
Received: 16 April 2020 Revised: 10 September 2020 Accepted: 31 December 2020

DOI: 10.1111/biom.13433

B IOMETRIC PRACT ICE

Bayesian dose regimen assessment in early phase oncology
incorporating pharmacokinetics and pharmacodynamics

Emma Gerard1,2,3 Sarah Zohar1 Hoai-Thu Thai4 Christelle Lorenzato2

Marie-Karelle Riviere3 Moreno Ursino1,5

1 Centre de Recherche des Cordeliers,
Sorbonne Université, Inserm, Université
de Paris, Paris F-75006, France
2 Oncology Biostatistics, Biostatistics and
Programming Department, Sanofi R&D,
Vitry-sur-Seine, France
3 Statistical Methodology Group,
Biostatistics and Programming
Department, Sanofi R&D, Chilly-Mazarin,
France
4 Translation Disease Modeling, Digital
and Data Science, Sanofi R&D,
Chilly-Mazarin, France
5 F-CRIN PARTNERS Platform, AP-HP,
Université de Paris, Paris, France

Correspondence
SarahZohar,Centre deRecherchedes
Cordeliers, SorbonneUniversité, Inserm,
Université deParis, F-75006, Paris, France.
Email: sarah.zohar@inserm.fr

Funding information
AssociationNationale de laRecherche
et de laTechnologie,Convention indus-
trielle de formationpar la recherche,
Grant/AwardNumber: 2018/0530

Abstract
Phase I dose-finding trials in oncology seek to find the maximum tolerated
dose of a drug under a specific schedule. Evaluating drug schedules aims at
improving treatment safety while maintaining efficacy. However, while we can
reasonably assume that toxicity increases with the dose for cytotoxic drugs,
the relationship between toxicity and multiple schedules remains elusive. We
proposed a Bayesian dose regimen assessment method (DRtox) using pharma-
cokinetics/pharmacodynamics (PK/PD) to estimate the maximum tolerated
dose regimen (MTD-regimen) at the end of the dose-escalation stage of a trial.
We modeled the binary toxicity via a PD endpoint and estimated the dose reg-
imen toxicity relationship through the integration of a dose regimen PD model
and a PD toxicity model. For the first model, we considered nonlinear mixed-
effects models, and for the second one, we proposed the following two Bayesian
approaches: a logistic model and a hierarchical model. In an extensive simula-
tion study, the DRtox outperformed traditional designs in terms of proportion of
correctly selecting the MTD-regimen. Moreover, the inclusion of PK/PD infor-
mationhelped providemore precise estimates for the entire dose regimen toxicity
curve; therefore the DRtox may recommend alternative untested regimens for
expansion cohorts. TheDRtoxwas developed to be applied at the end of the dose-
escalation stage of an ongoing trial for patients with relapsed or refractory acute
myeloid leukemia (NCT03594955) once all toxicity and PK/PD data are collected.

KEYWORDS
Bayesian inference, dose regimen, early phase oncology, hierarchical model, pharmacokinet-
ics/pharmacodynamics, toxicity

1 INTRODUCTION

Phase I dose-finding clinical trials in oncology seek to
find the maximum tolerated dose (MTD) to obtain reli-
able information regarding the safety profile of a drug or
a combination of drugs, pharmacokinetics, and the mech-
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anism of action (Crowley et al., 2005; Chevret, 2006). In
this phase, the endpoint is defined as the dose-limiting
toxicity, which is mainly based on the National Cancer
Institute (NCI) Common Toxicity Criteria for Adverse
Events (CTCAE, 2017). Usually, standard algorithm-based
or model-based dose-escalation methods (Storer, 1989;
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O’Quigley et al., 1990) aim to find the MTD while con-
sidering the entire cycle dosing as a single administra-
tion. Most methods assume that toxicity increases with the
dose; however, the estimation of the relationship between
toxicity and multiple doses over a cycle remains elusive as
we can observe nonlinear dose-response profiles (Schmoor
and Schumacher, 1992; Bullock et al., 2017; Musuamba
et al., 2017).We assume that considering the complete cycle
dosage could improve treatment safety while maintaining
future potential efficacy.
To account for dosage repetition over the treat-

ment cycle, some authors have considered either the
dose-schedule or the dose regimen relationship. The NCI
defines “schedule” as “A step-by-step plan of the treatment
that a patient is going to receive. A treatment schedule
includes the type of treatment that will be given (such as
chemotherapy or radiation therapy), how it will be given
(such as by mouth or by infusion into a vein), and how
often it will be given (such as once a day or once a week).
It also includes the amount of time between courses
of treatment and the total length of time of treatment”
(https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/treatment-schedule). Moreover, the
NCI defines “regimen” as “A treatment plan that specifies
the dosage, the schedule, and the duration of treatment”
(https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/regimen). Following these definitions,
we considered the dose regimen relationship, as it includes
the dosage, the repetition scheme, and the duration.
For some molecules, it has been observed that, in the

same patient, starting a dose regimen with a lower lead-in
dose and increasing the dose step-by-step before reaching
the steady-state dose can reduce the occurrence of acute
toxicities (Chen et al., 2019).However, a dose regimen start-
ing with higher lead-in doses can increase the efficacy.
Dose-finding trials can aim to study different dose regi-

mens with the same or different total cumulative dose to
determinate the most appropriate regimen supported by
pharmacokinetics/pharmacodynamics (PK/PD) profiles.
Several methodological papers have attempted to address
the issue of prospective dose and schedule finding meth-
ods. Braun et al. (2005), Braun et al. (2007), Liu and Braun
(2009), and Zhang and Braun (2013) proposed consider-
ing the time-to-toxicity rather than the usual binary out-
come to optimize dose and schedule, as the timing of
administration. Wages et al. (2014) proposed considering
dose-schedule finding as a two-dimensional problem and
extended the partial-order continual reassessmentmethod
developed for combination trials. Other authors, such as Li
et al. (2008), Thall et al. (2013), and Guo et al. (2016), pro-
posed dose-schedule-finding methods that jointly model
toxicity and efficacy outcomes. Lyu et al. (2018) proposed
a hybrid design that is partially algorithm-based and par-

tially model-based for sequences of doses over multiple
cycles when few doses are under study.
Only a fewmethods consider PK/PDdata in the prospec-

tive dose-allocation design. Ursino et al. (2017) compared
multiple methods that enable the use of PK measures in
sequential Bayesian adaptive dose-finding designs, includ-
ing a dose-AUC-toxicity model combining two models to
recommend the dose. Günhan et al. (2020) proposed a
Bayesian time-to-event pharmacokinetic adaptive model
for multiple regimens using PK latent profiles to measure
drug exposure. Our aim is to extend these propositions
by modeling the dose regimen toxicity relationship using
PK/PD.

