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Introduction
Uncontrolled or abusive alcohol consumption is an undisputed 
global health concern with significant social costs and economic 
burdens.1 Individuals suffering from Alcohol Use Disorder 
(AUD) often display persistent patterns of alcohol use that esca-
lates from abuse to dependence. Underlying these maladaptive 
behaviors are short and long-term changes to neurotransmitters, 
receptors, synapses, and circuits. Understanding the neuromo-
lecular targets of alcohol and how they are altered is critical to 
the development of novel AUD treatment strategies.

Ethanol, the chemical component that underlies alcohol’s 
psychoactive effects, has a notoriously promiscuous pharmacol-
ogy. Within the nervous system, ethanol can directly bind to 
neuromolecular targets, allosterically modifying receptors and 
ion channels, and inevitably causing a multitude of cascading 
effects on nearly every neurotransmitter-signaling system.2 For 
the purpose of this review we will use the term “alcohol” when 
generally referring to the intoxicating substance that animals 
consume, or are exposed to, and the term “ethanol” for the spe-
cific chemical component that has measurable effects within 
the brain.

Drosophila have been used to study various endopheno-
types of human AUD for over 20 years.3,4 Strikingly, flies 
exhibit maladaptive behavioral patterns similar to humans 
that suffer from AUD. For example, following prior experi-
ence flies will voluntarily consume alcohol reaching pharma-
cologically relevant internal levels and escalate alcohol 
intake.5,6 This consumption is not dependent on the caloric 

properties of ethanol.5,7 Flies find the pharmacological prop-
erties of alcohol rewarding,8 and are willing to work or over-
come aversive stimuli in order to gain access to it.5,8 Once 
intoxicated flies become socially disinhibited9 and they 
develop both rapid tolerance to a single exposure as well as 
chronic tolerance following repeated exposures.10 Chronic 
alcohol administration can also lead to withdrawal-like 
behavior, such as seizures.11

Drosophila have significantly contributed to our overall neu-
romolecular and genetic understanding of AUD. For lists of 
evolutionarily conserved genes in both Drosophila and mam-
mals that are implicated in alcohol-associated behaviors, we 
refer readers to Berger et al, Kaun et al, Devineni et al, and 
Rodan and Rothenfluh.12-15 Decades of postmortem tissue 
analysis, cell culture experiments, and animal models of AUD 
have implicated receptors and channels in the nervous system, 
including GABA, glutamate, dopamine, serotonin, Ca2+  
channels, and K+ channels. This review will emphasize how 
established and recently developed genetic and experimental 
tools may be leveraged in Drosophila to further reveal the pre-
cise in vivo molecular actions of ethanol. We focus on the most 
prominent receptors and channels associated with AUD and 
conclude by discussing generalizable approaches that will 
surely advance our understanding of AUD.

Gamma Aminobutyric Acid (GABA) Receptors
GABA is the major inhibitory neurotransmitter in the mam-
malian and fly nervous systems. Both human and fly GABA 
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receptors include GABAA and GABAB (Figure 1a; Table 1). A 
subclass of GABAA receptors made entirely of rho (ρ) subunits 
is often called either GABAA-rho or GABAC; however, there 
is little evidence that GABAA-rho/GABAC receptors play a 
significant role in AUD. The super family of GABAA receptors 

are ligand-gated ion channels comprised of 5 protein subunits 
that form a central Cl− pore. GABAB receptors are metabo-
tropic G-protein-coupled receptors (GPCRs). Early work esti-
mates approximately 1 in 5 cortical neurons to be GABAergic 
in primates.16 Single cell transcriptomics estimates the fly 

Figure 1. Alcohol-related receptors, channels, and their downstream pathways. (a) GABA receptors are classified as either ionotropic (GABAA/C) or 

metabotropic (GABAB). GABAA/C receptors are gated chloride-conducting ion channels whereas GABAB receptors activate Gi/o proteins which inhibit 

adenylyl cyclase and decrease cAMP. (b) Glutamate receptors are classified as either ionotropic (AMPA, Kainate, and NMDA) or metabotropic (mGluRs) 

receptors. AMPA, Kainate, and NMDA receptors are all gated sodium-conducting cation channels, however, NMDA receptors also conduct calcium. 

mGluR are classified as groups I and II. Group I mGluRs activate Gq proteins which activate the PLC signaling pathway, whereas group II mGluRs activate 

Gi/o proteins which inhibit adenylyl cyclase and decrease cAMP. (c) Dopamine receptors are classified as D1- or D2-family members, which are both 

metabotropic receptors. However, D1 receptors activate Gs proteins thereby increasing cAMP, whereas D2 receptors activate Gi proteins thereby 

decreasing cAMP. (d) 5-HT receptors are classified as either ionotropic (5-HT3) or metabotropic (5HT1, 5-HT4,6,7, and 5-HT2) cation-permeable channel. 

