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Hospitals, Berlin, Germany

* liu_yushi@lilly.com

Abstract

Systemic lupus erythematosus (SLE) is a chronic, remitting, and relapsing, inflammatory

disease involving multiple organs, which exhibits abnormalities of both the innate and adap-

tive immune responses. A limited number of transcriptomic studies have characterized the

gene pathways involved in SLE in an attempt to identify the key pathogenic drivers of the

disease. In order to further advance our understanding of the pathogenesis of SLE, we used

a novel Bayesian network algorithm to hybridize knowledge- and data-driven methods, and

then applied the algorithm to build an SLE gene network using transcriptomic data from

1,760 SLE patients’ RNA from the two tabalumab Phase III trials (ILLUMINATE-I & -II), the

largest SLE RNA dataset to date. Further, based on the gene network, we carried out hub-

and key driver-gene analyses for gene prioritization. Our analyses identified that the JAK-

STAT pathway genes, including JAK2, STAT1, and STAT2, played essential roles in SLE

pathogenesis, and reaffirmed the recent discovery of pathogenic relevance of JAK-STAT

signaling in SLE. Additionally, we showed that other genes, such as IRF1, IRF7, PDIA4,

FAM72C, TNFSF10, DHX58, SIGLEC1, and PML, may be also important in SLE and serve

as potential therapeutic targets for SLE. In summary, using a hybridized network construc-

tion approach, we systematically investigated gene-gene interactions based on their tran-

scriptomic profiles, prioritized genes based on their importance in the network structure, and

revealed new insights into SLE activity.

Introduction

SLE is a prototypic, systemic autoimmune disease characterized by inflammation of multiple

organ systems and dysregulation of both innate and adaptive immunity. Genetic studies have

identified more than 80 SLE-associated gene loci that contribute to disease susceptibility [1].

After decades of many unsuccessful trials, several new drugs have reported success in Phase II
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and III clinical trials of lupus. However, despite this success, the central drivers and key molec-

ular targets that drive the activity of SLE remain unclear [2–5].

Using gene expression profiling, the cytokine class of type I interferon (IFN) responsive

genes was shown to be elevated in SLE. These genes are collectively known as the IFN response

gene signature and comprise a large group of IFN proteins that regulate the function of

immune system. Subsequently, this led to clinical trials that focused on characterizing the IFN

signature [6]. Approximately 50% to 75% of SLE patients enrolled in industry-sponsored

Phase II and III SLE trials that characterized IFN responsive gene profiles were found to be

type I IFN-signature positive (IFN-positive) [7–9]. The high prevalence of the IFN signature in

SLE, particularly among clinical trial patients, supported the concept that identification of sub-

groups of patients with high IFN gene expression and targeting type I IFN could be an effective

strategy for the treatment of SLE. However, Phase II and III studies targeting type I IFN dem-

onstrated variable results [7, 10]. These results instigated research to identify new and more

relevant targets for drug therapy.

Statistical methods have been developed to infer gene-gene interactions (GGI) and gene

regulatory relationships using large amounts of transcriptomic data. Such inferred GGIs can

be represented by a graph or network, in which nodes are genes and edges represent GGIs.

Rather than providing a list of putative disease-relevant genes, a gene network approach pro-

vides a systematic view of the interplay between multiple genes and pathways, helps to under-

stand how genes contribute to disease pathogenesis, and prioritizes key driver genes for drug

development. There are three popular gene network construction methods [11]. The most

popular method is correlation-based (also known as co-expression-based), which uses correla-

tion to connect genes [12]. However, the drawback of this method is the inability to distinguish

direct and indirect interactions. In practice, this method is often used as a clustering method

to identify modules of genes with similar expression profiles. The second method is the Mar-

kov method, which is based on conditional dependence detection to describe a set of random

variables with Markov properties. In theory, the Markov property ensures only direct connec-

tions remain in the network. The third method is the Bayesian method, which describes a set

of random variables using their conditional dependence in an acyclic directed graph. The

edges in a Bayesian network are directed, and under proper assumptions, can be viewed as

causal relationships [13]. Despite the appealing theoretical properties, the Bayesian network

method is challenging with limited sample sizes because the number of possible network topol-

ogies increases super-exponentially with the number of genes.

In this study, we developed a novel computational method to construct a Bayesian gene net-

work to tackle the high-dimensionality issue and applied this method to SLE. Although type I

INFs have been implicated in the pathogenesis of SLE, our Bayesian gene network revealed

that some JAK-STAT pathway genes (e.g. JAK2, STAT1, and STAT2) may also be central to

SLE. This is consistent with the recent discovery of the pathogenic and therapeutic relevance

of JAK-STAT signaling in SLE [14, 15]. Our network construction and analysis in SLE demon-

strated the value of these genes in the understanding of the disease and in the identification of

new therapeutic targets.

Materials and methods

Gene expression data

Gene expression data were obtained from 1,760 SLE patients in two Phase III, 52-week, ran-

domized, placebo-controlled, double-blind studies (ILLUMINATE-1 and -2) [16, 17]. Blood

samples were collected in Tempus tubes (Thermo Fisher Scientific) at baseline, Week 16, and

Week 52. Transcriptomic results for each individual sample were analyzed using the
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Affymetrix Human Transcriptome Array 2.0 (HTA2). Other details of transcriptomic data col-

lection, processing, and statistical analysis have been previously described [7]. The dataset is

publicly available in the Gene Expression Omnibus repository (accession IDs: GSE88884 and

GSE88887). For our analysis, only baseline transcriptomic data from 1,760 SLE patients were

used for network construction. Additionally, the results of analyses to test differential expres-

sion (SLE vs. healthy controls) were used as additional input for key driver gene analysis. The

overall analysis workflow for candidate gene selection, gene network construction, and analy-

sis is illustrated in Fig 1.

Candidate gene selection

A co-expression network using all SLE patient baseline samples was built and has been previ-

ously described [7]. Briefly, transcripts with a coefficient of variation less than 25% were con-

sidered as ‘uninformative’ and removed. Five samples were removed based on weighted gene

co-expression network analysis (WGCNA) outlier detection [12]. The remaining transcripts

were clustered into 14 co-expression modules using WGCNA [7, 12]. The IFN signature, the

first principal component derived from 34 of the 164 pre-selected IFN response genes that

were the highest covariates, was an independent predictor of time to severe flare events [7]. As

we were interested to investigate the function of these genes in relation to both IFN signature

and disease flare, we selected three gene modules (Tan, Yellow, and Green) from the co-

expression network [7] as candidates for the following Bayesian gene network construction.

The expression of these three gene modules significantly correlated with the IFN signature and

was associated with time to disease flare (Table 1).

Prior information

Prior information of GGIs can be obtained using multiple methods (e.g. text-mining, existing

pathway databases, protein-protein interactions, and genetic interactions). Here we used text-

mining to retrieve gene regulation information from the literature using I2E [18]. There is a

vast corpus of molecular biology literature available in MEDLINE (PubMed), and I2E utilizes

advanced natural language processing techniques, such as information extraction, to process

Fig 1. Overall analysis workflow.

https://doi.org/10.1371/journal.pone.0225651.g001
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abstracts from MEDLINE and produce a structured representation of the knowledge of inter-

est. Specifically, we used the gene ontologies in I2E to find all relevant synonyms for a gene

and used a comprehensive biological relationship query to find all available gene-gene rela-

tionships. This I2E search strategy provided a rigorous and extensive analysis of MEDLINE to

identify high-quality gene-regulation relationships. The species, disease, tissue, and cell type

were not restricted in the search query. The GGIs retrieved from I2E can be represented as a

prior network, in which nodes are genes and directed edges represent their potential regula-

tory relationships. Multiple documents may describe the same GGI, and we used the number

of documents to score the strength of GGIs. Therefore, the number of documents describing

the same GGI was assigned as edge weight in the prior network, representing the confidence

of the prior information.

Bayesian network construction algorithm

With a limited sample size, structure learning in a Bayesian network is a challenging high-

dimension problem. Motivated by Zhang et al’s work [19], we proposed a flexible approach to

utilize known information as prior information, and integrate it with transcriptome data to

generate the potential causal network. Here, the prior information was derived from text-min-

ing results and it was integrated with the transcriptomic data of baseline patients from the

ILLUMINATE-1 and -2 trials. The algorithm is illustrated in Fig 2 and described as follows.

1. Prior edges (i.e. GGIs from text-mining) were randomly sampled based on the text-mining

results. The selection probability of each edge in the prior network was based on exponen-

tial distribution, 0.85(1−e−x) where x was the edge weight (i.e. the number of documents

that supported the GGI). Because the prior network contained a few loops and bi-direc-

tional edges, once a set of edges was selected, this ‘mini prior network’ was further pruned

Table 1. Three selected WGCNA modules.

Module Gene (transcript

cluster) number

Correlation with IFN

signature

(P-value)

Association with

time to flare�
Top 5 enriched gene ontology terms False discovery rate of the

enrichment test

Yellow 229

(264)

0.90

(0.00E+00)

1.00E-05 cellular response to type I interferon 1.16E-32

response to type I interferon 1.16E-32

type I interferon signaling pathway 1.13E-31

defense response to virus 8.43E-26

defense response 1.40E-24

Tan 64

(64)

0.42

(3.00E-48)

0.00E+00 nuclear division 4.23E-23

organelle fission 4.43E-23

cell cycle 6.20E-23

mitotic cell cycle 2.79E-22

mitotic nuclear division 7.84E-22

Green 138

(138)

0.34

(3.00E-48)

0.00E+00 humoral immune response 1.48E-06

complement activation, classical pathway 1.58E-06

humoral immune response mediated by circulating

immunoglobulin

2.28E-06

immune response-regulating cell surface receptor

signaling pathway involved in phagocytosis

2.28E-06

Fc-gamma receptor signaling pathway involved in

phagocytosis

2.28E-06

� The association was measured by Cox proportional hazards model λ(t|xi) = λ0(t) exp(xi�β), and P-values from the models were shown in the table.

https://doi.org/10.1371/journal.pone.0225651.t001
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to generate a directed acyclic graph, in which the feedback arc set (i.e. the bi-directional or

loop-forming edges) was removed. The minimum feedback arc set, which had minimal

total weight among all possible feedback arc sets, was removed using the integer program-

ming algorithm implemented by the igraph package [20].

2. A network was built based on the gene expression data using R package bnlearn [21], but

keeping the selected prior edges in Step 1 in the network structure. The learned structure

would include two types of edges: edges selected in Step 1 and edges derived using the gene

expression data. A score-based approach was used to learn the Bayesian network structure,

which assigned each candidate structure a score that measured how well the structure

describes the data and then found the structure that maximizes the score, formally

expressed as maxG,θ L(hG,θi;D), i.e. to find a graph structure G with parameter θ that maxi-

mizes the likelihood given the data set D [22]. Here, we used the hill-climbing algorithm. It

was a score-based heuristic search algorithm to iteratively perform a single-edge change for

attempting to find a higher score at each step.

The two steps shown above were repeated 100 times.

Once the 100 runs were finished, edges from all runs were aggregated and counted. The fre-

quency range for all the edges was integers from 1 to 100 and defined as ‘aggregated weight’.

The edges with high frequency were considered stable and reliable interactions and vice versa.

Subsequently, a reliability cutoff would be needed to filter out low weight edges to generate the

final network. Many real-world networks (e.g. social network, the worldwide web, airline net-

work, protein-protein interaction network) are scale-free [23], which means the node degrees

follow a power-law distribution. Therefore, we used the scale-free topology criterion [12] to

select the reliability cutoff. At each cutoff, the degrees of nodes were fitted to a power-law dis-

tribution using a linear model after log transformation. R2 from the fitted linear model was

considered as a measure of scale-free topology. Usually, the R2 increases when the cutoff

increases. The cutoff was chosen once the R2 first achieved above 0.8.

Fig 2. Algorithm workflow.

https://doi.org/10.1371/journal.pone.0225651.g002
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Simulation

Simulations were carried out to test the influence of prior information on the accuracy and

variability of network construction. We considered a 46-gene network (http://www.bnlearn.

com/bnrepository/gaussian-medium.html) as the ‘true’ network structure, and generated gene

expression data with 300 samples using the forward sampling method in bnlearn [21]. We also

simulated multiple sets of prior information with different precisions (e.g. 0.8, 0.6, 0.4, and

0.2). For example, 0.8 precision meant the 80% prior edges were correct and 20% prior edges

were wrong. The prior edge number was equal to 70, i.e. the edge number in the “true” net-

work. We also tested the null prior (precision = 0), which meant the final network was totally

data-driven. We repeated the algorithm 20 times for each precision value. At each time, the

prior information was randomly generated based on the precision value.

Key driver genes

Key driver genes, or master regulator genes are defined as those which have a significant effect

on the expression of neighbor genes. Depending on which neighbors were included, we

defined two types of key driver genes. First, key driver genes are genes whose ‘direct children’

tend to be differentially-expressed for SLE versus healthy controls. Second, key driver genes

can be those whose ‘Markov blanket genes’ tend to be differentially-expressed genes. In a

Bayesian network, the Markov blanket of a node includes its parents, children, and the other

parents of its children. Mathematically, the rest of the network is conditionally independent of

that node given the Markov blanket. Key driver genes were those genes which have not only

relatively more neighbors, but also most of those neighbors are differentially-expressed in SLE

versus healthy controls. We assumed key driver genes should have relatively more neighbor

genes such that only the top 20 genes based on the number of neighbors, either children or

Markov blanket, were selected for the key driver gene analyses. Then genes were ranked based

on the average Z-scores of their neighbors; Z-scores were derived using the P-values from dif-

ferential gene expression analysis.

Results

Simulation demonstrated the high stability and accuracy of the algorithm

Our algorithm utilized a model-averaging strategy and integrated the prior information in

order to handle the high-dimensionality issue and to achieve high stability and accuracy. Due

to high-dimensionality, the hill-climbing method is very sensitive to the start point and easily

falls into local minima. Based on our algorithm, the final network results from aggregating and

filtering of 100 individual networks. Only the common edges from the 100 individual net-

works are kept. This model-averaging method is a common practice to reduce the model vari-

ance [24]. Accurate prior information is able to restrict the search space or guide the search

path to be close to the global minimum. Accurate prior information can increase both the

accuracy and the stability of a model, and we used simulation to test the hypothesis. Twenty

final networks were generated based on the simulated gene expression data and prior informa-

tion at each prior precision setting, as described above.

If a model has low variance (i.e. high stability), the individual networks from 100 runs

would be relatively similar. The similarity between two networks can be measured by Ham-

ming distance, i.e. the number of addition/deletion operations required to turn the edge set of

one network into that the other network. Therefore, we calculated the Hamming distances

between pairs of the 100 individual networks in the 100 runs. The mean of the Hamming dis-

tances can be used to assess the stability and a lower value indicates higher stability, which

A Bayesian gene network reveals insight into the JAK-STAT pathway in systemic lupus erythematosus
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means the 100 individual networks are generally more similar to each other. The stabilities of

the networks without prior information were significantly lower than those with prior infor-

mation, and more importantly, increasing the accuracy of prior led to higher network stability

(Fig 3A). In addition, we used the Hamming distance between the true network and the gener-

ated network to assess the accuracy of the algorithm. A shorter distance meant more similarity

between the two networks. As shown in Fig 3B, the accuracy of the generated network was sig-

nificantly improved with more accurate prior information.

Three WGCNA modules had significantly high correlations with IFN

signature

We focused on the set of genes whose expression significantly associated with IFN signature

and time to flare. Three WGCNA modules from the previous analysis, Yellow, Tan, and

Green, met the criteria [7]. Based on a gene ontology enrichment test, these modules could be

annotated as type I interferon module, cell cycle module, or humoral immune response

Fig 3. Stability and accuracy assessment using the simulation. The stability (A) is measured by the mean of

Hamming distances between pairs of 100 individual networks in 100 runs for each final network. The accuracy (B) is

measured by the Hamming distance between the synthetic true network and a predicted network. The simulation was

repeated 20 times for each precision setting. Precision represents the accuracy of the prior information, except

precision 0, which means no prior information. The error bar is +/-1 standard deviation.

https://doi.org/10.1371/journal.pone.0225651.g003
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module, respectively (Table 1). The IFN signature was calculated using the expression profiles

of the 34 IFN response genes. The Yellow module had all the 34 genes and expectedly had the

highest correlation with the IFN signature. 108 out of the 164 pre-defined IFN response genes

were found the in Yellow module, while none were found in the Tan and Green modules. This

suggested that factors other than the IFN signature contribute to the SLE disease activity. We

were interested to identify the regulatory pathways among genes in the Yellow module and

their crosstalk with genes in the Tan and Green modules. Therefore, we selected all the 466

transcript clusters and 431 corresponding genes in the three modules for the following Bayes-

ian network analyses (S1 Table).

Prior information

17 histone cluster and 112 immunoglobulin genes were removed to reduce complexity.

Removing these was not felt to impact the analysis due to the fact that their presence was inter-

preted to reflect the expression of house-keeping genes and high levels of autoantibody activity

[7]. The remaining 302 genes were used to query the text-mining tool, I2E. We retrieved a

total of 1,904 hits (S2 Table). Among the 1,904 hits, there were 595 distinct gene pair relation-

ships. One unique gene pair relationship meant that gene A has an effect on gene B. The num-

ber of hits was recorded as the weight for that gene pair relationship. A prior network with 167

nodes and 595 edges excluding singletons was constructed using the text-mining result, in

which nodes were genes and edges were unique gene pair relationships with assigned weights

(Fig 4 and S3 Table).

The Bayesian gene network

The reliability cutoff was set to 90, as an edge should appear at least 90 times out of the 100 ran-

dom runs. Usually, the network becomes sparser and more like a scale-free network when the

reliability cutoff increases (Fig 5A). We selected the cutoff, 90, at which the network first

achieved above a 0.8 scale-free criterion when increasing the reliability cutoff from 50 to 100

(Fig 5). The final network had 277 nodes and 598 edges, excluding singletons (Fig 6 and S4

Table).

During the network construction process, the probability that one prior edge was selected

was based on the exponential distribution (1–e−x) multiplied by a ceiling parameter 0.85,

where x was the edge weight (i.e. counts of documents supporting the GGI). A higher weight

meant a higher probability of being selected at each run, and thus remaining in the final net-

work. The selection probability ranged from 0.537 to close to 0.85 for each edge at each run

(Table 2). These selection probabilities seemed high, but we used 90 as the reliability cutoff,

such that any edge in the final network would need to be present in at least 90 out of 100 runs.

Thus, most of the prior edges were highly unlikely to remain in the final network if they were

random noise (Table 2). This was supported by the 50 prior edges that remained in the final

network, which was much higher than expected based on binomial distribution (11.31 edges).

At most weight levels, the numbers of prior edges remaining in the final network were signifi-

cantly higher than expected (Table 2). This indicated that many of these prior edges were sup-

ported by both existing knowledge and gene expression data. Nevertheless, both the ceiling

parameter 0.85 and the scale-free criterion of 0.8 were empirical settings. Further simulations

and studies will be necessary to find a more systematic way to set the parameters.

As demonstrated by our simulations, the network without prior information had low stabil-

ity and accuracy. Previously, we used the mean of Hamming distances between pairs of the

100 individual networks in the 100 runs to assess the stability of the networks. The value from

the networks without prior information was 6962.83 ± 169.59, higher than that with prior
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information (6462.59 ± 176.02). It had 364 edges, which was also lower than that with prior

information (598). The higher mean Hamming distance and fewer edges indicated the individ-

ual networks from 100 runs were quite different from each other if no prior information was

provided, i.e. the model without prior information had low stability. Another way of assessing

stability was to rerun the whole algorithm with the same setting and compare the two results

(Fig 7). With prior information, the two networks had 598 and 536 edges, respectively, and

had 467 overlapped edges (78.1% and 87.1% of edges overlap with each other, respectively).

Without prior information, only 65.7% and 66.0% of edges overlapped with each other, respec-

tively. The node degree distributions from two networks with prior information were more

similar than those from two networks without prior information (Fig 7).

Hub genes

The hub gene is an important concept in network analysis. It is defined as a gene that is over-

connected compared with an ‘average’ gene. Such genes are important because knockdown of

these genes will potentially perturb more genes or pathways. Thus, understanding of their

functions could improve our understanding of the disease mechanism.

We compared the hub genes from the prior network and the final network in the setting of

SLE pathogenesis. Given that the prior network was generated based only on current knowl-

edge about GGIs, the hub genes in the network were biased towards genes that were of

research interest. Although these genes were immune function-focused due to the selection

criteria, they may not be SLE specific. Table 3 shows the lists of top hub genes from the prior

Fig 4. The prior network. The node represents the gene, the edge is the regulatory relationship between two genes,

and the color darkness of the edge corresponds to the edge weight, i.e. the number of documents showing the

regulatory relationship. The top 12 hub genes are highlighted.

https://doi.org/10.1371/journal.pone.0225651.g004
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network and the final network. As a comparison, STAT1, IRF1, and IRF7 were overlapping

genes, suggesting the importance of these well-studied genes in SLE; all three genes were criti-

cal in the type I interferon and JAK-STAT pathways [25]. In contrast to the prior network, the

final network identified more JAK-STAT pathway genes (JAK2 and STAT2).
Subsequently, we examined the GGIs among these JAK-STAT pathway genes and IFN reg-

ulatory genes, STAT1, STAT2, JAK2, IRF1 and IRF7, and their first-degree neighbors (Fig 8).

Some of our findings were consistent with the literature. For example, IRF1 and STAT1 can

upregulate IRF7 gene expression [26, 27]. FAS is downstream of many JAK-STAT pathway

genes, indicating its crucial role in regulating cell death in SLE [28, 29]. Some known

Fig 5. Reliability cutoff selection and the degree distribution of the final network. (A) The reliability cutoff

selection was based on a scale-free criterion and the cutoff was set to 90, where the scale-free criterion first achieved

above 0.8 when increasing the cutoff from 50 to 100. (B) For the degree distribution of the final network, the

distribution was log-transformed to show it generally fitted the power-law distribution.

https://doi.org/10.1371/journal.pone.0225651.g005
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interactions were not found in the final network, e.g. the interactions between STAT1, STAT2,
and IRF1 [30], reflecting some limitations of the method and data. Nevertheless, the network

Fig 6. The final network. The node represents gene and the edge is the regulatory relationship between two genes.

The color of a node represents one of the WGCNA modules, Yellow, Green or Tan, and the color darkness of the edge

corresponds to the edge weight, i.e. the edge frequency in the 100 runs. The top 12 hub genes are highlighted.

https://doi.org/10.1371/journal.pone.0225651.g006

Table 2. The impact of prior weight.

Prior

weight

Number of

prior edges

Selection probability

per edge in one run+
Probability of one prior edge

remaining in final network by

chance++

Expected number of prior edges

remaining in final network by

chance

Number of prior edges

remaining in final

network

P-value

1 269 0.537 4.67E-15 1.26E-12 14 9.98E-

178�

2 122 0.735 3.85E-05 4.69E-03 4 1.92E-

11�

3 67 0.808 9.39E-03 6.29E-01 6 4.19E-

05�

4 42 0.834 4.53E-02 1.90 10 1.41E-

05�

5 20 0.844 7.53E-02 1.50 4 5.90E-02

6 16 0.848 8.99E-02 1.43 4 4.94E-

02�

7 6 0.849 9.59E-02 5.75E-01 0 1

> = 8 53 �0.850 �9.81E-02 �5.20 8 �1.44E-

01

+ Selection probability per edge in one run = 0.85(1-e—prior weight).
++ Assuming the reliability cutoff is 90, which means one prior network should be appear at least 90 times out of 100 runs. The probability is calculated based on

binomial distribution.

� Statistical significance (P-value<0.05).

https://doi.org/10.1371/journal.pone.0225651.t002
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successfully detected the central roles of JAK-STAT pathway in SLE, and many interactions

may be novel and worth further validation.

Other identified hub genes in the final network could also play important roles in SLE.

Some of them are still novel and further experiments may be needed to elucidate their roles in

SLE. For example, DHRS9 encodes a protein known as dehydrogenase/reductase (SDR family)

member 9. In a recent study, evidence showed that the expression of DHRS9 changed signifi-

cantly with the addition of SLE immune complexes in peripheral blood mononuclear cells,

indicating the potential regulatory role of this gene in SLE [31]. Notably, ten out of the top 12

hub genes were from the Yellow module, and the other two hubs genes are FAM72C and

PDIA4, from the Tan and Green modules, respectively. FAM72C encodes a neuronal progeni-

tor cell self-renewal supporting protein and is involved with cellular proliferation in cancerous

cells [32], but its function in blood and SLE is unknown. The Tan module was enriched by

many cell cycle related genes. In addition, many genes from the three modules ‘regulated’

FAM72C (Fig 9A). Therefore, we hypothesized that FAM72Cmay play a role when the INF

and JAT-STAT pathways trigger the abnormal cell cycle of some peripheral cells, e.g. the

abnormal activation of B cells in SLE [33]. In contrast, many genes, including some INF path-

way genes, e.g. OAS2, BST2, IFI6, were ‘regulated by’ PDIA4, an endoplasmic reticulum-stress

Fig 7. The relationship of node degrees for two networks. (A) with prior information and (B) without prior

information.

https://doi.org/10.1371/journal.pone.0225651.g007
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pathway gene (Fig 9B). Some studies found that endoplasmic reticulum-stress regulates some

INF pathway genes [34, 35]. The interactions between PDIA4 and INF pathway genes require

further investigation.

Key driver genes

We identified multiple key driver genes by integrating the network structure and differential

expression analysis (Table 4). Differential expression analysis usually focuses on genes with rel-

atively large fold changes to overcome the false positive issues. However, this approach could

overlook some essential genes with small fold changes, especially when such genes are often

Table 3. Top hub genes in prior and final networks.

Prior network� Final network

Gene No. of direct neighbors No. of children�� No. of parents�� Gene No. of direct neighbors No. of children No. of parents

STAT1�� 59 34 25 IRF1 25 25 0

IRF1 53 30 23 FAM72C 21 0 21

DDX58 40 17 23 PDIA4 16 15 1

FAS 38 11 27 JAK2 15 15 0

PML 32 21 11 SLFN12 15 1 14

CXCL10 31 11 20 GALM 15 1 14

TNFSF10 30 17 13 DHRS9 15 0 15

CCL2 28 8 20 STAT1 13 13 0

IRF7 28 15 13 HCG26 13 0 13

CASP1 25 10 15 STAT2 11 10 1

PLK1 24 13 11 IRF7 11 4 7

IFIH1 22 10 12 RBM43 11 0 11

Genes are sorted based on the number of direct neighbors

� Prior information includes bi-directed edges.

�� The common genes in both lists are in bold.

https://doi.org/10.1371/journal.pone.0225651.t003

Fig 8. The subnetwork of IFR1, IFR7, STAT1, STAT2, JAK2 and their neighbors. The color of a node represents one

of the WGCNA modules, Yellow, Green or Tan.

https://doi.org/10.1371/journal.pone.0225651.g008
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located on the upstream side of a pathway, and activation of such genes could lead to down-

stream gene changes in the pathway (e.g. signal transduction). Upon binding of a chemical or

physical signal to the receptor, a series of events will occur (e.g. protein phosphorylation), lead-

ing to a cell response [36]. In our analyses, we tried to fill in such gaps. If a large proportion of

the neighbors of the target gene were significant differentially-expressed genes, such genes

should be carefully studied even if the genes themselves were not significant differentially-

expressed genes.

We used two separate methods to define the neighbors that a key driver gene could affect.

One was restricted to the ‘children’ and the other one was restricted to the ‘Markov blanket’.

Usually, the Markov blanket could be viewed as the ‘maximum boundary’ of one gene effect.

Therefore, the Markov blanket neighbor definition was relatively more liberal than the chil-

dren definition. Table 4 lists the top 10 key driver genes for each definition.

Many of the key driver genes shared in both definitions, e.g. TNFSF10, DHX58, SIGLEC1,
JAK2, IRF1, and PML. As discussed previously, JAK2 and IRF1 were critical for the IFN and

JAK-STAT pathways. TNFSF10 (TRAIL) encodes a tumor necrosis factor (ligand) superfamily

member and is transcriptionally regulated by IRF1 [37]. Similarly, cytosolic nucleic acid sen-

sors, including DHX58 which is regulated by IRF1 [38], could stimulate type I IFN production

and may serve as potential therapeutic targets for SLE [39, 40]. SIGLEC1 was discovered as a

Fig 9. The first-degree neighbors of (A) FAM72C and (B) PDIA4 genes. The color of a node represents one of the

WGCNA modules, Yellow, Green or Tan, and the width of an edge corresponds to the edge weight, i.e. the edge

frequency in the 100 runs.

https://doi.org/10.1371/journal.pone.0225651.g009

Table 4. Key diver genes.

Gene Number of children Average Z-score of children Gene Number of Markov blanket genes Average Z-score of the Markov blanket

DHX58� 9 7.45 TNFSF10 42 6.52

USP18 7 7.11 DHX58 43 6.34

TNFSF10 8 6.92 SIGLEC1 55 6.33

UBE2L6 7 6.20 JAK2 59 5.90

IRF1 25 5.86 PNPT1 53 5.71

STAT1 13 5.62 PML 38 5.65

STAT2 10 5.61 IRF1 72 5.50

JAK2 15 5.36 STAT1 39 5.44

SIGLEC1 10 5.35 TNFAIP3 49 5.43

PML 8 5.30 IFI35 38 5.24

� The common genes in both lists are in bold.

https://doi.org/10.1371/journal.pone.0225651.t004
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biomarker of disease activity in SLE and could serve as a negative regulator of type I IFN pro-

duction [41, 42]. It is known that PML transcription can be introduced by IFN, but it is unclear

how PML mediates downstream signaling in SLE. [43, 44] In summary, the key driver-gene

analysis suggested that JAK-STAT and IFN pathways played important roles in SLE. Further-

more, key driver-gene analysis is supplemental to hub gene analysis for gene prioritization.

For example, PDIA4 and JAK2 have the same number of children (15), but the mean Z-score

of the children of JAK2 (5.36) is much higher than that of PDIA4 (3.62). This indicates JAK2
may have a higher functional impact than PDIA4.

Discussion

In summary, we developed a novel way to build a Bayesian network based on transcriptomic

data and literature mining for prior information. As an example, the method was implemented

using transcriptomic data of pre-selected gene modules from SLE patients. Both hub gene and

key driver-gene analyses suggested that the broad immunomodulatory effects mediated by the

JAK-STAT pathway were critical for SLE. As a validation of our analysis, baricitinib, a JAK1/

JAK2 inhibitor, showed success in a double-blind, randomized, placebo-control Phase 2 trial [4].

Despite interesting and novel findings, our methods have limitations. First, during the final

network derivation, prior information was important. There are only limited ways that we

could obtain gene-gene regulatory relations. We used text-mining because we believe it is the

most comprehensive way to collect cumulatively all gene-gene regulatory relationships from

potential all experiments conducted and assign confidence scores to control how that informa-

tion can be used during the Bayesian network construction. Alternatively, curated databases

with regulatory relationships, e.g. MetaBase (https://portal.genego.com/), RegNetwork [45],

and TRRUST [46], can also be used as prior information. However, these databases are often

biased due to the higher criteria for a regulatory relationship to enter the database, and the

availability, accuracy, and update frequency highly depend on the research group maintaining

the database. As a sensitivity analysis, we tested MetaBase as prior information. Interestingly,

IFR1, STAT1, and STAT2 are among the top four hub genes. Although JAK2 was not identi-

fied as one of the top hub genes, the results indicated the essence of JAK-STAT pathway for

SLE, consistent with that from using I2E text-mining as prior. Additionally, new GGI results

could be incorporated into prior information, and a new network derived reiteratively. This

would help to incorporate all different layers of data dynamically and could be viewed as a

multivariate version of ‘meta-analysis’. Second, although evidence has suggested that blood

was a reasonable tissue to profile the disease, a debate may arise whether whole blood is the

best tissue to characterize SLE [47]. Additionally, as blood is a mixture of different cell types,

there is a lack of single-cell transcriptome profiling. Therefore, our network may not reflect

GGI for a particular cell type, but an average of the mixed cell types. Third, due to the compu-

tational limitations, only a subset of genes was included and GGIs of some relevant genes (e.g.

JAK1) could not be inferred. Last but not least, a Bayesian network could not accommodate

feedbacks or loops, which are critical components for biological mechanisms. Despite these

limitations, our network can still provide valuable information for scientists to understand

SLE. Additionally, the methods of constructing a Bayesian network and identifying key driver

genes could be easily applicable to other diseases with a suitable dataset.
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