2 MOTIVATION

This work was motivated by the ongoing first-in-human
dose-escalation study of SAR440234 (https://www.cancer.
gov/publications/dictionaries/cancer-drug/def/798327)
administered as a single agent to patients with
relapsed or refractory acute myeloid leukemia, high-
risk myelodysplastic syndrome, or B-cell acute lym-
phoblastic leukemia (NCT03594955 https://clinicaltrials.
gov/ct2/show/NCT03594955). SAR440234 is a novel
bispecific T-cell engager antibody that activates and
redirects cytotoxic T lymphocytes (CTLs) to enhance the
CTL-mediated elimination of CD123-expressing tumor
cells. CTL activation induces the release of inflamma-
tory cytokines, which can potentially cause cytokine
release syndrome (CRS). CRS is a systemic inflamma-
tory response and among the most commonly observed
toxicities of T-cell engaging bispecific antibodies, such
as blinatumomab, which is a bispecific anti-CD19/CD3
antibody (Shimabukuro-Vornhagen et al., 2018). Several
cytokines, such as IL6, IL10, and INF𝛾, are consistently
found to be elevated in serum from patients with CRS.
The association between the peak of cytokine and CRS
has been evaluated by Teachey et al. (2016). It has been
shown that repeating the dosing of the drug can decrease
CRS, particularly when the first administration is divided
into several steps progressively (Chen et al., 2019). There-
fore, intrapatient dose-escalation with a dose regimen
consisting of lower initial doses followed by a higher
maintenance dose was implemented in this study to
reduce the occurrence of CRS (Boissel et al., 2018).
The aim of the trial was to find the MTD of SAR440234

using the 3+3 design as the dose-escalation design. How-
ever, the 3+3 design andmore general dose-finding designs
ignore part of the dose regimen information: these designs
were not developed to account for multiple dose adminis-
trations in the model. Therefore, they map the entire dose
regimen administered to the patient in a single dose-level,
that is, a single value. This mapping is defined prior to
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F IGURE 1 Trial scheme: the DRtox
method is applied at the end of the
dose-escalation stage of a phase I trial

the trial onset and depends on the design chosen. This
approach is inefficient for achieving the trial goal.
In this paper, we propose to model the binary toxicity

endpoint (CRS) and the continuous PD response (cytokine
profile) at the end of the trial, once all data have been
collected, to characterize the dose regimen toxicity rela-
tionship. This dose regimen assessment method (DRtox)
allows the determination of the maximum tolerated dose
regimen (MTD-regimen), as illustrated in Figure 1.

3 MODEL

Let = {𝑑1, … , 𝑑𝐿} be the set of doses that can be adminis-
tered to patients, where 𝑑𝑙 < 𝑑𝑙+1. Let  = {𝑺𝟏, … , 𝑺𝑲} ⊂ 𝕊

be the panel of dose regimens to be studied in the trial. The
dose regimen 𝑺𝒌 ∈  , where 𝑘 ∈ {1, … , 𝐾}, is defined as
the sequence of 𝐽 doses, 𝑺𝒌 = (𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝐽), admin-
istered at times 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝐽), where 𝑑𝑘,𝑗 ∈  for 𝑗 ∈
{1, … , 𝐽}. To simplify the notations, we assumed that all
dose regimens have the same number of drug administra-
tions at the same times, but this assumption can be relaxed.
Let 𝑺𝒌,𝒋 be the subregimen of 𝑺𝒌 until the 𝑗th adminis-
tration, 𝑺𝒌,𝒋 = (𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝑗), for 𝑗 < 𝐽. Let 𝑛 ∈ ℕ be
the number of patients included in the trial. Let 𝑌𝑖,𝑗 be the
binary toxicity response of patient 𝑖 observed exactly after
the 𝑗th administration, and let𝑌𝑖 be his/her global toxicity
response at the end of the administrations.
Let 𝒔𝒊 = (𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝐽) ∈  be the dose regi-

men planned for the 𝑖th patient. We assume that the
drug administration is stopped if toxicity occurs; thus
let 𝑗𝑖 denote the last administration of patient 𝑖. We
denote the actual regimen received by patient 𝑖 as
𝒔𝒊 = (𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑗𝑖 ) ⊂ 𝒔𝒊, where 𝒔𝒊 = 𝒔𝒊 if no toxicity is
observed. Let 𝒔𝒊,𝒋 be the subregimen until 𝑗 of 𝒔𝒊, where
𝑗 ≤ 𝑗𝑖 .
The aim is to estimate the MTD-regimen at the end of

the trial, which is defined as the dose regimen with the
toxicity probability closest to the target toxicity rate 𝛿𝑇 ,
that is, the MTD-regimen is the regimen 𝑺𝒌⋆ , where 𝑘⋆ =
argmin𝑘 |𝑝𝑇(𝑺𝒌) − 𝛿𝑇| and 𝑝𝑇(𝑺𝒌) is the toxicity probabil-
ity of 𝑺𝒌.
We assume that a PD endpoint extracted from the con-

tinuous PD profile of a biomarker related to toxicity plays
an intermediate role in the dose regimen toxicity relation-
ship. We propose the DRtox approach in which the first

model is built for the dose regimen and the PD endpoint,
and the second model is built for the PD endpoint and
the toxicity response. Therefore, integrating both models
links the dose regimen to the toxicity response to find the
MTD-regimen. In the following section, the structure of
the PK/PD models is described, two approaches between
the PD endpoint and toxicity response are proposed, as
well as a practical method for their integration.