5-HT3 receptors are gated sodium-conducting cation channels. 5-HT3 receptors are not present in Drosophila. 5-HT metabotropic receptors activate 

either Gs, Gi, or Gq proteins to influence adenylyl cyclase and PLC signaling. (e) Calcium channels are gated by voltage. (f) Potassium channels are a 

diverse family that can be activated by Ca2+, voltage, the G βγ protein complex, and Na+. SLO2 is the fly homolog of the Na+ activated potassium channel, 

however it is not Na+ activated. Potassium channels also include two-pore domain K+ channels.
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central brain to be approximately 10% (10 000) GABAergic 
neurons.17

GABA signaling in AUD

Alcohol consumption significantly alters GABAergic signaling 
particularly in mammalian brain regions like the ventral teg-
mental area (VTA), central amygdala (CeA), and the globus 
pallidus (GP). Ethanol acts on GABA receptors to increase 
presynaptic GABA release and acts as a GABA-mimetic, 
which potentiates inhibitory GABA currents post-synaptically. 
These effects ultimately contribute to short-term CNS depres-
sion and long-term homeostatic excitation that occurs during 
withdrawal.

GABA Type A channels in AUD

It is well established that GABAA is involved in mediating the 
effects of ethanol in mammals.18 Ethanol at low to moderate 
levels (up to 30 mM) acts as an indirect GABA agonist by 
binding to extracellular domains of δ subunit-containing 
GABAA receptors.19 This positive allosteric modulation causes 
sustained hyperpolarization and tonic silencing of GABAA-
expressing neurons. Significant work has also identified spe-
cific roles for α1- and α2-containing GABAA receptors in 
regulating addictive behaviors.20 In contrast, increased toler-
ance is associated with a downregulation of GABAA 
receptors.21

The human genome has 19 GABAA subunit genes, whereas 
Drosophila has 5. The fly Resistance to dieldrin (Rdl) gene encod-
ing the ~600 amino acid Rdl receptor is the most intensely 
studied and shows 46% amino acid sequence similarity to the 
human GABAA subunit pi, GABRP.22 Rdl is primarily 
expressed in the fly nervous system throughout development23 
and Rdl-containing receptors show similar electrophysiologi-
cal and pharmacological properties to that of fast-acting inhib-
itory transmission.24 In adult flies, Rdl is highly expressed 
within the antennal lobes, the mushroom body, optic lobes, 
ventrolateral protocerebrum, and the central complex.25 A 
direct role for Rdl or the other GABAA subunits in modulating 
flies’ response to ethanol has yet to be described. However, sim-
ilar to mammalian GABAA receptors, Rdl is sensitive to picro-
toxin, a noncompetitive GABAA antagonist that acts as a 
convulsant.26 This suggests that Rdl mutants may be useful in 
revealing the understudied mechanisms of withdrawal-induced 
seizures, neurotoxicity, and neurodegeneration following 
chronic alcohol exposure. Flies, therefore, offer a tractable 
model in which to perform pharmacologic screens and targeted 
GABAA subunit knockdowns to further reveal how ethanol 
impacts GABAergic signaling and animal behavior.

GABA Type B GPCRs in AUD

GABAB GPCRs have also become an important focus of 
human AUD research. Pharmacologic targeting of GABAB 

receptors with baclofen, a GABAB agonist, can suppress alco-
hol drinking and withdrawal in rodents and human alcohol-
ics.27 There are many proposed mechanisms for baclofen’s 
therapeutic actions in the context of AUD, but most of these 
hypotheses require further investigation.

In Drosophila, GABAB receptors are encoded by Gαi-
coupled subunits D-GABA-B-R1, D-GABA-B-R2, and 
D-GABA-B-R3 (dGB1-3), which inhibits downstream 
cAMP second messenger signaling upon ligand binding. Both 
dGB1 and dGB2 are homologous to mammalian GABAB 
receptors and the conserved nature of their intracellular traf-
ficking has very recently been investigated.28 dGB3 is ~47% 
amino acid sequence similar to human GABBR222 and is 
expressed in a similar, albeit slightly different, spatiotemporal 
pattern to Rdl.29 Like mammals, the fly GABAB receptors play 
a role in behavioral response to alcohol.30,31 Interestingly, 
baclofen has reportedly no effect in flies,32 but recent work has 
demonstrated that pharmacologic agonism or antagonism of 
GABAB can bidirectionally influence flies’ alcohol tolerance.31

In addition to the GABA receptor subunits, other regula-
tors of GABAergic transmission require investigation. Rogdi, 
an atypical leucine zipper named after one of Pavlov’s dogs, was 
recently shown to control GABA transmission in mammals.33 
However, Rogdi’s role in AUD has not yet been investigated. 
Interestingly, fly rogdi mutants show reduced ethanol tolerance 
in a genetic screen investigating the overlap between long-term 
memory mutants and abnormal alcohol responses.12 To our 
knowledge, no further investigation or directed forward genetic 
approaches have been performed to study Rogdi’s role in AUD.

Given the immense diversity of GABA receptors and their 
distribution throughout the nervous system, one distinct 
advantage for employing fly genetic tools is to further delineate 
the cell- and receptor-type specific functions of GABA recep-
tors in the context of alcohol response.

Glutamate Receptors
Glutamate is the major excitatory neurotransmitter in the 
mammalian nervous systems and a mediator of neural plasticity. 
Glutamate neurotransmission is tightly regulated because over-
stimulation can lead to seizures. Similar to GABA receptors, 
human glutamate receptors include both ionotropic channels 
(AMPA, Kainate, NMDA) and 3 groups of metabotropic 
GPCRs (mGluRs 1-8) (Figure 1b; