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Abstract

Fluorescence Recovery After Photobleaching (FRAP) has been extensively used to under-

stand molecular dynamics in cells. This technique when applied to soluble, globular mole-

cules driven by diffusion is easily interpreted and well understood. However, the classical

methods of analysis cannot be applied to anisotropic structures subjected to directed trans-

port, such as cytoskeletal filaments or elongated organelles transported along microtubule

tracks. A new mathematical approach is needed to analyze FRAP data in this context and

determine what information can be obtain from such experiments. To address these ques-

tions, we analyze fluorescence intensity profile curves after photobleaching of fluorescently

labelled intermediate filaments anterogradely transported along microtubules. We apply the

analysis to intermediate filament data to determine information about the filament motion.

Our analysis consists of deriving equations for fluorescence intensity profiles and develop-

ing a mathematical model for the motion of filaments and simulating the model. Two closed

forms for profile curves were derived, one for filaments of constant length and one for fila-

ments with constant velocity, and three types of simulation were carried out. In the first type

of simulation, the filaments have random velocities which are constant for the duration of the

simulation. In the second type, filaments have random velocities which instantaneously

change at random times. In the third type, filaments have random velocities and exhibit

pausing between velocity changes. Our analysis shows: the most important distribution gov-

erning the shape of the intensity profile curves obtained from filaments is the distribution of

the filament velocity. Furthermore, filament length which is constant during the experiment,

had little impact on intensity profile curves. Finally, gamma distributions for the filament

velocity with pauses give the best fit to asymmetric fluorescence intensity profiles of interme-

diate filaments observed in FRAP experiments performed in polarized migrating astrocytes.

Our analysis also shows that the majority of filaments are stationary. Overall, our data give

new insight into the regulation of intermediate filament dynamics during cell migration.
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Author summary

Fluorescence Recovery After Photobleaching (FRAP) is a commonly-used technique to

analyze the dynamics of fluorescently-tagged proteins or structures in biology. After pho-

tochemical altering the fluorophor in a specific region, fluorescent material from the sur-

rounding region moves into the photobleached region. Usually applied to the diffusion of

soluble or membrane associate proteins, the existing models of analysis are not suitable

for the elucidation of directional transport of elongated structures. Different modes of

motions for the elongated structures with distributed lengths and velocities in cells are

considered. First, we observe that filament lengths can be inferred from the level of noisi-

ness. We further show the characteristics of fluorescence profile curves mainly depend on

the occurrence of changes in velocities and distributions of velocities; whereas length dis-

tributions have negligible impact. Analysis of experimental data using this new framework

indicates intermediate filaments transported by kinesins along microtubules in polarized

migrating cells have gamma distributed velocities changing over time between pausing.

Most filaments are found to be very slow or stationary with a few moving fast. This new

computational approach should permit the interpretation of FRAP experimental data

obtained with any directionally moving elongated structures of various lengths.

1 Introduction

Living organisms are in constant dynamic equilibrium. In cells, many structures appear gener-

ally static but are, in fact, formed of molecules continuously moving and exchanging with the

surrounding. Fluorescence Recovery After Photobleaching (FRAP), developed in the 1970s, is

an essential tool for understanding molecular dynamics within a cell [1–3]. The typical setup

for a FRAP experiment involves a fluorescent probe, a microscope, and some method of

photobleaching [4]. A portion of the domain where the molecule of interest is present is

bleached and the recovery of fluorescence in that region is imaged over time. In order to gain

quantitative information on molecular dynamics, mathematical models of diffusion are typi-

cally used. These include models of diffusion in inhomogeneous media [5], models of diffusion

and binding using reaction-diffusion equations [6–8], and advection-reaction-diffusion mod-

els of active transport and diffusion [9]. In some instances, when diffusion parameters are not

of interest, simpler ordinary differential equation models are used to elicit information [10].

All these models deal with analysis of soluble, generally globular, molecules. Until now there

has been no analysis of FRAP data regarding the dynamics of filamentous structures.

The main example we have in mind is that of short term transport of mature intermediate

filaments (IFs), one of three major fibrous structural components of the cytoskeleton. They

form a filamentous network spreading throughout the cell cytoplasm and this network

together with actin filaments and microtubules, plays a key role in cell polarity and migration

[11]. In migrating astrocytes (the type of glial cell used in our migration experiments), the

dynamics of the IF network is mainly driven by microtubule and actin mediated transport [12,

13]. Deterministic and stochastic mathematical models have been developed to describe the

motion of IF driven by antagonistic molecular motors along microtubules [14, 15]. In [12],

FRAP experiments of IFs were used to better understand how the IF network global dynamics

are regulated in migrating and non-migrating glial cells. They showed that, during cell polari-

zation, IF transport is mainly anterograde, oriented from the cell center to the cell periphery,

and this bias was due to the inhibition of the retrograde transport of IFs by CDC42-driven

polarity signaling. However, due to the high density of the IF network, it was not possible to
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quantify the dynamics of IFs at the single filament level. Hence, there is a need for a mathemat-

ical model to better understand collective IF transport using FRAP data.

There are two types of data gathered when conducting FRAP experiments. The first is a

series of time measurements, called the profile curves, which show the profile of fluorescence

intensity plotted along the direction of migration (X 1-direction) across the bleached region,

and integrated along the perpendicular direction (X 2-direction) as depicted in Fig 1a. The sec-

ond type of data is the total fluorescent intensity of the bleached region as a function of time

(fluorescence intensity vs time after bleaching) and is called a fluorescence recovery curve.

Since the former give more information we focus on those.

Our goal here is to determine what information can be obtained from the profile curves

obtained from FRAP data. In particular, is it possible to infer the mode of filament motion

(constant or variable velocity, with or without pausing), or information about filament velocity

and length?

2 Methods

Experiments were performed in astrocytes [12] which are the major glial cells of the central

nervous system. Astrocyte polarization and migration was induced by a scratch wound. We

studied the IF dynamics in cells at the wound 1–2 hours after wounding, when cells are polariz-

ing and migrate perpendicularly to the wound axis (see Fig 1a). IF are transported by molecular

motors along the polarized microtubule network, which is aligned with the front-to-rear polar-

ity axis, with the microtubule minus ends concentrated near the cell center and the plus-ends

growing towards the cell’s leading edge [16]. Therefore, IF motion is also mostly parallel to the

direction of migration. The bleached region is rectangular and its height is perpendicular to

the protrusion, i.e. parallel to the wound (see Fig 1a). In these conditions, the fluorescence pro-

file curve is asymmetric, due to the inhibition of the dynein-dependent retrograde transport of

IFs and reflects the anterograde transport of IF dominated by kinesin motors along the polar-

ized network of microtubule [12]. Hence in these experiments most of the transported IFs

move from the center to the front of the cell and across the width of the bleached region. This

allows us to reduce the problem to one dimension in the direction of the width of the bleached

region (X 1 direction in Fig 1a). Furthermore, we assume the density of the filaments is uniform

in the direction of the height of the bleached region (X 2 direction in Fig 1a).

The time scale of the experiments is less than 30 minutes and the fluorescence only comes

back from the edges of the bleached region. Hence we assume diffusion and remodelling of the

filaments due to polymerization/depolymerization, subunit exchange (which occurs on a time-

scale of hours), fusion or severing are negligible [12, 17]. Thus, the length of the filaments is

assumed to be fixed during the observation time and the active transport of filaments moving

from the cell center to the cell front is the major mechanism causing fluorescence recovery. In

this model crowding effects or interactions with other filaments or organelles are not taken

into consideration.

We will use mathematical modeling to determine what information can be obtained from

FRAP data in the context of directional transport of elongated structures. In particular, we will

focus on what characteristics of the velocity, length, and pause of filaments can be deduced

from the experimental data. Due to the one directional transport, velocity and speed are syn-

onymous in this work.

2.1 The mathematical model

We now mathematically frame the problem under consideration. Given a domain,

X 1 � X 2 � R
2
, we place a fixed number of filaments parallel to the X 1 axis and allow these
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filaments to move in the positive X 1 direction (direction of the width of the bleached region)

independent of the other filaments. Formally the mathematical model of motion can be stated

as: let x(t) be the position of the right endpoint of the fiber at time t, with v� 0 the velocity, x0

the initial position, and ℓ the fiber length which does not change in time. Then

xðtÞ ¼ vt þ x0;

Fig 1. A schematic of the model and an example of a FRAP experiment. Panel (a) shows the schematic representation of a

cell migrating to the right with several cytoplasmic IFs. Selected velocities are denoted with purple arrows under the

filaments. The right endpoints of the IFs are denoted x0 and one is labeled with its length ℓ and velocity v. The right

endpoints are distributed between 0 and F. Panels (b)-(g) show data from a FRAP experiment. Panels (b)-(d) show the

profile curves for (e)-(g) respectively. The curves in (b)-(d) come from data in a subregion of (e)-(g); for example the yellow

box in (f). Panels (e)-(g) show fluorescence images taken from a FRAP experiment performed on vimentin-EGFP expressing

astrocytes, located at the edge of a wound, 1h after wounding of the monolayer. The rear-to-front polarity axis similar to the

direction of migration is indicated by an arrow in (a), (e) and (h). Data are before (b) and (e), just after (c) and (f), and 2

minutes after bleaching (d) and (g). Panels (h)-(j) are blowups of the region indicated by the yellow box in (f) and show the

domain and setup for the simulations. For the clarity, the vertical coordinate of each filament stays the same. The

photobleached region (shown in white in (i) and (j)) is between y0 and y1. Several filaments are shown with their initial right

endpoint depicted by a dot in (h)-(j). The red filaments are not relevant for our mathematical analysis and simulations since

we consider only right moving filaments. Of the remaining filaments, the green ones are unbleached and the blue ones are

partially bleached. In (i) the squares denoted x̂0 show where the new right endpoints will be after bleaching. In the

mathematical analysis and simulations it is as if all the filaments to the right of y0 are bleached since we only consider right

moving filaments.

https://doi.org/10.1371/journal.pcbi.1010573.g001
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and the left endpoint is at x(t) − ℓ. We consider the random variables X0, V, and L, which we

assume to be independent, corresponding to x0, v, and ℓ. We define the corresponding random

process X(t) = Vt + X0 (see Fig 1a for a depiction of the setup).

We compare our results with experiments from polarized migrating astrocytes showing

asymmetric fluorescence intensity profile curves with reduced retrograde transport [12]. Thus

we consider only filaments which move to the right (having non-negative velocities). Follow-

ing the observations that neurofilaments, a type of IFs observed in neurons, display a stop-

and-go motion [13, 18], we assume that the filaments can have a stop-and-go behavior, mov-

ing for a period of time Tm at a velocity V and then stopping for a period of time Ts. The cycle

repeats, with the motion time, velocity, and stop time for each cycle being independent of

those for the other cycles.

We now consider the experimental process of FRAPing in the context of IFs (or any elon-

gated objects transported unidirectionally). We assume the right endpoints of the filaments

are uniformly distributed on the interval [0, F]. Suppose that y0 < y1 (the start and end of the

bleach zone) and a region ½y0; y1� � X 2 is bleached. We also assume y0� F to ensure that there

are filaments in the bleached region at the time of bleaching. The bleaching process does not

change the underlying behavior of the fibers, but the bleached portions of the fibers are no lon-

ger visible and do not contribute to the fluorescence intensity profiles (see Fig 1).

We categorize filaments into three types: unbleached filaments, partially bleached filaments,

and entirely bleached filaments. Since we only use fluorescence intensity data, we only con-

sider the unbleached portions of filaments as these are the parts of the filaments that fluoresce.

For our analysis we restrict the filaments to have non-negative velocities. We need not con-

sider filaments which do not extend to the left of y0 (i.e., for which x0 − ℓ> y0; red filaments in

Fig 1h) and filaments whose left endpoint is to right of y1 (none of these filaments are shown

in Fig 1h–1j). The rest of the partially bleached filaments (the blue filaments in Fig 1h) are

defined to have a new right endpoint where the unbleached portion of the filament to the left

of the bleached portion starts (marked by squares on the filaments in Fig 1i). And of course,

the unbleached filaments which lie to the left of the bleached region (the green filaments in Fig

1h–1j) are considered. Mathematically we say the right endpoints of the filaments under con-

sideration are defined in the following manner:

x̂0 ¼
y0 if x0 > y0 and x0 � ‘ < y0;

x0 otherwise:

(

2.2 Simulations

There are five random variables with their associated distributions in the model. The initial

setup of the filaments is determined by two random variables: the initial position of the right

endpoint X0 and the fiber length L. The movement of filaments is governed by V the filament

velocity, Ts the pausing time of the filament, and Tm the time the filament is moving. We

denote the distributions for all the random variables as follows:

• mX0
governs the initial right endpoint X0 of the filaments,

• μL governs the length L of each filament,

• μV governs the velocity V of the filament during each period of motion,

• μon governs the duration of time each filament moves before pausing or changing velocity,

and
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• μoff governs the duration of time each filament remains stationary (or pausing) before mov-

ing again.

The distribution mX0
that governs the initial position of the right endpoint of filaments is

always a uniform distribution on the interval [0, F], for some F> 0 and y0� F. The distribu-

tions of the moving and pausing times, μon and μoff, are also always uniform and only the

parameters are unknown. The distribution types and their characteristic parameters for fila-

ment length and velocity, μL and μV, are also unknown. The types of distributions considered

are Dirac delta (or deterministic), uniform, normal, and gamma distributions. Dirac delta dis-

tribution would reflect a case where the velocity of filament is precisely set. Uniform distribu-

tion of velocities would mean that all velocities are equiprobable, and that there is no internal

control of filament velocity within the cell. For example, the velocity could be between 0 and

the maximal free load velocity of kinesin motors. The Gaussian distribution would reflect the

case where velocities are distributed symmetrically around an average value, suggesting that

the control of filament velocity is noisy but symmetrical. The gamma distribution would reflect

the fact the velocity is asymmetrically distributed with a higher contribution of slow filaments.

The gamma distribution would empirically describe the asymmetric velocity distributions pre-

dicted in the transport of cargoes when friction plays an important role [19, 20], as it is the

case for IF [12]. The Dirac distribution depends on one free parameter and the other three

have two free parameters. The mean denoted μ and standard deviation denoted σ are defined

in the standard manner for the uniform and Gaussian distributions and for the gamma distri-

bution μ = kθ and s ¼
ffiffiffi
k
p
y where k and θ are the free shape and scale parameters respectively.

Hence the determination of the appropriate distribution and their relevant parameters to use

is the primary objective of this study.

We numerically simulated the FRAP experiments by moving the filaments and calculating

how many filaments are in the bleached region. We did this in three different ways: 1) each fil-

ament gets a different velocity determined by μV but it remains constant throughout the simu-

lation; 2) after Ton time units have elapsed, where Ton is determined by μon, velocities change

but always come from the same distribution, μV; and 3) filaments have velocities which change,

again determined by μV, but they stop in between velocity changes. Thus, there is a cycle for

each filament of duration Ton + Toff where Ton is a μon distributed random variable and is the

time the filament is moving (the motion is on) and Toff is a μoff distributed random variable

and is the time the filament is stationary (the motion is off). We refer to these simulations as

type 1, 2, and 3 simulations. Fig 2 depicts three filaments for each type of simulation. Depend-

ing on the simulation the length of the filaments is either fixed or uniformly, normally, or

gamma distributed. Similarly, the velocity is either fixed or uniformly, normally, or gamma

distributed. For the velocity the normal and gamma distributions are truncated so no velocities

are greater than 40 microns per minute (and for the normal distribution the velocities are all

positive). For type 2 simulations the lengths of time during which velocity is fixed are uni-

formly distributed with a specified mean τon. For type 3 simulations the stop and run times are

uniformly distributed with specified means τoff and τon.

We use MATLAB to perform the simulations. This work is driven by experimental data,

however the variables of interest (velocity, length, pausing, and moving time) are not observ-

able. Hence we model the variables of interest as random variables with underlying distribu-

tions. As previously motivated we use 4 types of distributions. We estimate only the

parameters (mean and variance) of these distributions. Hence we fit the simulated fluorescence

intensities to FRAP data by calibrating these distributions using the MATLAB function fmin-
con, a nonlinear optimizer which finds the minimum of a constrained nonlinear multivari-

able function. The result of our fitting specifies which type of distribution to use and its
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relevant free parameters for each variable of interest (velocity, pausing, and moving times).

We found that information about length is not encoded in the profile curves, thus, to reduce

the model complexity during the fitting process, we fixed the length to be a uniformly distrib-

uted random variable with μ = 5.025.

2.3 Experiments

2.3.1 Cell culture. Primary rat astrocytes were prepared as previously described [21]

according to the guidelines approved by the French Ministry of Agriculture and following

European standards. For scratch-induced migration assays, cells were seeded on poly-L-orni-

thine-precoated coverslips for immunofluorescence or 35-mm glass-bottomed culture dishes

(MatTek Corporation) for videomicroscopy. Cells were grown to confluence in DMEM with

1 g/l glucose and supplemented with 10% FBS (Invitrogen), 1% penicillin–streptomycin

(Thermo Fisher Scientific), and 1% amphotericin B (Thermo Fisher Scientific). On the day of

the experiment, cells were scratched with a blunt-ended microinjection needle, creating a 300-

μm-wide wound to trigger cell migration.

2.3.2 Cell transfection. Starting from a 10 cm diameter petri dish, primary astrocytes

grown to confluence were trypsinized and electroporated with a Nucleofector machine (Lonza)

Fig 2. A diagram depicting the different theory and simulation types and cases solved theoretically. In each panel,

kymographs of three typical filaments are shown. Panels (a)-(c) depict the three types of simulations where all the

filaments have random velocities and random lengths. Panel (a) shows type 1 where the filaments have random

velocities which are constant for the duration of the simulation. Panel (b) shows type 2 simulations where the filaments

have random velocities which instantaneously change at random times. Finally, (c) shows type 3 simulations where

filaments have random velocities and exhibit a pausing behavior between velocity changes. Panel (d) shows the

particular situation/case of Type 1 simulations theoretically solved in Eq (4) where all filaments have the same fixed

velocity but random (time-independent) lengths. Panel (e) the particular situation/case of type 1 simulations

theoretically resolved in Eq (5) where all the filaments have the same length but different (time-independent) velocities

that are randomly selected.

https://doi.org/10.1371/journal.pcbi.1010573.g002
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using 5 μg of vimentin-EGFP DNA. We have previously shown that EGFP-tagged vimentin

co-polymerizes with the endogenous IF proteins and fluorescently labels the whole astrocytic

IF network. Therefore labeling vimentin fluorescently is enough to follow the dynamics of the

complete/whole IF network [12]. Medium was changed the day after transfection.

2.3.3 Live-cell imaging. Nucleofected primary astrocytes were seeded on 35-mm glass-

bottomed dishes and grown to confluence for 4 days. On the day before wounding, the

medium was changed to a phenol red–free DMEM supplemented with 10% serum. The mono-

layer was wounded and cells were monitored between 1 and 2 hours after wounding, allowing

them to grow a polarized protrusion [22]. Videos were acquired on a spinning-disk confocal

microscope (PerkinElmer) equipped with an electron-multiplying charge-coupled device cam-

era and either a 63×, 1.4 NA objective or a 100×, 1.4 NA objective.

3 Results

In this section we give the results of the mathematical theory, the three types of simulations,

and the experimental data. We divide it into five main subsections: first, we explain the theo-

retical results; second, we consider what can be learned from the initial setup; third, we com-

pare type 1 simulations (where the velocity for each filament is fixed for the duration of the

simulation but each filament’s velocity can be different) with the theoretical results derived in

Eqs (4) and (5); fourth, we compare results from type 1 simulations (where each filament can

have a different but fixed velocity) with type 2 simulations (where the velocity can abruptly

change to a new value during the simulation) and with type 3 simulations (where the filament

pauses before changing velocity); and finally, we compare the theory and results from simula-

tions of type 1 and type 3 with experimental data.

3.1 Theoretical results

Based on the filament motion model assumed in this work and the description of the experi-

mental setup described above, we are now deriving closed forms for the profile curves. Two

simplifications allow the derivation of two equations for the profile curves valid under the cor-

responding assumptions. First, we assume that all the filaments have the same fixed velocity

(a special case of type 1 simulations where all the filaments have a fixed velocity which is the

same, i.e., a Dirac delta distribution which gives all the filaments the same velocity, see Fig 2d).

Thus the velocity is deterministic and no longer random. We then derive the corresponding

profile curves in Eq (4). Second, we used a random non-fixed velocity and we fix an identical

filament length for all filaments, see Fig 2e. This allows us to derive Eq (5).

Let y represent an arbitrary point in the bleached zone, i.e., y 2 [y0, y1]. The probability that

some part of the filament is at y is given by

PðfXðtÞ > yg \ fXðtÞ � L < ygÞ:

Recall we are interested only in filaments which enter the bleached region from the left.

There are two types of filaments, ones which are not bleached and ones which are partially

bleached. Thus we define two sets, given y and t. Let

Uðt; yÞ ¼ fðx0; v; ‘Þjx0 þ vt > y and x0 þ vt � ‘ < y and x0 < y0g ð1Þ

be the set of values corresponding to filaments that are not bleached, because their right end-

points are located before the bleached region (the green filaments in Fig 1h–1j). Likewise let

Bðt; yÞ ¼ fðx0; v; ‘Þjy0 þ vt > y and y0 þ vt � ð‘ � ðx0 � y0ÞÞ < y

and x0 > y0 and x0 � ‘ < y0g
ð2Þ
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be the set of values corresponding to the non-bleached region of filaments that are only par-

tially bleached (the blue filaments in Fig 1i–1j). We note that these two sets are disjoint so

PððX0;V; LÞ 2 Uðt; yÞ [ Bðt; yÞÞ ¼ PððX0;V; LÞ 2 Uðt; yÞÞ þ PððX0;V; LÞ 2 Bðt; yÞÞ:

If we let P be the distribution of (X0, L, V), and let E be the corresponding expectation, then

the first probability becomes

PððX0;V; LÞ 2 Uðt; yÞÞ ¼ Eð1Uðt;yÞÞ ¼

Z

1Uðt;yÞðoÞ dPðoÞ ¼
Z

1Uðt;yÞðx0; v; ‘Þ dPðx0; v; ‘Þ;

and we can obtain the second probability similarly. The profile curves are scaled versions of

Hðt; yÞ ¼
Z Z Z

ð1Uðt;yÞðx0; v; ‘Þ þ 1Bðt;yÞðx0; v; ‘ÞÞ dmX0
ðx0Þ dmLð‘Þ dmVðvÞ; ð3Þ

while the fluorescence recovery curve is a scaled version of GðtÞ ¼
R y1

y0
Hðt; yÞ dy.

Recall that it is assumed that filaments right endpoints are uniformly distributed; so let X0

be uniformly distributed on the interval [0, F] with F� y0. Moreover, define

f ðt; y; ‘; vÞ ¼
Z

½0;F�
ð1Uðt;yÞðx0; v; ‘Þ þ 1Bðt;yÞðx0; v; ‘ÞÞ dmX0

ðx0Þ:

In order to compute H(t, y) explicitly, we make one of two simplifying assumptions. First,

suppose V = v with probability one (see Fig 2d). In this case it is convenient to work in travel-

ing wave coordinates so we let w≔ y − vt. In this scenario we find

H t; yð Þ ¼

Z

f t; y; ‘; vð ÞdmL ‘ð Þ ¼

1

F

Z F� w

� w
wþ ‘ð ÞdmL ‘ð Þ þ

Z 1

F� w
FdmL ‘ð Þ

� �

if w � 0; ð4aÞ

1

F

Z F� w

0

‘dmL ‘ð Þ þ

Z 1

F� w
F � wð ÞdmL ‘ð Þ

� �

if 0 < w � y0; ð4bÞ

0 if y0 < w: ð4cÞ

8
>>>>>>>><

>>>>>>>>:

Note that H depends on (t, y) through the traveling wave coordinate w.
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Second, suppose instead that all filaments have the same length ℓ with probability one (see

Fig 2e). In this case the only genuine random variables are X0 and V. Then we have

Hðt; yÞ ¼

1

F

Z yþ‘
t

y� Fþ‘
t

‘ dmVðvÞ þ
Z y� Fþ‘

t

y� y0
t

ðF � yþ vtÞ dmVðvÞ

"

þ
R yþ‘

t
y
t
ðy � vtÞ dmVðvÞ

i
if ‘ � y0 and F � y0 þ ‘;

1

F

Z yþ‘
t

y� y0
t

‘ dmVðvÞ þ
Z yþ‘

t

y
t

ðy � vtÞ dmVðvÞ

" #

if ‘ � y0 and F > y0 þ ‘;

1

F

Z yþ‘
t

y� Fþ‘
t

ðy � vt þ ‘Þ dmVðvÞ þ
Z y� Fþ‘

t

y� y0
t

F dmVðvÞ

"

þ
R y

t
y� y0
t
ðvt � yÞ dmVðvÞ

i
if ‘ > y0 and F � y0 þ ‘;

1

F

Z yþ‘
t

y� y0
t

ðy � vt þ ‘Þ dmVðvÞ þ
Z

y
t
y� y0
t
ðvt � yÞ dmVðvÞ

" #

if ‘ > y0 and F > y0 þ ‘:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

Hence Eq (4) represents the density of fluorescent filaments at time t and location y, or the

theoretical profile curves, when the velocity is fixed, and Eq (5) represents the density of the

fluorescent filaments (or profile curves) when the length is fixed. The details of these calcula-

tions are found in S1 Appendix.

3.2 Initial setup

As will be shown in Section 3.3, the mathematical theory indicates that data from FRAP exper-

iments reveals little information about filament length distributions, however some informa-

tion can be obtained. By knowing how the density of the filaments changes in time and space

some limited information about filament length can be deduced. In order to explain this we

consider the initial setup for the system and distinguish between the initial distribution of the

right endpoints of filaments and the distribution of filament densities. The first is independent

of filament length ℓ and the second is not. For our mathematical setup we consider the fila-

ments where the right endpoints are uniformly distributed in the interval [0, F] (see Fig 1a).

The normalized density of filaments as a function of space depends on the length of filaments;

two examples are shown in Fig 3. The normalized density of filaments as a function of space

will increase until it reaches 1 and then remain constant until some point before F where it will

decrease to 0 at F and remain 0 from there on. The regions of increase and decrease are deter-

mined by the length distribution of the filaments. These types of regions may be found near

the cell membrane. In panel (a) of Fig 3 the filament lengths have a larger mean (50, ±5μm

(SD) from a Gaussian distribution) and thus have a gentle slope. In contrast, in panel (b) of

Fig 3 the lengths have a smaller mean and standard deviation (0.5, ±0.05μm (SD) from a

Gaussian distribution), resulting in a much sharper transition. In addition, if the filaments are

long, the density measured from data will be smoother (less variability, with fewer filaments)

but if the filaments are short, the measured density will be noisy (more variability which will

require more filament measurements to smooth the density signal) as seen in panel (b).
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To summarize, filaments with a short average length will give density measurements with

greater variability and spatial derivatives. Measurements near the cell membrane may give an

idea of average filament length due to the boundary.

3.3 Type 1 simulations and theory

In type 1 simulations the velocity for each filament does not change with time (see Fig 2). First

we consider a special case of this, namely when the velocity is the same for all the filaments and

the filament length, which does not change during the course of the experiment (here we do not

model filament assembly or disassembly), is random. Then we consider fixed lengths and ran-

dom (but constant) velocities. Finally we consider both random velocities and random lengths.

3.3.1 All filaments have the same constant velocity. For fixed velocity, Eq (4) shows that

the profile curves are traveling waves since they depend only on the traveling wave coordinate

Fig 3. Impact of filament length on the density of filaments. This figure shows how filament length affects density

measurements of the initial setup (before bleaching, all filaments are fluorescent). The mean length of filaments in (a) is 50

microns and in (b) 0.5 microns. One filament is highlighted in cyan in (a). The red lines show the density of filaments

computed from the data shown above (calculated using bin sizes of 0.1 in (a) and 0.09 in (b)), normalized using the

maximum bin value (a) and average non-zero bin value (b), and the dashed blue line shows the theoretical density of

filaments using Eq (4), where y0 is set to be greater than F (this is the one exception to the assumption that y0� F), thus there

is no bleached region in the panels. The filaments’ right endpoints are uniformly distributed on [0, 200] and the filaments

have lengths which come from a Gaussian distribution with standard deviation 5 in (a) and 0.05 in (b). Eq (4a) is for w-values

less than 0, where the density is lower since the right endpoints of filaments are not initially placed to the left of 0 (see panel

(a)). For panel (a), if F − w> 60 (the mean length plus 2 standard deviations), the w coordinate is far enough to the left of

F = 200 that the boundary effects (due to placement of the right endpoints) do not affect density. If y0 is in the plateau region,

the front of the traveling wave will be sharp. Different length distributions show the same qualitative features. Panel (c) shows

the standard deviation of the filament density for different lengths of filaments and for four different values of total number

of filaments. The simulations in (c) have filament lengths which are Gaussian distributions with varying length and the

standard deviation is one tenth the length. The standard deviation is taken only for data on the plateau.

https://doi.org/10.1371/journal.pcbi.1010573.g003

PLOS COMPUTATIONAL BIOLOGY Using FRAP data to uncover filament dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010573 September 26, 2022 11 / 24

https://doi.org/10.1371/journal.pcbi.1010573.g003
https://doi.org/10.1371/journal.pcbi.1010573


w = y − vt. In other words, the shape of the profile curve does not change but rather is shifted

to the right over time. When the bleached region is where the filament density is constant (see

Fig 3a and 3b) the profile of the traveling wave will not give much information about the length

distribution. Recall that we assume the right endpoints of the filaments are uniformly distrib-

uted in the region [0, F]. Because we are placing the right endpoints in [0, F], the density of fila-

ments ramps up from zero to a constant, remains constant from zero to some value below F,

and then ramps down to zero at F (see Fig 3a and 3b). Thus Eq (4a) relates to the region left

of the right endpoint placement (for instance Fig 3a left of 0) where the density is zero or

ramping up. Eq (4b) describes the wave in the rest of the domain up to the bleached region,

and Eq (4c) describes the wave to the right of the left edge of the bleached region. We consider

only positive velocities and values in the bleached region, the main variations of concern are

the transition from the non-bleached region to the bleached region, that is values near y0.

For values of w such that F − w> u where u is a value such that
R u

0
dmL � 1, the first integral in

Eq (4b) dominates and is the mean filament length. In this scenario, the wave front is far

enough away from F so the profile curve is constant (the boundary effects are negligible—see

Figs 3 and 4). Thus the profile curve will be a wave which jumps down from a constant value

(determined by the first integral in Eq (4b)) to zero (when Eq (4c) is used) and the only infor-

mation about the length distribution that can be determined is the integral condition given

above which says something about the length of the interval “containing” most of the density

of L.

As an example see the first row of Fig 4. In Fig 4a, curves of a scaled version of Eq (4) are

shown with data from simulations where the bleached region is in the region where the fila-

ment density is uniformly distributed (not just the right endpoints). The filament density is

shown for the full domain before bleaching in the inset. The region to be bleached, between y0

= 50 and y1 = 60, is shown as grey. The profile curves are constant with a jump at the transition

to the bleached region. In Fig 4b the bleached region is in a region near the right end of the

interval where the filaments are located. In this region the filament density is not uniform and

the profile curves are not constant before they drop down to zero. In Fig 4c the bleached region

is at the right end of the region where the filaments are initially located y0 = F = 150. The pro-

file curves here are continuous and have no abrupt transition to zero. Regardless of the length

distribution, if the bleached zone is in the region of the domain where the filament density is

constant, the profile curves are constant with an abrupt change to zero.

To summarize, typically, if the filament velocities are constant the wave profile will have a

front at y0 which moves forward into the bleached zone without changing shape and there is

almost no information about the length distribution. It may be possible to learn something

about the filament lengths if the bleach region is near the cell membrane where the filament

density may not be constant due to the boundary imposed by the membrane.

The fluorescence intensity profiles obtained experimentally are not traveling waves (see Fig

1c and 1d). They have an abrupt transition at the time of bleaching from the fluorescent region

to the bleached region, but as time evolves the transition becomes smoother and less abrupt. In

order to explain the experimental data, we explored the effects of random filament velocity on

the curves. From now on, the bleached region will always be in the “plateau” region where

both the right endpoints of filaments and the filament density are uniformly distributed to

avoid boundary effect in the theoretical and simulated results. Since we only consider filaments

moving to the cell periphery, the right side of the profile curves and simulations do not give

any additional information.

The rest of section 3.3 will show a primary result of this work—that the fluorescence inten-

sity profile is affected only by filament velocity, and not by filament length.
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3.3.2 Filaments with random velocity and fixed length. The filament velocity distribu-

tion affects the fluorescence intensity profiles profoundly. The equation derived for fluorescent

filament density with random velocities and fixed length filaments (Eq (5)) is compared to

numerical simulations of type 1 in Fig 4d–4l. When the velocity is uniformly distributed the

Fig 4. Impact of velocity distributions and filament length on FRAP intensity profile curves from the theory and

type 1 simulations. The solid curves in (a)-(c) are plots of a scaled version of Eq (4) and in (d)-(l) they are a scaled

version of Eq (5) such that kfk1 = 1. The x’s are simulated results. The mean velocity for all simulations is 1 micron per

minute and for (g)-(l) the standard deviation of the velocity is 0.25. In (a)-(c) the velocity is fixed and the insets show

the simulated profile curves for the entire domain before bleaching and the region to be bleached is shown in grey. The

bleached region is 50–60, 120–130, and 150–160 respectively. In (d)-(f) the velocity is uniformly distributed, (g)-(i)

have Gaussian distributions, and (j)-(l) have gamma distributions. Panels (d), (g), and (j) have filaments with length 10

microns; (e), (h), and (k) have filaments with length 0.5 microns; and (f), (i) and (l) shows the average of 50 simulations

(each a different realization) with filament length 0.5 microns. In these simulations, each filament has a velocity which

does not change for the duration of the simulation. Each simulation in (a)-(c) has 200,000 filaments and in (d)-(l)

20,000. The right endpoints are uniformly distributed in (a)-(c) from 0 to 100 and in (d)-(l) from 0 to 470. The

bleached region in (d)-(l) is from 200 to 210. The curves and x’s represent times 0.5 (blue and red), 1 (light blue and

orange), 3 (lighter blue and light orange), and 5 minutes (cyan and yellow). The y axis is fluorescence intensity (a.u.) in

all panels. Length: Row one—Gaussian, μ = 50, σ = 5 microns. Rows 2,3, and 4—fixed.

https://doi.org/10.1371/journal.pcbi.1010573.g004

PLOS COMPUTATIONAL BIOLOGY Using FRAP data to uncover filament dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010573 September 26, 2022 13 / 24

https://doi.org/10.1371/journal.pcbi.1010573.g004
https://doi.org/10.1371/journal.pcbi.1010573


profiles are piecewise linear with the slope changing with time. For Gaussian distributed veloc-

ities the profiles are smooth curves with more abrupt transitions than the uniformly distrib-

uted velocities. The profile curves are also smooth curves in the case of gamma distributed

velocity but the transitions are not as abrupt as when the Gaussian distribution is used.

We then turned our attention to how changes in the fixed length parameter affects the

results of type 1 simulations. It is clear from Fig 4d–4l that as the length of the filaments

increases the profiles from simulations approach the theoretical curve which is determined by

the velocity distribution. If the length is small, there is more variation in the simulated results

due to the random nature of the simulations but that variation can be averaged out giving pro-

files which are similar to those with filaments of longer lengths.

Fig 5c–5e, shows how the standard deviation of type 1 simulations vary with the filament

lengths. In these simulations (similar to those shown in Fig 4) the averages of 50 simulations

are plotted with error bars indicating the standard deviation for simulations with filaments of

Fig 5. Impact of length distributions on FRAP intensity profile curve data (type 1). This figure compares the

simulated results with random velocity and different length distributions. In panel (a) the type of length distribution

changes, in panels (c)-(e) the length changes, and in (f)-(h) the mean length changes. Panel (b) is a blowup of the boxed

region in panel (a). In panel (a) the average length for all distributions is 10 microns and for the Gaussian and gamma

distributions the standard deviation is 0.2. In panels (c)-(e) the solid curves are plots of scaled Eq (5) such that kfk1 = 1

and the error bars are type 1 simulated results. The length of the error line is twice the standard deviation of the 50

realizations centered at the average of the realizations. The curves and error bars in (c)-(e) are profiles at times 0.5

(blue and red), 1 (light blue and orange), 3 (lighter blue and light orange), and 5 minutes (cyan and yellow). The y axis

is fluorescence intensity (a.u.) in all panels. Length: (a)—varied distributions, (c)-(e)—fixed, (f)-(h)—uniform.

Velocity: (a),(b), (f)-(h) gamma μ = 1, σ = 0.25; (c)-(e)—uniform on interval [0, 2].

https://doi.org/10.1371/journal.pcbi.1010573.g005
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varying lengths and with uniformly distributed velocities. Clearly the variation increases as the

filament length decreases. Depending on the quality of the data it may be able to surmise

length information based on the noise in the data.

3.3.3 Filaments with random velocity and random length. Next, we allowed the length

to vary according to different distributions with the same mean while keeping the velocity dis-

tribution fixed as a gamma distribution. We do not have a theoretical curve to compare with

these type 1 simulations because both velocity and length are random. Fig 5a, curves obtained

with the three different distributions (uniform, Gaussian and gamma with the same mean

length) for lengths are almost superimposed. In panels (f)-(h) the length distribution was left

the same (a uniform distribution) but the mean length was altered from 0.5, 2, 4 microns.

Again when the filaments have shorter lengths the data is noisier but still follows the same

basic curve (determined by the velocity distribution).

3.4 Comparing type 1, 2, and 3 simulations

Here we compare results from type 1, 2, and 3 simulations with fixed filament length and vari-

ous random velocities. Recall we simulated the velocity in three ways: type 1 each filament gets

a different velocity but it remains constant throughout the simulation, type 2 velocities change

after Ton time units have elapsed but always come from the same distribution, and type 3 fila-

ments have velocities which change after Ton time units but then they stop in between velocity

changes for Toff time units.

Simulations of type 1 match the results from Eq (5) (Fig 6a, 6d and 6h). For type 2 simula-

tions, the initial part of the wave front is slower (the filaments with larger velocities on average

do not maintain the large velocity and thus they do not move as far into the bleached region as

before) but the back of the wave front is faster (on average the filaments with slow velocities do

not remain slow). The overall effect of the change is to make the transition from the bleached

region to the unbleached region more abrupt than before (Fig 6b, 6e and 6i). This has the larg-

est effect in the case of the uniform distribution where the transition is linear for type 1 but

nonlinear and sharper for type 2 (Fig 6b). For type 3 simulations, filaments paused for a period

of time before changing velocity. The pausing time follows a uniform distribution with mean

0.5 minutes. The resulting profile curves are similar to the profiles of simulations of type 2

(without the pausing) except the velocity of the profiles is multiplied by the fraction of fila-

ments that are moving,
ton

tonþtoff
, where τon is the mean time the filaments have a fixed velocity

and τoff is the mean time the filaments are paused before changing velocity (Fig 6c, 6f and 6j).

The profiles are somewhat advanced at the front end and somewhat delayed at the back end.

The pausing seems to slightly ameliorate the sharpening of the wave caused by the velocity

changes. Type 2 and type 3 simulations give similar results. When filament velocity is a ran-

dom variable, the simulated profile curves are not traveling waves and the abrupt change

at the time of bleaching is smoothed out as time advances as is seen in the experiments.

3.5 Fitting theory and simulations to the data

We have a theoretical formula (Eq 5), and three types of simulations to compare to experimen-

tal data. We do not compare type 2 simulations to the data for two reasons. First, the results

from the last section show that simulations of type 2 and type 3 are similar. Second, for long

τon (i.e., longer than the duration of the experiment) type 2 and type 3 simulations are the

same. We now optimize the parameters in the theory, type 1, and type 3 simulations to fit the

experimental data.
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We fit thirteen data sets from five different experiments. All the data was from polarized

migrating astrocytes showing asymmetric profiles of fluorescence recovery indicative of the

polarization of the microtubule driven transport of IFs [12].

In all the simulations, filament length is uniformly distributed on the interval [.05, 10] with

mean 5.025 microns. For computational convenience we shifted the distribution away from 0.

For the theory and type 1 simulations we optimized over the average velocity, μ, for the uni-

form distribution, the average velocity, μ, and standard deviation, σ, for the Gaussian and the

gamma distributions which is parameterized by the shape parameter k and the scale parameter

θ. (Recall the mean μ = kθ and the standard deviation s ¼
ffiffiffi
k
p
y.) Both the Gaussian and the

gamma distributions are truncated so the velocities do not exceed 40 microns per minute (and

are not negative for the Gaussian). For type 3 simulations the mean off, τoff, and mean on time,

τon, are also free parameters. Thus type 1 simulations have one or two free parameters and

Fig 6. Impact of velocity changes and pauses on intensity profile curves. This figure shows how simulations differ

between type 1, 2, and 3. The solid curves are plots of scaled versions of Eq (5) such that kfk1 = 1 and the x’s are

simulated results. The curves and x’s represent times 0.5 (blue and red), 1 (light blue and orange), 3 (lighter blue and

light orange), and 5 minutes (cyan and yellow). Panels (a), (d), and (h) show type 1 simulations with x’s and theoretical

curves from Eq (5) (panels are the same as (d), (g), and (j) of Fig 4). Panels (b), (e), and (i) show type 2 simulations with

x’s where the filaments change velocity after a random time chosen from a uniform distribution with mean 1 minute

(the theoretical curves are for comparison with column 1). In (c), (f), and (j) the blue x’s show results from type 3

simulations where the stop time comes from a uniform distribution with mean 0.5 (on average 2

3
of the initial filaments

are moving,
ton

tonþtoff
¼ 2

3
) and the yellow x’s show results from type 2 for comparison (with the mean velocity 2

3
of the

comparable type 3 simulation). In (a)-(c) the velocity is uniformly distributed, in (d)-(f) it has a Gaussian distribution,

and in (h)-(j) it has a gamma distribution. All simulations have filaments with length 10 microns. The other

parameters are the same as in Fig 4. The y axis is fluorescence intensity (a.u.) in all panels. Length: All—fixed.

https://doi.org/10.1371/journal.pcbi.1010573.g006
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type 3 simulations have three to five free parameters. The type 1 and type 3 simulations are sto-

chastic processes so we optimized 30 realizations for each data set. The objective function min-

imized was

E ¼
XN

i¼1

XM

j¼1

jsðti; xjÞ � dðti; xjÞj
MN

where s(ti, xj) is the fluorescence intensity of the simulated data, d(ti, xj) is the experimental

data, N is the number of time points, and M is the number of spatial points. Fig 7 shows the

average of the minimum of the objective function E (best fit simulation) for each of the data

sets. Our model comparisons are only based on how well the model data fits the experimental

data. As the models considered are not nested, statistical tests are not applicable for

comparison.

Although, both type 1 and type 3 simulations fit the data well, the best fits come from type 3

simulations as can be seen, for one data set, in Fig 8. Furthermore, in all cases we successfully

simulated most of the fluorescence curves using a truncated gamma distribution for the veloci-

ties. This is not surprising since the videos of FRAP experiments clearly show a strong dispar-

ity in the filament speeds, with only a few filaments moving very fast and a large majority

moving very slowly (see videos [12]). The gamma distribution is the only asymmetric distribu-

tion considered thus allowing for a fat tail.

Fig 7. Comparison of how well the different types of simulations fit the experimental data. The results of the

optimization are shown. The box color indicates velocity distribution used: red—uniform, green—Gaussian, and

purple—gamma. The line in the box gives the average of the objective function, E for the best fit (out of 30) for each of

the 13 data sets, the width of the box shows the upper and lower quartile, and the whisker lengths are about ±2.7σ
where σ is the standard deviation. The circles are outliers. Using the Wilcoxon signed rank test: � for p< 0.022;�� for

p< 0.0012; ��� for p< 0.0005. All possible pair combinations are statistically significant except the 6 possible pairings

of Theory uniform, Theory Gaussian, Type 1 Uniform, and Type 1 Gaussian. In addition the difference between

Theory gamma vs Type 3 uniform and Theory gamma vs Type 3 Gaussian are not statistically significant. The theory

uses Eq (5). Length: Theory—fixed with μ = 10, Type 1 and 3—uniform with μ = 5.025 microns.

https://doi.org/10.1371/journal.pcbi.1010573.g007
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Using the scenario (type 3 simulations with gamma distributed velocities) representing the

best experimental intensity profile curves, information about the filament dynamics can be

extracted from the 13 data sets considered. Fig 9a summarizes the filament velocity distribu-

tions, the mean velocities of all filaments and only moving filaments (Fig 9b), the filament

mean off and on times, and the percentage of stationary filaments (Fig 9c). The mean velocities

of moving filaments are found to range from 0.004 to 0.05 microns per second (with an aver-

age over the 13 data sets of 0.0194) and the average velocities of all the filaments (including

moving and stopped filaments) and range from 0.003 to 0.025 microns per second (with an

average of 0.0108). On average the percentage of stopped fibers at steady state is
toff

tonþtoff
. Thus

Fig 8. Fitting simulations to the experimental data. This figure compares the simulated results (red shades) with

experimental data (blue shades) for one data set. The figure has been separated into three regions showing results from

the theoretical model, type 1 simulations, and type 3 simulations. Panels (a)-(e), (j), and (k) show all the time data

together, whereas the rest show the time data in individual panels. When optimizing only the data in the unshaded area

is used. The minimum value of the objective function is 0.0511, 0.0525, and 0.0139 for type 1 and for type 3 0.0415,

0.0404, and 0.0131 for uniform, Gaussian, and gamma distributed velocity respectively. The y axis is fluorescence

intensity (a.u.) in all panels. Length: All—uniform with mean 5.025 microns.

https://doi.org/10.1371/journal.pcbi.1010573.g008
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the data shows that in nine of the 13 data sets over half the filaments at any time are stationary

(Fig 9c).

4 Discussion

The work here builds a theoretical framework to quantitatively analyse the directed transport

of anisotropic structures and allows the reconstruction of fluorescent profile curves generated

by FRAP experiments. Here the focus is on IFs but the work is more generally applicable to all

kind of anisotropic structures, such as mitochondria which are also actively transported along

microtubules [23]. We show that data from FRAP experiments on IF, namely fluorescence

intensity profile curves, reveal important information for determining the velocity of the fila-

ments including mean velocity and shape of the distribution. In fact, the most important dis-

tribution governing the shape of the intensity profile curves is the distribution of the filament

velocity, μV. Profile curves which are observed to be traveling waves would suggest that all fila-

ments are moving with the same constant velocity. On the contrary, profile curves which are

Fig 9. Information on filament dynamics approximated from 13 experimental data sets. Panel (a) shows the non-

truncated velocity distributions as predicted by type 3 simulations (giving the minimum cost function of the 30

realizations) for each data set in a different color. All simulations used a truncated gamma distribution for the

velocities. The black dotted line shows the gamma distribution with parameters which are the average of the

parameters for the 13 other curves. Panel (b) shows the mean velocities. The squares to the left are velocities for

moving filaments von and the squares to the right are velocities for all the filaments i.e., v ¼ von
ton

tonþtoff
. Panel (c) shows

the mean on and off times predicted by type 3 simulations for the 13 data sets considered. The squares to the left are

the mean off times, τoff, and the squares to the right are the mean on times, τon. The black circles are the averages of

mean off and on times over the 13 data sets. The grey region shows the percent of filaments which are stopped (the

horizontal coordinate is randomly perturbed for viewing purposes). Both on and off times are uniformly distributed.

The lines connect values from the same data sets. The colors indicate the same data set. Length: All—uniform with

mean 5.025 microns.

https://doi.org/10.1371/journal.pcbi.1010573.g009
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piecewise linear with the slope changing in time suggest that the filament velocity is constant

in time and uniformly distributed. Profile curves which are sigmoidal indicate velocities are

normally or gamma distributed. Finally, we found that the filament length distribution has no

impact on the global dynamics of filaments.

Our results show that for polarized migrating astrocytes with reduced retrograde transport,

a gamma distribution for the velocity of the filaments best matches the data. Allowing the fila-

ments to pause and restart with new velocities, gives the best experimental fit. In fact, in most

of the data sets over half the filaments are stationary and most of the moving filaments have a

small velocity. However, some filaments have a large velocity as indicated by the long tails in

the velocity probability densities in Fig 9a and the long tails in the profile curves in Fig 8. This

is consistent with IF transport by one directional motor molecules with friction and with IF

experiments where velocities were described to be non Gaussian with a high propensity of

slow filaments in previous work [19, 20, 24]. Moreover, average velocities extracted from the

fit of the profile curves with gamma distributions are consistent with values published in the

literature [25], but lower than the range described for the transport of isolated small filaments

called squiggles [25, 26] and longer filaments measured in [17]. The distributions are consis-

tent with filaments having a large range of velocities which is seen experimentally [25]. All of

these velocities are lower than the maximum velocity of an individual kinesin-1 molecule of

0.668 microns per second [27] but which depends on the concentration of ATP and can be as

low as 0.045 microns per second for low concentrations. Additionally, increasing the load on

the kinesin molecule will decrease the velocity [27]. Long pauses have also been observed to

last up to 25–80 percent of the time [25]. This matches our model predictions that at any one

time fewer than half of the filaments are moving and the average percentage of time the fila-

ments are paused ranges from 25 to 73 (with an average of 53.5).

The very slow speeds are not surprising because there are a lot of sources of friction for the

transport of IF mainly driven by kinesin motors: interaction with other organelles, crosslink-

ing proteins between microtubules and intermediate filaments such as plectin, or dyneins,

although dynein activity has been shown to be inhibited [12]. Maintaining a network of fila-

ments that is constantly being restructured requires a delicate balance where a portion of the

network is stable, a portion is being dismantled, and a portion is being constructed.

Our results in the case of one directional transport also predict that other types of profile

curves can be recovered with velocities which are not gamma distributed. These predictions

could be used in other types of experiments investigating different cell conditions not

described in [12]. For example, when the friction in the system is reduced, we expect the veloc-

ity distributions to be more symmetrically distributed (Gaussian) because only one motor is

involved. This could be achieved by reducing the cross-linking of the filaments. Two possible

methods would be to inhibit plectin, or completely inhibit dynein. Uniform and Dirac velocity

distributions are ideal cases which were examined for the sake of comparison and are less bio-

logically motivated.

There are several possible causes that would inhibit filament motion. Physical obstacles

could hinder filament transport including the crowding from other filaments or crosslinking

to other filaments. Stalled velocity due to the tug-of-war caused by motor molecules of oppos-

ing types could be another possible reason. Mathematical modeling shows that there are several

scenarios where the majority of filaments remain in a state where the tug-of-war is unresolved

resulting in stalled filaments [15]. Filaments detaching and staying detached from the microtu-

bule would also be stalled. Finally there are direct and indirect interactions with actin which

could cause anchoring of the filaments [17]. Overall, the data suggests that many of the fluores-

cent filaments are in the static portion of the network or in the process of being disassociated

or associated with it. Thus the majority of filaments are stationary or moving with very slow
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velocities. This does not preclude the possibility that many filaments which are not associated

with the stationary portion of the network are also pausing for long periods of time.

Assembly and disassembly of IF occurs on a time scale of hours in neurons [28]; whereas,

the FRAP experiments take place on the time scale of minutes. Yet in epithelial cells, keratin

assembly/disassembly occurs at the time scale of minutes [29]. But in our experiments the pro-

file curves remain low in the middle of the bleached region indicating that assembly is not

playing an important role. Preliminary results of simulations with length changes suggest that

the results presented here are robust. This is not surprising since length does not substantially

affect the profile curves. Of course, in systems where filament length can change at a time scale

comparable to that of active transport, our analysis is not appropriate and the profile curves

will have different characteristics.

Let’s consider three possible refinements to model. First, we could allow filament transport

in two directions. This would be important when considering symmetric profile curves, for

example those observed in astrocytes 8 hours after wounding, when cell polarity is well estab-

lished [12]. Two directional analysis would indicate whether the filament velocity has the same

characteristics in both directions. When there are no non-fluorescent moving filaments, the

bleached region is symmetric, and the velocities are equal in magnitude but opposite in direc-

tion no new information is gained. If there are non-fluorescent, moving filaments the profile

curves will be distorted but in a symmetric manner. If the velocity distributions are the same

but with different mean velocities (still in opposite directions) the moving non-fluorescent fila-

ments could break the symmetry. Second, we could allow the filament velocity to be correlated

with filament length [14]. How this correlation would alter the profile curves is hard to predict

without knowing how the length and speed are related. Third, we could consider the elastic

nature of IFs. The elasticity of the filaments has two possible relevant effects: length change

and speed change [14]. The first should not affect the profile curves but the second could.

Finally, by combining the information about filament velocities found here with models of fila-

ment transport [14, 15], it should be possible to elucidate properties of motors involved in the

transport. Additionally, when the cell is stationary, while the filament network is very dynamic,

there is no net change in filament density.

In future mathematical models, we plan to investigate conditions which would allow a

steady state density and give insight into how the cell maintains a dynamic network with no

net filament transport. Further mathematical analysis could be done using other mathematical

formalization. A standard method would be to use the Chapman-Kolmogorov equation,

but for our problem that requires simplification. All three types of simulations can naturally

be thought of as realizations of stochastic processes. With some work and simplifying assump-

tions, they can be framed as Markov processes. Type 1 simulations, while certainly stochastic,

have all of the randomness front-loaded at time 0. Consequently, they are trivially Markovian

because the state of the system at each strictly positive time depends deterministically on

the state at any previous time. The easiest way to frame type 2 and type 3 simulations as

Markovian is to consider only the velocity process and to require the elapsed time between

velocity jumps to be exponentially-distributed (rather than uniform), leaving us with classical

examples of continuous-time, time-homogeneous Markov processes. For interested readers

the resulting Chapman-Kolmogorov equation and other related formulas are given in S2

Appendix.

In summary, the modeling framework proposed in this work provides an in-silico platform

to study the impact of IF protein post-translational modifications [30] or mutations [31],

depleting or silencing one motor type, or altering the IF network composition on the IF trans-

port and organization in cells.

PLOS COMPUTATIONAL BIOLOGY Using FRAP data to uncover filament dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010573 September 26, 2022 21 / 24

https://doi.org/10.1371/journal.pcbi.1010573


Supporting information

S1 Appendix. Appendix 1.

(PDF)

S2 Appendix. Appendix 2.

(PDF)

S1 Datasets. The FRAP data.

(XLSX)

Author Contributions

Conceptualization: J. C. Dallon, Cécile Leduc, Christopher P. Grant, Emily J. Evans, Sandrine

Etienne-Manneville, Stéphanie Portet.
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Writing – original draft: J. C. Dallon, Cécile Leduc, Christopher P. Grant, Emily J. Evans,

Sandrine Etienne-Manneville, Stéphanie Portet.
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