3.1 Dose regimen PD response model

Let 𝐶(𝑡) be the continuous drug concentration and 𝐸(𝑡) be
the continuous PD response related to toxicitymeasured at
time 𝑡. We assume that𝐶(𝑡) and 𝐸(𝑡) can bemodeled using
nonlinear mixed-effects models as follows:

⎧⎪⎨⎪⎩
𝐶(𝑡) = 𝑓(1)

(
𝜽
(𝟏)
𝒊
, 𝑡
)
+ 𝑔(1)

(
𝜽
(𝟏)
𝒊
, 𝑡, 𝝃𝟏

)
𝜖(1),

𝐸(𝑡) = 𝑓(2)
(
𝜽
(𝟐)
𝒊
, 𝑡
)
+ 𝑔(2)

(
𝜽
(𝟐)
𝒊
, 𝑡, 𝝃𝟐

)
𝜖(2),

(1)

where 𝑓(1) and 𝑓(2) represent the structural models, which
are usually solutions of differential equations based on
biological knowledge. 𝜽𝒊 = (𝜽

(𝟏)
𝒊
, 𝜽

(𝟐)
𝒊
) represents the 𝑖th

patient’s specific parameter vector, where usually, 𝜽𝒊 =
𝝁𝑒𝜼𝒊 , with 𝝁 denoting the fixed effects vector, and 𝜼𝒊 denot-
ing the random effects vector defined as 𝜼𝒊 ∼ (𝟎,𝛀),
with𝛀 denoting the variance–covariance matrix.
𝑔(1) and 𝑔(2) represent the error models, which depend

on the additional parameters 𝝃𝟏 and 𝝃𝟐, and 𝜖(1) and 𝜖(2) are
standard Gaussian variables. The usual error models are
the constant model where 𝑔(𝑙)(𝜽(𝒍)

𝒊
, 𝑡, 𝜉𝑙 = 𝑎) = 𝑎, the pro-

portional model where 𝑔(𝑙)(𝜽
(𝒍)
𝒊
, 𝑡, 𝜉𝑙 = 𝑏) = 𝑏𝑓(𝑙)(𝜽

(𝒍)
𝒊
, 𝑡)

and combinations of the constant and proportional
models.

3.2 PD endpoint toxicity model

𝑟(𝜽𝒊, 𝒔𝒊,𝒋) is defined as the function derived from the PK/PD
models that returns the value of the PD endpoint (such as
the peak of a biomarker) exactly after the administration
of the dose regimen 𝒔𝒊,𝒋 with individual PK/PD parameters
𝜽𝒊. Let𝑹(𝜽𝒊, 𝒔𝒊,𝒋) = (𝑟(𝜽𝒊, 𝑠𝑖,1), … , 𝑟(𝜽𝒊, 𝒔𝒊,𝒋)) be the function
derived from the PK/PD models that returns the vector of
all PD endpoints (such as all biomarker peaks) observed
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after the administration of the regimen 𝒔𝒊,𝒋 with individ-
ual PK/PD parameters 𝜽𝒊. For patient 𝑖, we can simplify
the notations considering 𝑟𝑖,𝑗 = 𝑟(𝜽𝒊, 𝒔𝒊,𝒋),𝑹𝒊,𝒋 = 𝑹(𝜽𝒊, 𝒔𝒊,𝒋)

and the vector of all PD endpoints 𝑹𝒊 = 𝑹𝒊,𝒋𝒊 .
Then, let 𝑟𝑀

𝑖
= max

𝑙∈{1,…,𝑗𝑖}
(𝑟𝑖,𝑙) be the summary PD end-

point (such as the highest peak) observed in patient 𝑖,
which we assume is related to toxicity.
To define the prior distributions, let (𝑟𝑀1 , 𝑟

𝑀
2 , … 𝑟

𝑀
𝐾 )

denote the reference values of the summary end-
point of all dose regimens of the trial (𝑺𝟏, … , 𝑺𝒌);
for example, we can consider population values
𝑟
𝑀
𝑘 = max{𝑟(𝝁, 𝑺𝒌,𝟏), … , 𝑟(𝝁, 𝑺𝒌)} with 𝝁 as the PK/PD
vector of fixed effects.
In the following section, two statisticalmodels establish-

ing the relationship between the PD endpoint and the tox-
icity response are shown.

3.2.1 Logistic-DRtox

We propose a Bayesian logistic model to link the global
binary toxicity response of patient 𝑖 receiving 𝒔𝒊 to his sum-
mary PD endpoint related to toxicity as follows:

logit{ℙ(𝑌𝑖 = 1)} = 𝛽0 + 𝛽1 log
⎛⎜⎜⎝
𝑟𝑀
𝑖

𝑟
𝑀
𝑘𝑇

⎞⎟⎟⎠, (2)

where 𝛽1 > 0 to have the toxicity probability that increases
with the value of the summary PD endpoint. We nor-
malize the PD endpoint for prior elicitation using 𝑟𝑀𝑘𝑇 ,
which is the reference value of dose regimen 𝑺𝒌𝑻 , which
we initially guess to have a toxicity probability of 𝛿𝑇 . In
this model, we do not consider the longitudinal values of
the biomarker as we assume that toxicity is not due to
the cumulative effect of the biomarker profile. However,
previous drug administrations are considered in the con-
struction of the biomarker through the PK/PD model. Let

𝜋1{(𝛽0, 𝛽1), 𝑟
𝑀
𝑖
} = logit−1

{
𝛽0 + 𝛽1 log

(
𝑟𝑀
𝑖

𝑟
𝑀
𝑘𝑇

)}
.

Regarding prior distributions, we consider a normal
distribution for the intercept, 𝛽0 ∼ (𝛽0, 𝜎

2
𝛽0
) and a

gamma distribution for the slope to ensure positivity,
𝛽1 ∼ 𝛾(𝛼1,

𝛼1

𝛽1
), where 𝛼1 is the shape parameter, 𝛽0 =

𝔼[𝛽0], and 𝛽1 = 𝔼[𝛽1]. By construction, we have 𝛽0 =

logit(𝛿𝑇), obtained via Equation (2) with 𝑟𝑀𝑖 = 𝑟
𝑀
𝑘𝑇 . Then,

let (𝑝1, … , 𝑝𝐾) be the initial guesses of the toxicity prob-
abilities of regimens (𝑺𝟏, … , 𝑺𝑲), where 𝑝𝑘𝑇 = 𝛿𝑇 . We can
determine 𝛽1 using either only one regimen, which differs
from the reference regimen 𝑺𝒌𝑻 , as 𝜋1{(𝛽0, 𝛽1), 𝑟

𝑀
𝑘 } = 𝑝𝑘,

with 𝑘 ∈ {1, … , 𝐾} and 𝑘 ≠ 𝑘𝑇 , or multiple regimens, such

as the neighbors of the reference regimen, as follows:

𝛽1 = argmin
𝛽1

𝑘𝑇+1∑
𝑘=𝑘𝑇−1

[
𝑝𝑘 − 𝜋1

{(
𝛽0, 𝛽1

)
, 𝑟
𝑀
𝑘

}]2
. (3)

3.2.2 Hierarchical-DRtox

In this approach, we assume that patients experience
toxicity if their PD response exceeds an unknown thresh-
old specific to each patient. To consider interindividual
variability in toxicity, we introduce a patient-specific con-
tinuous latent variable, 𝑍𝑖 , which represents the toxicity
threshold of the PD response. In contrast to the previous
approach, we model toxicity after each administration
using a modification of the hierarchical probit model
(Berry et al., 2010) as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑌𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 𝑍𝑖 > log
⎛⎜⎜⎝
𝑟𝑖,𝑗

𝑟
𝑀
𝑘50

⎞⎟⎟⎠
1 if 𝑍𝑖 ≤ log

⎛⎜⎜⎝
𝑟𝑖,𝑗

𝑟
𝑀
𝑘50

⎞⎟⎟⎠
𝑍𝑖 ∼ (𝜇𝑧, 𝜏

2
𝑧),

(4)

where 𝑟𝑀𝑘50 is the reference value at the dose regimen
𝑺𝒌𝟓𝟎 , which we initially guess to have a toxicity proba-
bility of 0.5. By adding the random effect, this Bayesian
hierarchical model shares common features with the pro-
bit model, where 𝜏2𝑧 represents the between-subject vari-
ance and controls the extent of the borrowing across all
patients.
If we consider a new patient 𝑖 with a vector of biomarker

endpoints 𝑹𝒊, we can predict his probability of toxic-

ity by ℙ(𝑌𝑖 = 1) = 𝐹𝑧

{
log

(
𝑟𝑀
𝑖

𝑟
𝑀
𝑘50

)}
, where 𝐹𝑧 is the

cumulative distribution function of (𝜇𝑧, 𝜏
2
𝑧). The details

of the formula are shown in Web Appendix A. Let

𝜋2{(𝜇𝑧, 𝜏
2
𝑧), 𝑟

𝑀
𝑖
} = 𝐹𝑧

{
log

(
𝑟𝑀
𝑖

𝑟
𝑀
𝑘50

)}
.

Regarding the prior distributions, we consider 𝜇𝑧 ∼
 (0, 𝜎2𝜇𝑧 ) and 𝜏𝑧 ∼ half-Cauchy(0, 𝜎2𝜏𝑧 ). Regarding the
half-Cauchy distribution, we followed the recommenda-
tions by Gelman (2006), as we assumed that 𝜏𝑧 could
be near 0. Web Appendix G shows how this model can
be implemented.

3.3 Dose regimen toxicity model

The posterior toxicity probability of dose regimen 𝑺𝒌 is
estimated by integrating the PD endpoint toxicity model
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on all possible values of the PD endpoint. As this inte-
gral cannot usually be solved analytically, the poste-
rior toxicity probability of regimen 𝑺𝒌 is estimated via
the drawing of a hypothetical set of 𝑀 patients with
M-vector (𝑝𝑇(𝑺𝒌)(1), … , 𝑝𝑇(𝑺𝒌)(𝑀)) as posterior toxicity
probabilities. Then, the posterior toxicity probability of
regimen 𝑺𝒌 is estimated as the posterior mean 𝑝𝑇(𝑺𝒌) =
1

𝑀

∑𝑀

𝑚=1 𝑝𝑇(𝑺𝒌)
(𝑚). This sample of the posterior toxicity

probability requires the following three major steps:

(1) Model fitting:
(a) First, the PK/PD models are fitted to obtain

estimates of the population parameters com-
prising the fixed effects, 𝝁, and the random
effects variance–covariance matrix, �̂�, under the
Frequentist paradigm. The patients’ individual
PK/PD parameters, (𝜽𝟏, … , 𝜽𝒏), are also estimated.

(b) Based on the estimated PK/PD parameters, the PD
biomarkers are predicted for each patient:
• For the logistic-DRtox: the global biomarker
peaks (�̂�𝑀1 , … , �̂�

𝑀
𝑛 ) are predicted for each

patient as �̂�𝑀
𝑖
= max{𝑟(𝜽𝒊, 𝒔𝒊,𝟏), … , 𝑟(𝜽𝒊, 𝒔𝒊)}

for 𝑖 ∈ {1, … , 𝑛}. The vector of toxic-
ity responses and biomarker responses,
((𝑌1, … , 𝑌𝑛), (�̂�

𝑀
1 , … , �̂�

𝑀
𝑛 )), constitutes the

data of the trial.
• For the hierarchical-DRtox: the biomarker
peaks vectors (𝑹𝟏, … , 𝑹𝒏) are predicted for each
patient as 𝑹𝒊 = 𝑹(𝜽𝒊, 𝒔𝒊) for 𝑖 ∈ {1, … , 𝑛}. The
vector of toxicity responses and biomarker
responses, ((𝑌1,1, … , 𝑌𝑛,𝑗𝑛 ), (𝑹𝟏, … , 𝑹𝒏)), consti-
tutes the data of the trial.

(c) A vector of the parameters of the PD endpoint tox-
icity model of size𝑚iter is sampled from their pos-
terior distribution:
• For the logistic-DRtox, ((𝛽(1)0 , 𝛽

(1)
1 ), … , (𝛽

(𝑚iter)
0 ,

𝛽
(𝑚iter)
1 )) is sampled.

• For the hierarchical-DRtox, ((𝜇
(1)
𝑧 , 𝜏

(1)
𝑧 ), … ,

(𝜇
(𝑚iter)
𝑧 , 𝜏

(𝑚iter)
𝑧 )) is sampled.

(2) Prediction of new patients for the sampling distribution
of the PD endpoint:
(a) The individual PK/PD parameters of 𝑚predict sim-

ulated patients, (𝜽(𝟏), … , 𝜽(𝒎𝐩𝐫𝐞𝐝𝐢𝐜𝐭 )), are sampled
from 𝝁 and �̂� as 𝜽(𝒎𝒑) = 𝝁𝑒𝜼

(𝒎𝒑) , with 𝜼(𝒎𝒑) ∼

 (𝟎, �̂�) for𝑚𝑝 ∈ {1, … ,𝑚predict}.
(b) The maximum biomarker endpoint of each simu-

lated patient receiving regimen 𝑺𝒌 is obtained as
𝑟𝑀

(𝑚𝑝)
= max(𝑟(𝜽(𝒎𝒑), 𝑺𝒌,𝟏), … , 𝑟(𝜽

(𝒎𝒑), 𝑺𝒌)) for
𝑚𝑝 ∈ {1, … ,𝑚predict}.

(3) Estimation of the posterior distribution of the probability
of toxicity:

(a) The 𝑚th iteration, 𝑚 = (𝑚𝑖,𝑚𝑝) ∈ {1, … ,𝑀},
where 𝑀 = 𝑚iter ∗ 𝑚predict, of the posterior prob-
ability of toxicity of dose regimen 𝑺𝒌, 𝑝𝑇(𝑺𝒌)(𝑚), is
obtained depending on the method chosen:
∙ For the logistic-DRtox, 𝑝𝑇(𝑺𝒌)

(𝑚) =

𝜋1

{(
𝛽
(𝑚𝑖)
0 , 𝛽

(𝑚𝑖)
1

)
, 𝑟𝑀

(𝑚𝑝)
}
.

∙ For the hierarchical-DRtox, 𝑝𝑇(𝑺𝒌)
(𝑚) =

𝜋2

{(
𝜇
(𝑚𝑖)
𝑧 , 𝜏

(𝑚𝑖)
𝑧

)
, 𝑟𝑀

(𝑚𝑝)
}
.

The DRtox approach allows us to estimate the toxicity
probability of the panel of dose regimens and predict the
toxicity probability of each new regimen defined from the
set of doses.

4 SIMULATION STUDY

4.1 Simulation settings

The performance of the DRtox was evaluated through a
simulation study. We assumed that toxicity was related to
a PD endpoint (the peak of cytokine in the context of our
motivating example). Therefore, to simulate toxicity, we
first needed to simulate the PK/PD profiles and simulate
toxicity from the PD profile.
Regarding the PK/PD models, we were inspired by

published models on blinatumomab, which is another bis-
pecific T-cell engager that binds to CD3 on T-cells and to
CD19 on tumor cells. Regarding the PK model, we consid-
ered a 1-compartment infusion model (Zhu et al., 2016) in
which the parameters are the volume of distribution V and
the clearance of elimination Cl and assumed 4 h of infu-
sion. The model is defined in Web Appendix B. Regarding
the PD aspect, the objective was to model cytokine mit-
igation in the case of intrapatient dose-escalation. We
simplified the model developed by Chen et al. (2019),
which assumes that cytokine production is stimulated by
the drug concentration but inhibited by cytokine exposure
through the AUC. We defined the PD model as follows:

d𝐸(𝑡)

d𝑡
=

𝐸max𝐶(𝑡)
𝐻

𝐸𝐶50
𝐻 + 𝐶(𝑡)

𝐻

⎧⎪⎨⎪⎩1 −
𝐼max𝐴𝑈𝐶𝐸(𝑡)

𝐼𝐶50
𝐾𝐽−1

+ 𝐴𝑈𝐶𝐸(𝑡)

⎫⎪⎬⎪⎭
−𝑘deg𝐸(𝑡), (5)

where 𝐸(𝑡) and 𝐶(𝑡) are the cytokine and drug concen-
tration at time t, respectively, 𝐴𝑈𝐶𝐸(𝑡) is the cumula-
tive cytokine exposure, and the parameters are defined
in Table 1. Additional information concerning the PK/PD
models is provided in Web Appendix B.
In both the PK and PD models, we considered a propor-

tional error model with 𝑏 = 0.1. The values of the PK/PD
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TABLE 1 Definition and values of the PK/PD parameters used for the simulation study. Parameter estimates represent the fixed effects,
and coefficients of variation (CV) are the square root of the diagonal of the variance–covariance matrix. They are inspired by the parameters
estimated on blinatumomab (Zhu et al., 2016; Chen et al., 2019), with a modification of Imax to observe cytokine mitigation after several
administrations

Parameter Estimate (% CV) Unit Description

PK model
Cl 1.36 (41.9) L/h Clearance

V 3.4 (0) L Volume of distribution
Emax 3.59 ⋅ 105 (14) pg/mL/h Maximum cytokine release rate
EC50 1 ⋅ 104 (0) ng/mL Drug exposure for half-maximum cytokine release rate
H 0.92 (3) Hill coefficient for cytokine release

PD model Imax 0.995 (0) Maximum inhibition of cytokine release
IC50 1.82 ⋅ 104 (12) pg/mL⋅h Cytokine exposure for half-maximum cytokine inhibition
kdeg 0.18 (13) h−1 Degradation rate for cytokine
K 2.83 (36) Priming factor for cytokine release

parameters used for the simulations were inspired by the
estimated parameters of blinatumomab (Zhu et al., 2016;
Chen et al., 2019) and are displayed in Table 1.
To simplify and accelerate the PK/PD estimation during

the simulations, we followed the traditional PK/PD mod-
eling strategy for small sample size data by fixing some
parameters. We considered the parameters EC50, Imax , and
IC50 fixed and no random effects on V and H. In this work,
we decided to simplify a previously validated PK/PDmodel
that mimics the behavior we expect in ourmotivating trial:
our aimwas to show the performance of a global modeling
approach including PK/PD estimation in a phase I toxicity
model and not to propose a PK/PD model for the drug.
We used as the PD endpoint 𝑟𝑖,𝑗 the peak of cytokine

observed for patient 𝑖 after the 𝑗th administration, and
for 𝑟𝑀

𝑖
the highest peak of cytokine observed for patient 𝑖.

Using the PK/PD models presented above and the param-
eters shown in Table 1, we were able to model the miti-
gation of cytokine release on repeating dosing, which was
reflected by the decrease in the cytokine peak with repeat-
ing dosing. Hence, we were able to model that slowly
increasing the dose reduces the cytokine peak compared to
directly giving the steady-state dose. For example, we com-
pared the concentration and cytokine profiles of patients 𝑖
and 𝑖′ who received regimens 𝒔𝒊 = (1, 5, 10, 25, 25, 25, 25)

𝜇g/kg and 𝒔𝒊′ = (25, 25, 25, 25, 25, 25, 25) 𝜇g/kg adminis-
tered on days 1, 5, 9, 13, 17, 21, and 25 (Figure 2). From
the fourth administration, the concentration profiles of
patients 𝑖 and 𝑖′ are the same, but in the cytokine profile,
themaximumpeak of cytokine of patient 𝑖′ is much higher
than that of patient 𝑖, 𝑟𝑀

𝑖′
= 𝑟𝑖′,1 > 𝑟𝑀

𝑖
= 𝑟𝑖,4.

To simulate toxicity from the cytokine profile, we
defined a threshold 𝜏𝑇 on the cytokine response and
assumed that toxicity occurred if this threshold was
exceeded (Ursino et al., 2017). To introduce between-
subject variability, we defined a log-normally distributed

measure of subject sensitivity, 𝛼𝑖 for patient 𝑖, where 𝛼𝑖 =
e𝜂𝛼𝑖 and 𝜂𝛼𝑖 ∼ (0, 𝜔2𝛼). We assumed that patient 𝑖 experi-
enced toxicity at the 𝑗th administration,𝑌𝑖,𝑗 = 1, if 𝛼𝑖𝑟𝑖,𝑗 ≥
𝜏𝑇 .
To compute the toxicity probability of regimen 𝑺𝒌, we

used the Monte-Carlo method by simulating 𝑁 = 10, 000

cytokine profiles under 𝑺𝒌 and computing

𝑝𝑇(𝑺𝒌) =
1

𝑁

𝑁∑
𝑖=1

[
1 − Φ

{
log(𝜏𝑇) − log

(
𝑟𝑀
𝑖

)
𝜔𝛼

}]
, (6)

whereΦ is the cumulative distribution function of the stan-
dard normal distribution.
We present the results of three toxicity scenarios by vary-

ing the dose regimens and the value of the threshold 𝜏𝑇 to
explore different positions of theMTD-regimen (with𝜔𝛼 =
0.25). Additional scenarios are presented inWebAppendix
F. In each scenario, we considered six dose regimens, and
each dose regimen included seven dose administrations
on days 1, 5, 9, 13, 17, 21, and 25. The dose regimens cho-
sen for each scenario and the dose regimen toxicity curves
are displayed in Figure 3. Values of the dose regimens can
be found in Web Appendix C. In Scenarios 1–3, the MTD-
regimen is situated at dose regimens 𝑺𝟒, 𝑺𝟐, and 𝑺𝟒, respec-
tively. Scenarios 1 and 2 are inspired from the motivating
trial in which the dose regimens reach the steady-state
dose at approximately the same time, and have increasing
steady-state doses. However, Scenario 3 represents a case
in which the objective is to reach the steady-state dose,
40 𝜇g/kg, as fast as possible to increase potential efficacy
under toxicity constraints. The dose regimen toxicity rela-
tionship is similar to that in Scenario 1 but with less differ-
ence between the MTD-regimen and its neighbors.
For each scenario, 1000 trials were simulated, and 𝛿𝑇 =

0.3 was considered the toxicity target. Because we applied
ourmethods once all patients from the trial were included,
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F IGURE 2 Concentration (up) and cytokine (down) profiles of two patients, one receiving a dose regimen with intrapatient escalation
in solid line and the other receiving a dose regimen without intrapatient escalation in dashed line, administered on days 1, 5, 9, 13, 17, 21, and
25. Horizontal lines represent the maximum peak of cytokine observed after each dose regimen

we evaluated the impact of two traditional dose-escalation
designs, that is, the 3+3 design and a modified contin-
ual reassessment method (CRM) initially proposed by
O’Quigley et al. (1990). A flow diagram of the rules of the
3+3 design is provided in Web Appendix D. For the mod-
ified CRM, we considered a 2-parameter logistic regres-
sion model with cohorts of a size of 3 and a total sam-
ple size of 30 patients (Cheung, 2011). Dose skipping was
not allowed, and early stopping rules were not imple-
mented. We based the skeleton of the CRM, that is, the
prior guesses of the toxicity probabilities, on Scenario 1,
that is, (0.06, 0.12, 0.20, 0.30, 0.40, 0.50). This skeleton was
used in all simulations and scenarios.
When defining the prior distributions for our proposed

models, we calibrated the model prior distributions based
on the initial guesses of the toxicity probabilities (we used
the same initial guesses for the CRM). To quantify the
information provided by the prior distribution, we com-
puted the approximate effective sample size (ESS), which
was defined as the equivalent sample size embedded in
the prior distribution of the model parameters (Yuan et al.,
2017). In practice, we approximated the ESS by matching
the mean and variance of the toxicity probabilities com-
puted from the prior distributions to those of a beta dis-
tribution. Then, the ESS was computed as the sum of the
parameters of the beta distribution (Morita et al., 2008).
More details of the ESS computation are shown in Web
Appendix E. In our settings, for the logistic-DRtox, we con-
sidered 𝑘𝑇 = 4, 𝜎𝛽0 = 2, and 𝛼 = 5, leading to an approxi-

mate mean ESS of 1.6. For the hierarchical DRtox, we con-
sidered 𝑘50 = 6, 𝜎𝜇 = 1, and 𝜎𝜏 = 1, leading to an approxi-
mate mean ESS of 1.8.
All simulations were performed in the R environment

(R Core Team, 2018), using Monolix software (Lixoft SAS,
2019) for the PK/PD estimation and Stan (Stan Develop-
ment Team, 2019) for the Bayesian analysis.

4.2 Simulation results

4.2.1 Proportions of correct selection

We first evaluated the performance of the DRtox accord-
ing to the proportions of correct selection (PCS) based
on the proportions that each regimen is selected as the
MTD-regimen over the trials. We evaluated the impact of
the dose regimens and the position of the MTD-regimen
in three toxicity scenarios, and the impact of the dose-
escalation design, that is, either the 3+3 design or the
CRM. The PCS results of the three main scenarios and the
mean sample size of each dose regimen across the trials
due to the chosen dose-escalation design are displayed in
Table 2. The PCS of additional scenarios are displayed in
Web Appendix F. As a practical rule, we could only recom-
mend as theMTD-regimen a dose regimen thatwas admin-
istered during the dose-escalation phase of the trial.
In all scenarios, the PCS of the logistic-DRtox and

the hierarchical-DRtox are very similar. Both methods
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F IGURE 3 The first three subplots represent the panel of dose regimens from 𝑺𝟏 in spaced dashed line to 𝑺𝟔 in solid line, for the three
main scenarios, where the type of points is specific to each scenario. In the last subplot in the lower right corner, the dose regimen toxicity
relationship is represented for each scenario, where the MTD-regimen is the dose regimen having the toxicity probability the closest to the
target 𝛿𝑇 , plotted in dashed line

outperform the dose-escalation design implemented in
most scenarios. After implementing the 3+3 design, our
methods correctly select the MTD-regimen in more than
10% more trials compared to the dose-allocation design.
After implementing the CRM design, both methods cor-
rectly select the MTD-regimen in approximately 10% more
trials compared to the CRM.
The results of Scenarios 1, 3, and 6 (presented in Web

Appendix F) illustrate the effect of the variation in the
dose regimen scheme with a similar dose regimen toxicity
relationship. Compared to Scenario 1, the PCS of the
logistic-DRtox and hierarchical-DRtox are decreased
by approximately 10% in Scenario 3, while there is not
much difference in the results between Scenarios 1 and 6.
Therefore, the loss of performance in Scenario 3 is caused
not only by the variation in the dose regimen scheme but
also by the difference in the dose regimen toxicity relation-
ship, as in Scenario 3 there is less difference in the toxicity
probabilities between theMTD-regimen and its neighbors.
However, the performance of the DRtox is heavily

impacted by the dose-escalation design implemented; after

implementing the CRMdesign, the DRtox correctly selects
the MTD-regimen in more than 50% of the trials, but
its PCS can decrease by 20% when applied after the 3+3
design. This loss of performance is due to the small sample
size after implementing the 3+3 design and the higher pro-
portion of patients allocated to suboptimal dose regimens.
Additional results on robustness (with various prior dis-

tributions and variability to simulate toxicity) are given in
Web Appendix F.

4.2.2 Estimation of the toxicity probabilities

We also evaluated the performance of the DRtox based on
the precision of the estimation of the toxicity probabilities
of all dose regimens. We represented the distribution of
the estimated toxicity probabilities, defined as the mean
of the posterior distribution, over 1000 trials. The results
of Scenario 3 obtained after implementing the CRM are
presented in the lower part of Figure 4. The results of the
other scenarios are displayed in Web Appendix F.
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TABLE 2 Proportions that each dose regimen is being selected as the MTD-regimen over the 1000 trials in the three toxicity scenarios
and the two dose-allocation designs, either the 3+3 design or the CRM. For each scenario, the PCS on the true MTD-regimen are represented
in bold. For each dose-allocation design, the mean sample size of each dose regimen is displayed

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔

Scenario 1 0.08 0.11 0.15 0.3 0.44 0.52

3+3

Mean sample size 3.6 3.5 3.5 3 1.6 0.4

Logistic-DRtox 8.6 5.9 19 42.2 19.6 4.7
Hierarchical-DRtox 7.5 7.6 19.1 43.8 18.6 3.4
3+3 13.9 16.1 32.2 27.6 8.6 1.6

CRM

Mean sample size 4.2 3.7 5.6 8.8 5.6 2.1

Logistic-DRtox 0 1.2 15.5 64.6 15.5 3.2
Hierarchical-DRtox 0 0.8 12.8 64.3 19.4 2.7
Logistic CRM 0 1.4 15.1 50.4 27.1 6

Scenario 2 0.15 0.3 0.44 0.52 0.69 0.83

3+3

Mean sample size 4 3.6 1.8 0.5 0.1 0

Logistic-DRtox 27.2 42.5 24.7 5.2 0.4 0
Hierarchical-DRtox 29.3 41.2 24.3 4.8 0.4 0
3+3 57.3 31 9.8 1.7 0.2 0

CRM

Mean sample size 8.7 11.1 7.5 2.3 0.3 0

Logistic-DRtox 14.8 65.9 17.4 1.7 0.2 0
Hierarchical-DRtox 12.3 66.2 18.9 2.6 0 0
Logistic CRM 12.5 56 26.7 4.7 0.1 0

Scenario 3 0.07 0.11 0.2 0.3 0.42 0.56

3+3

Mean sample size 3.6 3.6 3.7 2.7 1.4 0.4

Logistic-DRtox 7.8 6.4 25.2 34.1 21.6 4.9
Hierarchical-DRtox 5.9 7.9 27.3 35.8 20.6 2.5
3+3 13.1 24.4 29.5 24 7.7 1.3

CRM

Mean sample size 4 4 6.4 8 5.2 2.3

Logistic-DRtox 0.1 1.4 19.6 52 25.1 1.8
Hierarchical-DRtox 0.1 0.8 17.7 54.4 25.9 1.1
Logistic CRM 0.1 2.3 20.3 44.5 26.4 6.4

In all scenarios, the toxicity probability of the MTD-
regimen is well estimated by the DRtox and the CRM.
Both the hierarchical-DRtox and the logistic-DRtox seem
to be better in estimating the toxicity probability at all
dose regimens, even those far from the MTD-regimen.
This phenomenon could be due to the additional PK/PD
information and the correct understanding of the toxicity
mechanism. Using the CRM, the entire dose regimen
toxicity curve is well estimated when the skeleton is close
to the truth, as shown in Scenario 1 (Web Appendix F).
However, in most cases, the toxicity estimation is precise
around the MTD-regimen, but not reliable for the other
dose regimens. Regarding the dose regimens far from the
MTD-regimen, the hierarchical-DRtox seems to estimate
the toxicity probability with less bias but more variance
than the logistic-DRtox. In Web Appendix F, the distribu-
tion of the root mean square error (RMSE) of all methods
is plotted; the RMSE is computed on all dose regimens or

on the MTD-regimen and its neighbors. Near the MTD-
regimen, the estimation of the logistic-DRtox is better than
that of the hierarchical-DRtox; both models are better
than the CRM. However, in the scenarios in which the
MTD-regimen is at extreme positions of the dose regimens
panel (Scenarios 2 and 4 in Web Appendix F), the entire
dose regimen toxicity relationship is better estimated with
the hierarchical-DRtox than the logistic-DRtox.

4.2.3 Recommendation of a more suitable
untested dose regimen

Finally, one of the strengths of the DRtox is that it mod-
els the entire relationship between the dose regimen and
toxicity and can predict the toxicity probability of any new
dose regimen. Notably, in this work, we assumed that the
administration times were fixed to simplify the notations
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F IGURE 4 Violin plots of the estimated
toxicity probabilities in an additional scenario
in which the dose regimen panel missed the
true MTD-regimen and in Scenario 3 on 1000
trials implemented with the CRM including 30
patients. The predicted toxicity probability of a
new regimen 𝑺new is framed in dotted line.
Horizontal lines on the density estimates
represent the median and first and third
quantiles of the distributions and the plus sign
represents the mean. The dashed line
represents the toxicity target and the solid line
represents the true toxicity probabilities

but regimens with different times of drug administra-
tion can also be considered. Therefore, at the end of
the dose-escalation stage of the trial, the DRtox can
recommend dose regimens that were not tested in the
trial to be investigated in expansion studies. For exam-
ple, let us imagine a scenario in which the panel of
dose regimens missed the true MTD-regimen, as illus-
trated in the upper plot of Figure 4, where regimen 𝑺𝟑 =
(5, 10, 25, 50, 50, 50, 50) 𝜇g/kg is underdosing and regimen
𝑺𝟒 = (10, 25, 50, 100, 150, 150, 150) 𝜇g/kg is overdosing.
The upper plot of Figure 4 illustrates the gap between

the estimated toxicity probabilities of regimens 𝑺𝟑 and 𝑺𝟒,
suggesting that an alternative regimen could be found to
have a toxicity probability closer to the target. At the end of
the dose-escalation stage of the trial, the DRtox can predict
the toxicity probability of any new regimen, such as regi-
men 𝑺𝐧𝐞𝐰 = (10, 25, 50, 100, 100, 100, 100) 𝜇g/kg, whereas

the CRM is unable to perform predictions as the model is
built on a skeleton based on the panel of dose regimens.
In the upper plot of Figure 4, we can observe that both
the hierarchical-DRtox and the logistic-DRtox predict that
new regimen 𝑺𝐧𝐞𝐰 has a toxicity probability closer to the
target; therefore we can propose to evaluate the new regi-
men in expansion cohorts.
Another practical case is illustrated in Scenario 3 in

which the objective was to administer the steady-state
dose of 40 𝜇g/kg as soon as possible. As shown in the
lower plot of Figure 4, the estimated MTD-regimen
is 𝑺𝟒 = (10, 20, 40, 40, 40, 40, 40) 𝜇g/kg, and the next
regimen of the panel, 𝑺𝟓 = (20, 40, 40, 40, 40, 40, 40),
is estimated to be too toxic. Nevertheless, one might
wonder whether another regimen with an acceptable
toxicity could be found in which the steady-state dose is
administered from the second administration. The DRtox
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predicts the toxicity probability of new regimen 𝑺𝐧𝐞𝐰 =

(10, 40, 40, 40, 40, 40, 40) to be approximately 0.3 as shown
in the lower plot of Figure 4, and this new regimen can
be compared in terms of efficacy to the estimated MTD-
regimen 𝑺𝟒 in subsequent stages of the trial. Therefore, at
the end of the trial, theDRtox can evaluate alternative regi-
mens thatwere not included in the panel for future studies.

5 DISCUSSION

In this work, we developed the DRtox approach to model
the relationship between the dose regimen and toxicity by
modeling a PD endpoint. We estimated the toxicity related
to the PD endpoint in the context of an ongoing phase
I trial in which the assumption of a monotonic increase
in the dose regimen toxicity relationship did not hold.
We found that when the process generating toxicity was
reasonably understood and approximated, adding PK/PD
information increased the PCS. This method allowed for
a better estimation of the dose regimen toxicity curves, as
this type of modeling enabled the sharing of more infor-
mation across regimens. Moreover, the DRtox was able to
evaluate additional regimens for expansion cohorts that
were not present in the dose regimen panel but may have
a predicted toxicity probability closer to the target. In prac-
tice, our methods should be applied at the end of the dose-
escalation phase of the motivating trial once all PK/PD
and toxicity data are collected. Our model can address
missing data as follows: (1) Regarding missing doses in
the dose regimen and associated cytokine profiles, as we
are using nonlinear PK/PD modeling, our method would
take into account whether a patient misses one or more
planned doses as the model considers the actual regimen
received and not the planned regimen. (2) Regardingmiss-
ing cytokine data, which is expected to be rare in this trial
as the cytokine is carefully monitored by frequent sam-
pling to detect its peak, individual cytokine peaks could be
predicted from the population PK/PD model. However, it
would be more common for PK/PD data to be below the
limit of quantification, but these data are considered by the
PK/PD model as censored data rather than missing data.
(3) During the enrollment, and due to the sequential fea-
ture of the dose-allocation design, patients with missing or
with nonevaluable toxicity outcome are replaced. In this
case, during the enrollment, new patients are treated at the
same dose-levels to account for the design requirements.
In the simulation study, we assumed that the dose reg-

imens were ordered, but the DRtox can be applied when
only partial ordering is known. As the DRtox is applied at
the end of the trial, the choice of the dose-escalation design
may have a significant impact on the results. The perfor-
mance achieved using a model-based design, such as the

CRM with 30 patients, is better than that achieved using
an algorithm-based design, such as the 3+3 design, which
has themain disadvantage of treatingmost patients at sub-
therapeutic doses and having a small total sample size that
cannot be fixed before the trial.
Regarding the logistic-DRtox, since drug administration

is stopped in the case of toxicity, the performance can
be impacted by incomplete observations of the PD end-
point, even though it seemed to lightly impact our simu-
lation study. In the case toxicities occur at the beginning of
the administrations, resulting in a high number of incom-
plete PD observations, we propose the use of the predicted
PD given by the PK/PD model under the complete regi-
men planned.
The hierarchical-DRtox added a constraint, that is, toxic-

ity must occur at the maximum of the PD response. Errors
in the PK/PD estimation may lead to an undefined hier-
archical model. In our simulation study, we observed this
latter issue in less than 2% of the trials. In the real world,
this issue could indicate that the proposed PK/PD model
is incorrect, and that another model should be considered.
However, in our simulation study, we decided to run other
simulated datasets for all methods to replace the 2% of the
trials having the issue defined above. One way to relax this
constraint is to allow the patients’ toxicity threshold to vary
among administrations by adding a second latent variable,
which could lead to complex models that are challenging
to estimate.
In thiswork,we assumed that all dose regimens have the

same repetition scheme and duration. However, the DRtox
can address regimens with different schemes, administra-
tionmodes, etc. The first part of the DRtox relies on PK/PD
modeling, so an incorrect PK/PD model may have a nega-
tive impact on the full method. However, as usual in the
PK/PD field, the aim of the modeling is to have a good
fit/prediction of the patients’ PK/PD profiles even with
simplified models. Therefore, an approximated PK/PD
model could still be applied without DRtox performance
loss if the PD endpoint is well fitted.
In conclusion, we proposed a general approach for mod-

eling toxicity through a PK/PD endpoint. In this work,
we considered a specific PD endpoint in the context of an
actual ongoing clinical trial, but various endpoints (such as
the AUC or a combination of several toxicity biomarkers)
could be used depending on the type of toxicity considered.
Moreover, we developed the DRtox under the assumption
that toxicity was linked to the maximum value of the PD
biomarker, but other assumptions could be raised, such
as assuming a cumulative effect. The usual dose-finding
designs were developed to determine the MTD in the first
cycle of treatment after a single administration. However,
with the increase in the number of targeted molecules,
immuno-oncology therapies, and combinations with
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alternative dose regimens, standard dose-allocation
designs fail to identify the dose regimen recommended for
future studies. Incorporating PK/PD exposure data in early
phase toxicity modeling through stronger collaboration
between biostatisticians and pharmacometricians may
lead to a better understanding of the entire dose regimen
toxicity relationship and provide alternative dosage recom-
mendation for the next phases of the clinical development.
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