01

13 low density lipoprotein receptor-related protein 8 LRP8 0.55 0.12 0.03

14 zinc finger protein 662 ZNF662 20.69 20.11 0.01

15 secretin SCT 20.51 20.09 0.01

16 C-type lectin domain family 4, member C CLEC4C 20.15 20.08 0.02

17 InaD-like (Drosophila) INADL 20.37 20.08 0.001

18 cyclin E2 CCNE2 0.36 0.08 0.001

19 kinesin family member 15 KIF15 0.19 0.06 0.004

20 cut-like 2 (Drosophila) CUTL2 20.15 20.05 0.01

21 argininosuccinate synthetase ASS 0.19 0.04 0.03

22 chromosome 5 open reading frame 20 C5orf20 20.08 20.03 0.005

23 tetraspanin 14 TSPAN14 0.08 0.03 0.01

24 PREDICTED: similar to zinc finger protein 114 LOC390372 20.19 20.02 0.1

25 C-type lectin domain family 4, member C CLEC4C 20.05 20.02 0.08

26 complement component 4 binding protein, beta C4BPB 20.04 20.01 0.01

c is a regression coefficient for the probe expression. cnorm is a c normalized over average expression among 26 probes to show relative contribution of the gene to the
final GPS and is used to rank the genes. Regression coefficient is indicative of a hazard ratio for a gene: if c.0, then HR.1, if c,0, then HR,1. P shows univariate cox
regression p-value for the gene when all 108 samples are used.
doi:10.1371/journal.pone.0034392.t002
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increase prognostic power. To assess this increase, we then

compared hazard ratios for stage alone to the hazard ratios for the

combined Stage+GPS factors. Stage alone split patients into 19

higher risk patients (the number of Stage II/III cases) and 35 lower

risk patients (the number of Stage I cases).

.The combined Stage+GPS predictor resulted in a significant

hazard ratio of 4.9 (P = 0.0003, 95% CI of 2.1 to 11.4) between

high and low risk groups, an increase compared to the hazard ratio

shown by Stage predictor alone (HR = 3.0) or GPS predictor alone

(HR = 1.9). This is illustrated by the Kaplan-Meier curves

(Figure 2B).

Alternative quantitation of the ability of the gene expression

score to improve prediction of survival was performed by

determining the concordance index for the Cox regression model

for stage alone: 0.63 (0.56–7.0), GPS alone: 0.57 (0.51–0.62), and

stage+GPS: 0.69 (0.62–0.76). The increase in concordance index

along with the evidence of the independence of the two factors

supports the utility of using both the stage and gene expression

scores to determine probability of survival compared to using stage

only. This result demonstrates that a gene expression score can

add prognostic information to the traditional tumor stage variable.

Adding the GPS factor to the classification by stage resulted in

the reassignment of 6 patients between high and low risk groups.

Three of the 6 with stage I NSCLC (one IA and two IB patients)

were reassigned to the high risk group. Two of these patients

actually died within 18 months (p1240, stage IB) and 43 months

(p1183, stage IA) of the sample collection. The additional 1B

patient (p1246) remained alive for at least 65 months. This

individual was one of the youngest patients in our cohort (only 47

compared to 45 year minimum age). Inclusion of the age factor in

the model might have altered assignment to the high risk group.

The 3 other patients had stage II NSCLC. They were classified by

stage as high risk and then reassigned to the low risk group when

adding the GPS factor. All three of the patients (p1589, p1561 and

p1445) were alive at the time of status assessment (44, 46 and 56

months correspondingly). These results support the utility of a

combined GPS+stage model for more accurate estimation of

prognosis.

PBMC gene functions associated with overall survival
In order to determine whether specific functions or pathways

were represented in the PBMC gene expression patterns associated

with survival, we used univariate Cox regression to identify the

genes that were significantly associated with outcome using all 108

patient samples. We found 1704 probes that showed significance

at P,0.05 and screened those probes for enriched functions and

pathways using both DAVID and GSEA software. This analysis

revealed several highly significant functional categories with

enrichment of 2 fold or more (Table S2). In particular, a list of

32 ribosomal structure and function-related genes (enrichment of

2.3) had higher expression in patients with better survival, while

cell cycle genes in general (enrichment of 2.3) and specifically M

phase genes (enrichment of 2.2) were predominantly expressed at

lower levels in the patients with better survival.

Immune cell types associated with survival
Since gene expression was analyzed on PBMC mRNA, we

determined whether the genes significantly associated with survival

were also specific to a certain immune cell type as defined by the

Immune Response in Silico (IRIS) database [13,14]. Of the 669

immune cell-specific genes in our dataset, 79 were found to be

associated with overall survival (Table 3). We found a significant

enrichment of T-cell specific genes (23 altogether, 8 fold

overrepresentation, P = 261028), with 15 of the 23 genes having

HR.1 indicating a significant correlation between lower levels of

expression and improved survival. We also found that lower

expression of 21 myeloid specific genes (enrichment of 2 fold,

P = 0.048) was associated with improved overall survival. Detailed

lists of genes associated with each cell type and corresponding

enrichments and p-values are listed in Table S3.

Tumor removal changes expression of survival-
associated genes

We previously showed that PBMC gene expression in the

presence of a NSCLC is significantly altered in post-surgery

PBMC samples [5,6]. We found that the expression of more than

20% (383) of the 1704 ‘‘survival’’ genes screened in this study was

also significantly changed by the surgical removal of the lung

tumor (3485 genes with p-value,0.05 by paired t-test,

FDR,20%). This is a statistically significant number compared

to the 292 gene overlap expected by chance (P = 1029 by

hypergeometric test). We identified 4 classes of outcome-associated

genes (Figure 3) that change expression levels post-surgery. Two

of the groups of genes (A and D) were significantly overrepresented

and we describe these 2 classes. The largest group (group A) of 236

genes have HR,1 (better survival for higher expression) and are

downregulated in PBMC after tumor removal. The second group

(group D) includes 92 genes with HR.1 (poorer survival with

higher expression) were upregulated in PBMC after tumor

removal. These prognostic genes, that also change expression

after the tumor is removed, could provide a new method for

determining recurrence.

Functional enrichment analysis of group A genes shows strong

overrepresentation of proteins associated with ribosomes, protein

synthesis, mitochondrial function, translational factor activities

and zinc finger proteins, characteristics consistent with PBMC

being more active in response to the tumor presence and,

apparently, better for survival. Group D shows functional

enrichment only for genes associated with red cell function

possibly indicating lower numbers of circulating erythroblasts in

the presence of a tumor, but poorer survival with higher

expression.

Discussion

The ability to accurately identify patients with lung cancer that

have a poor prognosis is particularly important for patients with

Table 3. Number of unique cell-type specific genes in a list of
1704 probes significantly associated with survival.

IRIS Cell type
HR.1
(of 629)

HR,1
(of 821)

Not significant
(of 13489)

T Cell 15* 8 33

B Cell 2 1 59

NK Cell 1 0 11

Dendritic Cell 2 3 41

Monocyte 6 1 45

Neutrophil 2 0 31

Lymphoid 8 9 149

Myeloid 21* 0 221

Table shows numbers of unique genes.
* = significantly overrepresented (Bonferroni corrected P,0.05). For more
details reference Table S3.
doi:10.1371/journal.pone.0034392.t003
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Stage I disease who are known to vary significantly in likelihood of

recurrence. Predicting which tumors are most likely to recur is

critical to designing treatment after surgery, in particular for stage

IA patients, which do not normally receive adjuvant chemother-

apy. Currently, the most effective prognostic indicators are

demographic characteristics (patient age, sex, smoking history)

and clinical parameters (tumor size, stage and lymph node

involvement). A number of gene expression studies on lung

tumors that present prognostic algorithms were recently reviewed

[4]. One analysis [15] trained and validated on publicly available

data describes a 5-gene prognostic signature for all stages including

stage I adenocarcinoma (but not squamous cell carcinoma). One

issue with the tumor studies has been the lack of reproducibility,

possibly because of differences in sample quality and tumor cell

representation in the samples. Approaches using blood or serum to

identify prognostic indicators avoid some of the problems

associated with tumor variability and microRNA expression

profiles in serum or plasma have been applied to both NSCLC

diagnostic [16,17] and prognostic studies by two groups [18,19].

Hu et al, [19] using serum from 243 patients, found a prognostic

set of 4 miRNAs which, when trained on half the patients could

predict survival on the remaining half. Both groups suggest that

their findings will allow separation of low from high risk patients,

improving prognosis by stage alone.

Interactions between a tumor and the immune system have long

been a subject of interest in cancer biology [20]. We previously

found that PBMC gene expression signatures could distinguish

patients with lung cancer from patients with non-malignant lung

diseases. The studies presented here demonstrate that gene

expression signatures in the peripheral immune cells of NSCLC

patients also contain information that is correlated with survival

and, like signatures obtained from lung tumors, can improve

clinical predictors of outcome. In our study, we identify a panel of

26 gene probes whose expression patterns are significantly

associated with survival and this information is independent of

information provided by tumor stage. We also show that some

genes correlated with prognosis are immune cell lineage specific.

The most striking changes were in the myeloid specific genes

which show an inverse correlation between expression and

survival. As shown in Table S3, 29 of the 30 genes specifically

associated with monocytes, neutrophils, or ‘‘myeloid cells’’, have

increases in expression in patients with decreased survival times.

These data are consistent with observations that an increase in

immature myeloid cell populations in the blood and in tumors are

associated with advanced cancers and poor prognosis, likely due to

ability of these cells to promote angiogenesis and to suppress anti-

tumor immune responses [21,22,23,24]. High numbers of

neutrophils have been shown to be predictors of poor prognosis

in melanoma, ovarian cancer and head and neck cancer [25].

Prognosis-associated T-cell genes also have predominantly higher

hazard ratios but the mechanism by which these genes affect

patient survival is not yet clear.

A significant number of PBMC genes that change in expression

after the removal of a tumor are also associated with prognosis.

The largest class (group A, Figure 3) includes genes which are

expressed at higher levels in the presence of a tumor compared to

samples from the same patient taken after the tumor removal and

whose higher expression indicates better survival. The most

differentially expressed gene in this group is the immune response

gene CXCR4, important for lymphocyte trafficking [26,27]. Its

ligand, SDF-1/CXCL12, is a key factor directing dendritic cell

migration associated with an adaptive immune response [27,28] In

contrast, another large group of genes (group D) show the opposite

behavior having high hazard ratios indicating poor survival

function and lower levels in the presence of a tumor. DAVID

analysis of this gene class shows enrichment for genes significantly

associated with functions of oxygenation, hypoxia and iron

binding (HGBD, HGB1, HGB2) and erythroid associated factor

(ERAF). These are presumably constituents of the erythroblasts

known to co-purify with the PBMC [29,30]. Lower expression of

these genes in the presence of the tumor may indicate that

erythroblast gene expression (or erythroblast numbers) is repressed

in agreement with other studies, as poor oxygenation and anemia

have been previously associated with lung cancer [31,32].

Relatively higher expression of these genes in patients with poorer

survival could be due to the increased presence of erythroblasts in

response to the deteriorating oxygenation associated with more

serious disease. Overall, the significant overrepresentation of genes

from groups A and D suggests that measuring the change of those

genes between paired pre- vs post- surgery samples from the same

patient, might reflect the immune system’s ability to respond to the

tumor, and may provide added information for outcome

prediction by comparing samples collected before with samples

collected after tumor removal. In addition, genes from those

groups may be candidates to reassess cancer recurrence probabil-

ities in regular post-surgery blood samples.

The use of combined prognostic factors including clinical stage,

tumor gene expression signature and PBMC gene signatures could

provide additional guidance for prescribing adjuvant chemother-

apy for early stage cancers that presently would not otherwise be

treated after surgery. We find that the gene expression from

patient PBMC is an independent predictor of survival, and that

when PBMC gene expression is combined with information from

cancer stage, the hazard ratio from stage alone is increased from

3.0 to 4.9. The limited size of the dataset has not permitted testing

for prognosis within a single cancer stage, but we find that two

Figure 3. Characterization of genes whose expression changes
after tumor removal and are also associated with survival. #
obs. = observed number of genes; # exp. = expected number of genes
by chance; Pre = expression in pre-surgery sample; Post = expression in
post-surgery sample; HR = Hazard Ratio for high vs low expression of
the gene.
doi:10.1371/journal.pone.0034392.g003
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stage I patients are correctly reassigned to the high risk group by

combining the GPS blood signature with stage based prognosis.

The evolution of a malignant tumor includes interactions

among cancer cells and signaling with other cells in the tumor

microenvironment including immune cells. Our studies suggest

that these interactions are not only localized to the tumor site but

also extend to the peripheral immune system and that information

related to prognosis or recurrence is present in the gene expression

profiles of the peripheral immune cells. In contrast to tumor-based

prognostic signatures that reflect malignancy, PBMC based

prognostic signatures reflect the type and strength of the immune

response to the tumor presence. It is likely that by combining

clinical characteristics for survival derived from tumors at the time

of surgery with repeated assessments of PBMC derived GPS data,

a more robust algorithm for predicting recurrence can be

developed that can be reassessed at various intervals after surgery.

In addition, the genes of immune cells associated with patient

outcomes might be targets for clinical manipulation to alter key

gene expression in order to potentiate the anti-tumor immune

response and help to reduce the incidence of recurrence.

While additional studies with larger numbers of racially diverse

patients need to be carried out, the present study demonstrates

that statistically significant outcome information can be detected in

the gene expression patterns of PBMC from NSCLC patients.

Efforts to collect the appropriate samples to address these issues

are ongoing.

Supporting Information

Figure S1 Distribution of p-values for applying model
fit on training set to testing set samples. To test the

generality of our approach, we performed 100 random selections

of training/testing sets to estimate the possibility that our result

can be accounted by a fortuitous selection of patients. Based on

distribution of p-values that show significance of performance on

the test set, we saw 39% of the test sets reached a statistical

significance of P,0.05. This is an enrichment of 7.8 fold over a

random p-value distribution (P = 461029, Fisher exact test).

(TIF)

Table S1 Demographics and survival data for patients.
S = current smoker (n = 15), Q = quit smoking (n = 23 with ,1

year before surgery, n = 64 with $1 year before surgery),

N = never smoker (6), C = Caucasian, AA = African American,

M = male, F = female, y = yes, n = no, un = unknown, AD =

adenocarcinoma, LSCC = lung squamous cell carcinoma,

NSCLC = non-small cell lung cancer, a = alive, d = deceased.

(XLS)

Table S2 Enriched annotation categories in the list of
genes significantly associated with survival. Results are

based on univariate cox proportional hazard model. E = enrich-

ment, Sensitivity shows how many of genes are in the list/how

many total known (resulting percentage), FDR = false discovery

rate from the DAVID software. HR = hazard ratio, and ,1

indicates number of genes with higher expression in patients

associated with better survival, while .1 indicates number of

genes with higher expression in patients associated with poor

survival. All results showed FDR,25% by GSEA analysis.

(XLS)

Table S3 Expanded Table 3 showing unique cell-type
specific genes. The table shows number of genes in a list of

1704 probes (1450 unique genes) significantly associated with

survival. ‘+’ indicates genes with HR.1 (higher expression = -

worse survival). ‘-’ indicates genes with HR,1 (higher expres-

sion = better survival). S = number of significant genes specific to

the cell type. NS = number of non-significant genes specific to the

cell-type. E = enrichment of the cell-type specific genes among all

significant genes. p = right-tail Fisher Exact Test nominal p-values

with Bonferroni corrected p-values (24 tests = 8 cell types63 gene

sets) shown in parenthesis.

(XLS)
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