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Abstract

The role that different life-history traits may have in the process of adaptation caused by divergent selection can be
assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation
shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence,
large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative
selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis
thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history
traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set
encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental
variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all
environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and
flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the
life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual
mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher
recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-
history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive
geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive
patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match
between organisms and the environments where they live, may contribute to better assess and predict the consequences of
global warming.
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Introduction

Annual plants exhibit contrasting life histories in different

environments varying in predictability of the amount and timing

of yearly precipitation. On the one hand, annuals occurring in

highly unpredictable environments, e.g. deserts, are typically

characterised by persistent seed banks and delayed seed germina-

tion. When environmental conditions become favourable for seed

germination and seedling establishment, annuals can complete the

life cycle in weeks. Hence, desert annuals reduce temporal

variance in reproductive success and buffer the long-term risk of

extinction in unfavourable years, representing a bet-hedging

strategy in unpredictable environments [1–7]. On the other hand,

annuals inhabiting humid temperate areas mostly behave as winter

annuals because the environment is seasonal and far more

predictable than in deserts. Winter annuals remain as seeds

buried in the soil during summer, peak germination in autumn,

overwinter as vegetative rosettes, and become reproductive in late

winter or early spring [8–12]. Thus, bet-hedging and winter

annual behaviour are regarded as adaptive life histories at the

opposing margins of a gradient of environmental severity and

predictability between deserts and temperate areas.

Obviously, environments are not homogeneous and annuals are

expected to modify the architecture of life-history traits reflecting

environmental and ecological differences among populations

[13,14]. Two traits stand out above all when annuals adjust the

life history to environmental conditions: the timing of germination

and flowering. Due to the short duration of the life cycle in

annuals, germination timing represents the first major develop-

mental transition influencing all posterior life-history traits [15–

19]. In addition, flowering time is also an important trait whose

variation has been shaped by natural selection to maximise

reproductive success [20–25]. Hence, annual plants are expected

to fine-tune the timing of germination and/or flowering to succeed

in a given environment. Indeed, recent empirical studies showed

that some annuals tend to lower germination fractions [26–28] or
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flower earlier [21,29–32] as environmental stress increases, such as

that caused by climate warming or increasing aridity.

The methodological approaches commonly employed to study

the evolutionary consequences of variation in life-history traits of

plants include common garden and/or reciprocal transplant

experiments between contrasting environments. Such experiments

are very powerful because they allow the assessment of the genetic

differentiation among lineages from different populations for the

life-history traits of concern [33–36]. However, an important

drawback is that these experiments are very demanding and

researchers generally opt for selecting an appropriate set of

populations from representative environments [37–40]. Therefore,

experiments have to sacrifice potentially relevant genetic variation,

which may limit our understanding of how the adjustment

between environmental factors and life-history traits works.

Alternatively, correlation analysis between genetic variation in

phenotypic traits and environmental variation has long represent-

ed a powerful method to detect selection along environmental

gradients [41–45] because adaptive phenotypic variation shifts

gradually across space as a result of the geographic patterns of

variation in major selective pressures, e.g. climate. Given the fact

that spatial patterns of variation exist in both environmental and

phenotypic traits, understanding large-scale adaptive patterns of

variation in life-history traits of annual plants demands geograph-

ically-explicit experimental approaches.

Here, we aim to analyse the adjustment between geographical

variation in environmental factors and life-history traits of the

annual plant Arabidopsis thaliana. We employ a collection of 279

geo-referenced populations from the Iberian Peninsula where A.

thaliana has been studied for years due to its large genetic and

environmental variation [12,46–49]. Study populations represent

a wide array of Iberian natural environments, encompassing

humanised and wild habitats as well as low- and high-elevation

locations. Each population was characterised by climate, vegeta-

tion and soil features. Genetic variation in life-history traits was

evaluated by replicating one individual from each population in a

common garden experiment. Experiments in natural field settings

are unavoidable if we aim to obtain realistic data on genetic

variation in phenotypic traits. We specifically address two main

questions. First, what is the spatial autocorrelation pattern of A.

thaliana’s life-history traits in the Iberian Peninsula? If environ-

mental factors have shaped variation in life-history traits, we would

expect to detect it by the extent of spatial autocorrelation in life-

history traits given the inherent spatial variation in environmental

factors. Second, what is the relationship between variation in

environmental factors and life-history traits in Iberian A. thaliana

populations? The environmental factors and the life-history traits

affected by them are expected to be correlated. The results are

discussed in a context of adaptive geographic variation stressing

the value of extensive sampling to identify ecologically and

evolutionarily important life-history traits in plants.

Materials and Methods

Study Organism and Source Populations
Arabidopsis thaliana (L.) Heyhn. (Brassicaceae) is a cosmopolitan

annual plant native to Europe and Central Asia [50]. In the

Iberian Peninsula, the plant is widely distributed occurring in both

humanised and wild habitats [46,48]. This self-compatible and

self-fertile plant possesses a seed bank with an estimated half-life of

approximately three years [12]. Arabidopsis thaliana can behave as a

winter or spring annual [49,51,52] depending on the timing of

germination (autumn vs. spring) and the state in which the plant

overwinters (vegetative rosette vs. seed). Iberian A. thaliana

populations are composed of individuals exhibiting both winter

and spring annual habits, but the proportion of spring-germinated

plants increases at high elevations as a result of high mortality rates

of vegetative rosettes due to harsh winter conditions [49].

Flowering always occurs in late winter or early spring and fruits

shed seed throughout spring and early summer [49].

We sampled 279 A. thaliana populations that were surveyed

across the major part of the Iberian Peninsula (ca. 8006700 km2;

36.00uN –43.48uN, 3.19uE –9.30uW; Fig. 1) during the period

2004 2 2009. Populations were geo-referenced for their latitude,

longitude and altitude using a GPS (Garmin International, Inc.,

Olathe, KS, USA), with an estimated average positional error of

4–6 m. Populations were separated by 1–1,042 km and altitudes

ranged 1–2,662 m.a.s.l. For each population, we collected seeds

from several individuals per population (approximately 6–20

individuals) separated by a few metres from each other. For all

individuals sampled, we produced a new generation of seeds in

controlled conditions in the glasshouse facilities at the Centro

Nacional de Biotecnologı́a (CNB-CSIC) in Madrid. Individuals

lacking a vernalization requirement to flower completed the life

cycle in 1 2 5 months in glasshouse conditions at approximately

22uC and 16 h of light. In the case of individuals requiring a cold

period to induce flowering, young vegetative rosettes grown in

glasshouse conditions were transferred to growth chambers at 4uC
with a short-day photoperiod (8 h of light/16 h of darkness)

during 6 weeks. After that time, plants were placed back in

glasshouse conditions to complete the life cycle. Seeds were stored

in cellophane bags at room temperature and dry conditions in

darkness.

In this study, we used one individual from each of the 279 A.

thaliana populations. We selected one individual per population,

which exhibited a common phenotype within its population based

on average flowering time or vernalization requirement. Further-

more, all 279 selected individuals (accessions hereafter; [53]) were

genetically different from each other, as shown by genetic data

obtained from a set of 250 polymorphic genome-wide neutral

SNPs previously analysed in Iberian A. thaliana accessions [47,48].

Genetically, the collection of 279 A. thaliana accessions exhibited a

significant isolation-by-distance pattern (N= 279, r= 0.35,

P,0.001; Mantel test based on geographic and genetic distance

matrices), which was highly consistent with previous results on the

genetic structure of Iberian A. thaliana populations based on 100

[46] and 182 accessions [48].

Arabidopsis thaliana is not an endangered or protected species

across its distribution range. Field sampling was carried out in

locations where no permission was required, except at Doñana

National Park (permission issued by Estación Biológica de

Doñana) and Sierra de Grazalema Natural Park (permission

issued by Red Andaluza de Jardines Botánicos de la Consejerı́a de

Medio Ambiente y Ordenación del Territorio de la Junta de

Andalucı́a).

The Field Experiment
In 2010, the 279 A. thaliana accessions were multiplied again by

the single seed descent method as described above to discard

possible effects of variable seed age on plant traits. For each

accession, we prepared eight batches, each of them with 60 filled

seeds, and stored them in 1.5 ml plastic tubes at room temperature

in darkness until the sowing day. On October 6, 2010, we sowed

the 60 seeds per batch in square plastic pots (12612612 cm3)

filled with standard soil mixture (Abonos Naturales Cejudo Baena

S.L., Utrera, Spain) at the El Castillejo Botanical Garden in Sierra

de Grazalema Natural Park in SW Spain (El Bosque, Cádiz

province, 36.46uN, 5.30uW, 329 m.a.s.l.). This Botanical Garden
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is an appropriate environment for A. thaliana because several

accessions from environmentally contrasted Iberian locations

completed the life cycle successfully there [54]. During the

experiment (from October 6, 2010, to May 5, 2011), mean

monthly minimum and maximum temperatures were 7.2uC and

20.4uC, respectively, and precipitation totalled 810 mm (Figure

S1). Temperature data were recorded with HOBO PendantH UA-

002-08 temperature loggers (Onset Computer Corporation, Inc.,

Bourne, MA, USA) and precipitation was recorded daily at the

meteorological station of the experimental facility. The experiment

had eight blocks and each block contained one replicate per

accession that was randomly placed within the block (Fig. 2).

Overall, this experiment included 2,232 pots (279 accessions 6 8

blocks) and 133,920 seeds (2,232 pots 6 60 seeds). Blocks were

covered by 2-cm wire mesh to protect young plants from bird and

rodent depredation (Fig. 2).

We surveyed the experiment every 15 days to record the

maximum number of vegetative rosettes per pot. In total, we

conducted five surveys between October 6 and December 17,

2010. In winter, mortality of vegetative rosettes increases and

recruitment of new individuals is virtually nil, rendering winter

surveys as unimportant for this trait [54]. A flowering date was

assigned to each pot when the majority of the individuals in the pot

developed flowering buds and had the first flower open (as in [54]).

It must be emphasized that all individuals within each pot were

sisters obtained by self-fertilization and their reproductive behav-

iour was quite homogeneous. Flowering time for each pot was

estimated as the number of days between seed sowing, given that

seed germination peaked within the first 15 days of the experiment

for all accessions, and flowering date. We counted the number of

fruiting individuals per pot and the total number of fruits per

individual when all individuals finished flowering and fruiting.

After recording data, plants were removed and incinerated, and

the soil composted to avoid uncontrolled seed dispersal at the

experimental facility.

In this experiment, we monitored a maximum of 57,638

vegetative rosettes during the autumn surveys (mean 6

SD = 53,054.863,556.3 vegetative rosettes) and recorded a total

of 46,638 reproductive individuals that overall produced 554,807

fruits (grand mean 6 SD = 11.9630.6; range = 1–982 fruits per

plant). The extent of flower abortion, fruit depredation, insect

damage and plant disease was rather low in this experiment; only

318 (0.68%) reproductive individuals were discarded due to these

factors.

Seed Weight and Seed Germination
We estimated seed weight and seed germination for the 279 A.

thaliana accessions. For each accession, we weighted, to the nearest

0.1 mg, three batches of 60 filled seeds each using a Sartorious

BP61S balance (Sartorius AG, Göttingen, Germany). Seed weight

was obtained by averaging the three measurements. In this

experiment, we used a total of 50,220 seeds (279 accessions 6 60

seeds 6 3 batches).

We also estimated seed germination under three temperatures

(10, 22 and 30uC). 10uC represents the autumn mean temperature

of several Iberian A. thaliana populations when seed germination

peaks [12], 22uC is the temperature commonly used to germinate

A. thaliana seeds in growth chamber conditions, and 30uC is known

to induce secondary seed dormancy in A. thaliana [55]. For each

accession and temperature treatment, we conducted two germi-

Figure 1. Distribution of the 279 A. thaliana Iberian populations of study. Maps show the geographical distribution of annual mean
temperature (uC), total precipitation (mm), vegetation data, and pH.
doi:10.1371/journal.pone.0087836.g001
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nation assays that exhibited a very similar behaviour (N= 279;

r= 0.83–0.86; Pearson’s correlation). For each germination assay,

one batch of 50 filled seeds per accession was placed in a moist

Petri dish at 4uC in darkness for four days in an AGP-700-ESP

incubator (Radiber S.A., Barcelona, Spain). After that, we

transferred Petri dishes to a FITOCLIMA-10.000-EH growth

chamber (ARALAB, Rio de Mouro, Portugal) for five days in light

and in the corresponding temperature (10, 22 or 30uC). We

counted the number of germinated seeds under a Stemi-2000-C

stereomicroscope (Carl Zeiss Optical, Inc., Chester, VA, USA).

Seeds were scored as germinated when the root tip protruded the

seed coat. For each temperature treatment, seed germination was

calculated by averaging the proportion of seeds germinated

between the two assays. In this experiment, we used a total of

83,700 seeds (279 accessions 6 50 seeds 6 3 temperatures 6 2

assays).

Environmental Data
We developed a geographic information system to generate an

environmental database for the 279 geo-referenced A. thaliana

accessions (Fig. 1) at a resolution of 1 km2. Weather data

encompassed 19 bioclimatic variables [56], which consisted in a

combination of annual trends, seasonality and extreme conditions

relevant to species physiological tolerances. These variables were

generated using monthly data from the Digital Climatic Atlas of

the Iberian Peninsula (http://opengis.uab.es/wms/iberia/

en_index.htm; [57]). Vegetation data were obtained from the

CORINE Land Cover 2000 (http://www.eea.europa.eu/

publications/COR0-landcover). We calculated the percentage of

humanised habitat, including urban, crops and semi-natural

grasslands, in a 78-ha circular area (500 m radius) around the

GPS coordinates. The percentages of humanised and natural

habitat, including primarily woody vegetation, were significantly

negatively correlated (N= 279; r=20.95; P,0.001; Pearson’s

correlation) and nearly summed to 100%. Here, we only used the

percentage of humanised habitat. Finally, soil data were

characterised by pH, which was obtained from the Soil

Geographical Database of Eurasia v.4 (http://eusoils.jrc.ec.

europa.eu).

Statistical Analyses
Life-history traits of A. thaliana accessions included in this study

were seed weight, seed germination at three temperatures,

maximum number of vegetative rosettes, flowering time, number

of reproductive individuals, and mean number of fruits per

individual. We also estimated a surrogate of individual fitness by

multiplying the proportion of seeds becoming adult individuals

times the mean number of fruits per individual. For all life-history

traits, we used the mean among replicates of the different

experiments. We also used replicates to estimate broad sense

heritability for all life-history traits as h2 =VG/(VG+VE), where VG is

the among-accession variance component and VE is the residual

variance.

Individuals within pots experienced asymmetric competition so

that a few individuals performed much better, in terms of fruit

production, than the rest of individuals in the pot. In order to

avoid bias in the estimation of the reproductive output due to

suppressed individuals bearing one fruit per plant, we estimated

the number of fruits per individual by excluding the largest

individual from each pot and averaging the number of fruits of the

15 largest individuals from all pots. Analyses conducted with

different estimates for the mean number of fruits per individual

(e.g. number of fruits of the largest individual, mean number of

fruits of the 30 largest individuals) were highly consistent (results

not shown). We considered that the 15 largest individuals captured

the winners of the asymmetric competition process. In fact, the

maximum number of individuals observed in the pots and the

skewness of the number of fruits per individual were significantly

positively correlated (N= 279; r= 0.53; P,0.001; Dutilleul’s t-test),

indicating that asymmetric competition increased with density.

Figure 2. Photographs of the experimental setting at the El Castillejo Botanical Garden. Panels include a general view of the blocks and
detailed views of pots with labels covered with the wire mesh, vegetative rosettes and fruiting plants of Arabidopsis thaliana.
doi:10.1371/journal.pone.0087836.g002
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Previous experiments with an identical set-up also showed that

density only affected the number of fruits per individual whilst the

rest of life-history traits remained unaffected [54].

Spatial autocorrelation patterns of environmental variables (19

weather records, percentage of humanised habitat and pH) and

life-history traits (seed weight, seed germination at three temper-

atures, maximum number of vegetative rosettes, flowering time,

number of reproductive individuals, mean number of fruits per

individual, and individual fitness) were analysed with PASSaGE

v.2 [58]. For each environmental variable and life-history trait, we

computed Moran’s I autocorrelation coefficients and their

significance was estimated from 1000 permutations. Correlations

between pairs of environmental variables and between pairs of life-

history traits were tested with Dutilleul’s modified t-test using SAM

v.4 [59]. Dutilleul’s t-test corrects the variance of the test statistic

and the degrees of freedom according to the extent of spatial

autocorrelation of each variable [60]. We also analysed the

correlation between life-history traits, excluding the two traits used

to compute fitness, and individual fitness with Dutilleul’s modified

t-test.

Simultaneous autoregressive models (SAR) were performed to

test the effects of environmental variables on life-history traits

using SAM. SAR is a regression technique, based on generalised

least squares (GLS), to estimate regression parameters that takes

spatial patterns of data into account by including an additional

term for the autocorrelation matrix of the errors [61]. We did not

transform any variable or trait because the lack of autocorrelation

patterns in the residuals showed that the assumptions of the

analyses were met. To check the robustness of patterns obtained

with SAR models, we also conducted a complementary approach

by performing a canonical correlation analysis (CCA) with

SYSTAT v.13 (Systat Software, Inc., Chicago, IL, USA). CCA

evaluates the relationship between two sets of variables and

generates predicted values for each set of variables that have the

highest linear correlation between them. In our case, CCA

correlated the set of environmental variables and the set of life-

history traits while taking among-environmental variable and

among-life-history trait correlations into account. We only used

weather variables showing pairwise correlation coefficients below

0.75 to avoid excessive collinearity between explicative variables

[62]. As a result, we eventually included nine out of 19 weather

variables in both SAR and CCA analyses. In the case of CCA, we

also considered those life-history traits with pairwise correlation

coefficients below 0.75 for the same reason.

Finally, for each of the nine weather variables selected, we

estimated similarity matrices based on Euclidian distances. We

also estimated similarity distances for life-history traits among

accessions. Parametric partial Mantel tests were conducted with

PASSaGE to analyse the relationship between climatic similarity

and life-history trait similarity controlling for the geographic

position of accessions given by the geographic distance matrix. In

order to understand the relationship between phenotypic, genetic

and environmental variation in this set of Iberian A. thaliana

accessions, we also conducted partial Mantel tests to assess the

relationship between genetic similarity and life-history trait

similarity, and between genetic similarity and climatic similarity,

always controlling for the geographic position of accessions.

Results

Patterns of Variation in Environmental Variables
The main environmental features of the 279 A. thaliana

populations of study were as follows. Annual mean temperature

ranged between 4.9 and 18.2uC (mean 6 SD = 12.262.6uC;

Fig. 1A), the minimum mean temperature of the coldest month

varied from a low of 27.5uC to a high of 7.3uC (mean 6

SD = 0.0562.6uC), and the maximum mean temperature of the

warmest month varied between 20.6uC and 35.9uC (mean 6

SD = 29.163.4uC). Total annual precipitation ranged between

384.3 and 1,799.4 mm (mean 6 SD = 771.36281.6 mm; Fig. 1B),

precipitation of the driest month varied between 0.6 and 90.3 mm

(mean 6 SD = 24.8617.5 mm), and precipitation of the wettest

month ranged from a low of 44.1 to a high of 288.4 mm (mean 6

SD = 103.1639.3 mm). The percentage of humanised habitat

ranged between 0 and 100% (mean 6 SD = 40.3637.2%; Fig. 1C)

and pH varied between the acidic 3.6 and the basic 7.5 (mean 6

SD = 5.760.8; Fig. 1D). In general, correlations between pairs of

environmental variables indicated that accessions from environ-

ments with warmer annual mean temperature were those with

lower precipitations during the dry season, more seasonal

precipitations throughout the year, and a higher percentage of

humanised habitat (Table S1). Accessions from environments with

basic soils were also those with lower annual precipitations (Table

S1).

All 19 climatic variables were significantly spatially autocorre-

lated (range of Moran’s I= 0.19–0.36; P,0.001 in all cases) in this

set of A. thaliana accessions. The pH also exhibited a significant

spatial autocorrelation (Moran’s I= 0.20; P,0.001). The percent-

age of humanised habitat was not significantly spatially auto-

correlated (P= 0.18). The distances between population pairs

exhibiting significant autocorrelation patterns for environmental

variables varied approximately between 130 and 350 km.

Patterns of Variation in Life-history Traits
In our set of 279 A. thaliana accessions, seed weight (mean 6

SD = 2.160.461025; range = 1.3–3.661025 g; Fig. 3A) was not

significantly correlated with any life-history trait (Table 1). All seed

germination proportions at three temperatures were significantly

positively correlated among them (Table 1). Seed germination at

10uC (mean 6 SD = 0.6960.29; Fig. 3B) and 22uC (mean 6

SD = 0.6760.31; Fig. 3C) showed high proportions, whereas seed

germination at 30uC (mean 6 SD = 0.1260.23; Fig. 3D) exhibited

the lowest value. Seed germination at 10uC and 22uC were

significantly positively correlated with number of vegetative

rosettes (mean 6 SD = 30.168.1; range = 8.9–46.3 rosettes per

pot; Fig. 3E) and number of reproductive individuals (mean 6

SD = 24.867.4; range = 4.8–43.3 individuals per pot; Table 1 and

Fig. 3F). The number of vegetative rosettes and the number of

reproductive individuals were strongly positively correlated

(Table 1). Finally, flowering time (mean 6 SD = 143.1620.4;

range = 85.6–187.5 days; Fig. 3G) was significantly positively

correlated with mean number of fruits per individual (mean 6

SD = 53.6637.3; range = 10.3–242.1 fruits per individual; Table 1

and Fig. 3H).

Individual fitness was significantly positively correlated with

seed germination at 10uC (r= 0.17; P= 0.0004), seed germination

at 22uC (r= 0.22; P,0.0001), seed germination at 30uC (r= 0.19;

P= 0.001), number of vegetative rosettes (r= 0.41; P,0.0001), and

flowering time (r= 0.33; P,0.0001). In contrast, individual fitness

and seed weight were not significantly correlated (P= 0.67).

Our estimates of heritability for all life-history traits indicated

high values for seed weight, flowering time, and the three seed

germination values at three temperatures (range h2 = 0.82–0.96;

Table 1). The number of vegetative rosettes, the number of

reproductive individuals and the mean number of fruits per

individual exhibited intermediate or low heritability values (range

h2 = 0.08–0.41; Table 1). Finally, heritability for individual fitness

was also low in this set of A. thaliana accessions (h2 = 0.09).

Life Cycle Variation in Arabidopsis thaliana
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Only seed weight (Moran’s I= 0.33; P,0.001) and flowering

time (Moran’s I= 0.21; P,0.001) showed significant spatial

autocorrelation patterns whereas the rest of traits were not

significantly spatially autocorrelated (P.0.63 in all cases). Indi-

vidual fitness was not spatially autocorrelated either (P= 0.91).

The distance between accession pairs with significant autocorre-

lation patterns was approximately of 500 km for seed weight and

300 km for flowering time.

Relationship between Environmental Variables and Life-
history Traits

Univariate SAR models showed that only seed weight and

flowering time were significantly correlated with environmental

variables (Table 2). Seed weight was significantly negatively

correlated with annual mean temperature, mean temperature of

the wettest quarter and the percentage of humanised habitat,

whereas it was significantly positively correlated with annual

precipitation (Table 2). Flowering time was significantly negatively

correlated with annual mean temperature, mean temperature of

the wettest quarter, mean temperature of the driest quarter,

precipitation seasonality and the percentage of humanised habitat

(Table 2). In contrast, flowering time was significantly positively

correlated with precipitation of the driest month and pH. It is

noteworthy that annual mean temperature exhibited the highest

correlation coefficients with seed weight and flowering time

(Table 2).

SAR models also indicated that individual fitness was signifi-

cantly negatively correlated with annual mean temperature

(r=20.23; P= 0.003) and precipitation seasonality (r=20.23;

P= 0.011). This indicates that A. thaliana accessions from warmer

environments and environments with higher seasonality in

precipitation regimes, which were also positively correlated

between them (Table S1), performed worse at the experimental

facility (Fig. 4). Individual fitness was not significantly correlated

with any other climatic variable (P.0.07 in all cases). Despite the

significant negative linear trend between individual fitness and

annual mean temperature, accessions from populations with

annual mean temperatures below 7.5uC (N= 45 accessions;

16.1%) and above 15uC (N= 20 accessions; 7.2%) clearly showed

reduced fitness (Fig. 4A).

CCA yielded two significant overall canonical correlation

coefficients (Table 3), although the first canonical correlation

coefficient was about two-fold higher than the second one

(coefficients = 0.83 and 0.36, P,0.008 in both cases; Table 3).

This indicated the preponderance of the first canonical correlation

coefficient in this analysis. The most important canonical variate

(i.e. a linear combination of environmental variables and life-

history traits in this case) showed that only flowering time and

annual mean temperature exhibited a negative relationship

(Table 3). The second canonical variate showed the positive

relationship between seed weight and number of vegetative

rosettes, and the negative relationship of these two traits with

mean number of fruits per individual (Table 3). Such life-history

traits were in turn negatively related to mean diurnal range and

the percentage of humanised habitat, whereas they were positively

related to annual precipitation (Table 3). Overall, CCA results

highlighted the strong negative relationship between flowering

time and annual mean temperature in this set of Iberian A. thaliana

accessions.

Partial Mantel tests correlating climatic similarity with similarity

in life-history traits also showed that only seed weight and

flowering time exhibited significant correlations (Table 4). Simi-

larity in seed weight and flowering time was significantly positively

correlated with similarity between environments for annual mean

temperature (Table 4). Similarity in seed weight and flowering

time was also significantly positively correlated with similarity

between environments for mean temperature of the wettest

quarter and precipitation seasonality, respectively (Table 4). These

analyses provided complementary support to the relationship

inferred from SAR and CCA models between flowering time and

annual mean temperature, and to a lesser extent between seed

weight and annual mean temperature. Finally, none of the partial

Mantel tests correlating similarity between environments and

similarity in individual fitness was significant (P.0.12 in all cases).

Additional partial Mantel tests between genetic similarity and

environmental similarity yielded significant positive correlations

for almost all environmental variables analysed in this study,

although weaker than Mantel tests for life-history traits (range

r= 0.04–0.10, P,0.035 in all cases). Only similarity in annual

mean temperature, precipitation seasonality, and pH did not show

significant correlations with genetic similarity (P.0.08 in all cases).

The strong genetic structure of A. thaliana in the Iberian Peninsula,

as reported elsewhere [46,48], accounts for the high similarity

between genetic and environmental distances found in this study.

Finally, genetic similarity was significantly positively correlated

with similarity in seed weight, flowering time, mean number of

fruits per individual and individual fitness (range r= 0.06–0.11,

P,0.001 in all cases). However, these correlations were again

Table 1. Pearson’s correlation coefficients among life-history traits and heritability values of 279 Iberian A. thaliana accessions.

Seed
weight

Germination
(10uC)

Germination
(22uC)

Germination
(30uC)

Number of
rosettes

Flowering
time

Number of
adults

Fruit
production

Seed weight 0.96

Germination (10uC) 20.116 ns 0.87

Germination (22uC) 20.074 ns 0.672*** 0.82

Germination (30uC) 20.053 ns 0.319*** 0.416*** 0.86

Number of rosettes 0.096 ns 0.344*** 0.240*** 0.185 ns 0.41

Flowering time 0.106 ns 20.177 ns 20.004 ns 0.033 ns 20.006 ns 0.93

Number of adults 0.072 ns 0.341*** 0.211*** 0.144 ns 0.922*** 20.107 ns 0.24

Fruit production 20.059 ns 0.056 ns 0.157 ns 0.139 ns 0.112 ns 0.418*** 0.048 ns 0.08

Heritability values are given on the diagonal. Correlation coefficients were obtained from Dutilleul’s modified t-tests. A new threshold significance value (a=0.0018) was
set after applying the Dunn-Šidák correction (1– [1– a] 1/n) for multiple comparisons. Significance: ***P,0.0001, ns; non-significant.
doi:10.1371/journal.pone.0087836.t001
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weaker than those between life-history traits and environmental

variables.

Discussion

Understanding large-scale adaptive variation requires the

measurement of changes in phenotypic traits, the effects of such

changes on fitness, and the identification of the environmental

factors acting as proxies of selective agents. Overall, phenotypic

variation is expected to move towards different phenotypes that

best fit different environments, as developed by [63] and recently

reviewed by [64], configuring the Wright’s adaptive landscapes if

phenotypes represent different gene combinations [65,66]. In this

study, we have used the annual plant Arabidopsis thaliana to unravel

the adjustment between environment and life history, highlighting

the importance that the geographical component has to identify

ecologically and evolutionarily relevant phenotypic traits and

environmental factors. Geographically-explicit approaches evalu-

ating the match between organisms and the environments where

they live can be very important to assess and predict the

consequences of dramatic environmental changes, such as global

warming and increasing aridity.

Figure 3. Frequency distributions for life-history traits of A. thaliana. Graphs depict the number of accessions within each interval. N= 279
accessions in all cases.
doi:10.1371/journal.pone.0087836.g003
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Variation in Environmental Variables and Life-history
Traits

The analyses performed in this study indicated that the main

adjustment between A. thaliana’s life history and the environmental

conditions found across the Iberian Peninsula was mainly carried

out through variation in flowering time. In addition, geographical

variation in flowering time appeared to be related to geographical

variation in annual mean temperature. These patterns of variation

in flowering time are in agreement with recent empirical evidence

indicating that flowering in annuals [29,30,32] and perennials

[29,67–72] takes place earlier as environments get warmer. Such

generalised advance of reproductive phenology with increasing

temperature occurs because reductions in the life cycle duration

allow plants to escape from unfavourable environmental condi-

tions for growth and reproduction [73,74]. It must be emphasized,

however, that other traits correlated with flowering time, but not

measured in this study, could also represent targets of selection,

e.g. rosette size at bolting or leaf production rate during vegetative

growth [75]. Further field experiments are needed to take into

account architectural plant traits to be compared with life-history

traits.

Our results showed that A. thaliana accessions with more

vigorous seed germination, higher recruitment and later flowering

times exhibited higher individual fitness at the experimental

facility. We have recently shown that the environmental conditions

at the El Castillejo Botanical Garden correspond quite well to

environments with mild and moderately cold winters [54]. Such

environments activate the vernalization pathway, i.e. the flowering

inductive effect of low temperature during winter months on

vegetative rosettes, which is in turn associated to late-flowering

behaviours in A. thaliana [48,54]. Hence, the better fitness

performance of late-flowering A. thaliana accessions at the

experimental facility could reflect their adaptation to the

environments where they come from and the good match between

local and experimental climatic characteristics for these accessions.

The view that the patterns of variation in flowering time found in

this study are adaptive is supported by the results of the partial

Mantel test, indicating that a higher climatic similarity between

local environments was significantly positively correlated with

higher similarity in flowering time. Recent findings also indicated

that Iberian A. thaliana populations were more genetically

differentiated for flowering time than for neutral molecular

markers, suggesting that flowering time is likely to be under

divergent selection in A. thaliana [54]. It must be noted, however,

that environmental adaptations of A. thaliana mediated by changes

in flowering time must also be influenced, and probably enhanced,

by the demographic history of accessions in the Iberian Peninsula,

as indicated by the significant correlations between combinations

of environmental, genetic, and flowering time similarity matrices.

Seed weight was the other trait showing a significant spatial

autocorrelation pattern as well as significant relationships with

environmental variables. In particular, accessions from warmer

environments produced lighter seeds. As shown by previous

observations in A. thaliana [14,76], variation in seed weight might

partly be determined by variation in flowering time, since early

flowering reduces the length of vegetative growth and subsequent-

ly the amount of resources that mother plants allocate to seeds. On

top of that, it has also been shown that inflorescences are more

effective than rosettes fixing carbon and increasing instantaneous

water use efficiency in A. thaliana [77]. As a result, late-flowering

individuals can possess the physiological means to increase carbon

acquisition during the reproductive phase and eventually produce

heavier seeds. Nonetheless, the lack of relationship between

flowering time and seed weight found in this study suggests the

existence of other factors, such as the known trade-off between

seed size and seed number in A. thaliana [14,78], which need to be

taken into account in future experiments to better assess the

relationship between life-history traits and seed production in field

environments.

Finally, individual fitness at the experimental facility decreased

in A. thaliana accessions from environments with warmer annual

mean temperatures and higher seasonal rains. Interestingly,

genetic similarity and individual fitness similarity were also

significantly positively correlated, suggesting that the genetic

background of accessions also influenced their performance in

the field experiment. Despite such relationships, it is noteworthy

that accessions from environments with more extreme annual

mean temperatures (i.e. 15uC, annual mean temperature

,7.5uC) exhibited a trend toward reduced fitness. We have

already seen the expected effects of warm environments on

flowering time, but an explanation is due for the lower fitness

performance found for accessions from cold environments, which

are generally located at high altitudes in the Iberian Peninsula

[46,48]. It has recently been shown that high-altitude A. thaliana

Table 2. Correlation coefficients between life-history traits and environmental variables in A. thaliana.

Seed
weight

Germination
(10uC)

Germination
(22uC)

Germination
(30uC)

Number of
rosettes

Flowering
time

Number of
adults

Fruit
production

Annual temperature 20.391*** 0.064 ns 20.135 ns 20.051 ns 20.194 ns 20.699*** 20.086 ns 20.233 ns

Diurnal range 20.137 ns 20.006 ns 0.095 ns 0.053 ns 20.086 ns 0.205 ns 20.089 ns 0.133 ns

Temp. seasonality 20.002 ns 20.068 ns 0.097 ns 20.013 ns 20.067 ns 0.073 ns 20.079 ns 0.100 ns

Temp. wettest quarter 20.287*** 20.032 ns 20.141 ns 0.049 ns 20.125 ns 20.385*** 20.071 ns 20.073 ns

Temp. driest quarter 20.220 ns 0.099 ns 20.076 ns 20.070 ns 20.160 ns 20.427*** 20.133 ns 20.118 ns

Annual precipitation 0.225*** 0.045 ns 0.018 ns 20.018 ns 0.155 ns 0.070 ns 0.132 ns 20.012 ns

Prec. driest month 0.278 ns 20.023 ns 20.014 ns 0.086 ns 0.131 ns 0.307*** 0.041 ns 0.117 ns

Prec. seasonality 20.092 ns 0.091 ns 20.030 ns 20.097 ns 0.035 ns 20.506*** 0.056 ns 20.258 ns

Humanised habitat 20.241*** 0.141 ns 0.061 ns 0.087 ns 0.041 ns 20.262*** 0.084 ns 0.018 ns

pH 0.098 ns 20.149 ns 20.056 ns 20.097 ns 20.038 ns 0.225*** 20.055 ns 0.049 ns

Correlation coefficients were obtained from SAR models. A new threshold significance value (a=0.0006) was set after applying the Dunn-Šidák correction (1– [1– a] 1/n)
for multiple comparisons. Significance: ***; P,0.0001, ns; non-significant.
doi:10.1371/journal.pone.0087836.t002
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populations are predominantly composed of spring-germinated

plants that overwinter as seeds in the soil seed bank. This has been

interpreted as an escape strategy to mitigate the effects of massive

mortality of rosettes during the cold harsh winter on population

viability [49]. Thus, the lower fitness performance of accessions

from cold environments at the experimental facility might reflect

the extent of local adaptation of such accessions to their spring

annual behaviour.

Figure 4. Relationship between individual fitness and annual mean temperature or precipitation seasonality in A. thaliana.
doi:10.1371/journal.pone.0087836.g004
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Expected Effects of Global Warming on A. Thaliana’s Life
History

We want to discuss the results of this study in a context of global

warming given the current great concern on this issue [79–81].

Based on our findings and the evidence about the effects of

increased temperature on flowering time, we expect A. thaliana to

shift its life history toward early-flowering behaviour with smaller

seed sizes with increasing warming. However, it must be

emphasized that A. thaliana is very rare in vast areas across the

driest and hottest regions of the Iberian Peninsula, including

lowlands from southern and eastern Spain (Fig. 1). Hence, we

hypothesize a more pessimistic scenario in which A. thaliana might

go extinct in those regions that resulted more affected by

increasing warming and drought. In dry hot environments,

advancing flowering time might not be enough to maintain viable

populations and A. thaliana should acquire other traits, such as

delayed seed germination, as shown in desert annuals along

gradients of aridity and climate predictability [27]. Additional

experiments are also needed to assess realistically the adaptive

potential and the developmental constraints of the species in dry

environments.

Recently, we have shown the effect of loss- and change-of-

function alleles of some well-known flowering genes, such as

FRIGIDA, FLOWERING LOCUS C, and PHYTOCHROME C on

flowering time variation of Iberian A. thaliana accessions [48,82]. It

is becoming increasingly evident that nucleotide polymorphisms of

genes involved in A. thaliana natural variation for flowering

generally have a low frequency and are strongly geographically

structured [39,48,53,82,83]. These results suggest that the role that

regulatory pathways play to account for flowering time variation

also vary geographically across the Iberian Peninsula. For

example, accessions carrying specific alleles of FLOWERING

LOCUS C (i.e. vernalization pathway for flowering) or CRYPTO-

CHROME2 (i.e. photoperiod pathway for flowering) mainly occur

in northern wet or south-western dry areas of the Iberian

Peninsula, respectively [48]. Therefore, the adaptive potential of

flowering time in A. thaliana across different Iberian regions might

strongly be constrained by the differences in the genetic basis of

the regulatory pathways accounting for flowering in each region.

The effect of increased warming and drought on flowering time

variation regulated by different genetic pathways seems difficult to

predict and represents an important future research line.

Conclusions
We stress the need to conduct experiments with extensive

collections of geo-referenced accessions to evaluate the interplay

between environmental factors and phenotypic variation. The

reasons are manifold. First, environmental main selective pres-

sures, although with some exceptions (e.g. pathogens or compe-

tition), vary geographically in a continuous fashion. Hence,

experiments ought to capture such continuous adaptive landscape

in order to be realistic and conclusive. Second, the increasing

evidence that the genetic regulatory pathways underlying pheno-

typic variation are also geographically structured should also warn

us against the use of a limited number of populations in

experimental designs. Third, given the inherent spatial patterns

of variation in environmental variables and life-history traits,

Table 3. Canonical correlations between environmental
variables and life-history traits in A. thaliana.

1st Canonical 2nd Canonical

Group Variables
variate
correlation

variate
correlation

Life history Seed weight 0.35 0.83

Germination (10uC) 20.10 20.08

Number of rosettes 0.19 0.38

Flowering time 0.95 20.28

Fruit production 0.36 20.40

Environment Annual temperature 20.93 20.10

Diurnal range 0.10 20.56

Temp. seasonality 0.17 20.24

Temp. wettest quarter 20.46 20.12

Temp. driest quarter 20.60 20.21

Annual precipitation 0.17 0.59

Prec. driest month 0.42 0.24

Prec. seasonality 20.54 0.26

Humanised habitat 20.46 20.36

pH 0.23 0.12

Results for the first two significant canonical variates are given. Overall
canonical correlations for the first and second canonical variates are 0.83 and
0.36, respectively. Canonical correlations of environmental variables and life-
history traits above the overall canonical correlation for each canonical variate
are in bold face.
doi:10.1371/journal.pone.0087836.t003

Table 4. Correlation coefficients between life-history trait and environmental similarity in A. thaliana.

Seed
Weight

Germination
(10uC)

Germination
(22uC)

Germination
(30uC)

Number of
rosettes

Flowering
time

Number of
adults

Fruit
production

Annual temperature 0.185** 0.009 ns 20.011 ns 20.007 ns 0.010 ns 0.429** 20.040 ns 0.044 ns

Diurnal range 0.055 ns 0.018 ns 0.029 ns 20.068 ns 0.024 ns 20.011 ns 0.047 ns 20.033 ns

Temp. seasonality 20.031 ns 0.030 ns 0.077 ns 20.048 ns 0.039 ns 0.051 ns 0.045 ns 20.011 ns

Temp. wettest quarter 0.155** 0.007 ns 20.023 ns 20.047 ns 20.048 ns 0.070 ns 20.054 ns 0.018 ns

Temp. driest quarter 20.015 ns 0.018 ns 20.048 ns 0.089 ns 0.113 ns 0.096 ns 0.066 ns 0.032 ns

Annual precipitation 0.092 ns 20.037 ns 20.019 ns 20.034 ns 0.027 ns 20.036 ns 0.021 ns 20.033 ns

Prec. driest month 0.019 ns 0.005 ns 0.035 ns 0.024 ns 0.087 ns 0.045 ns 0.066 ns 20.027 ns

Prec. seasonality 20.007 ns 20.011 ns 0.031 ns 20.004 ns 20.021 ns 0.181** 20.034 ns 0.033 ns

Correlation coefficients were obtained from partial Mantel tests. A new threshold significance value (a= 0.001) was set after applying the Dunn-Šidák correction (1– [1–
a] 1/n) for multiple comparisons. Significance: **; P,0.001, ns; non-significant.
doi:10.1371/journal.pone.0087836.t004
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statistical analyses need to take spatial autocorrelation into

account, and only extensive spatially-explicit data sets can cope

with spatial autocorrelation properly [84]. Finally, although the

ideal experimental design should include the replication of the

experiment in different environments [37,85], the combination of

spatially-explicit statistical tools proved to be a useful method to

depict patterns of adaptive variation. Overall, merging environ-

mental, phenotypic and molecular data using extensive geo-

referenced collections of natural populations can strongly accel-

erate the pace with which we obtain comprehensive insights into

adaptive variation in plants.
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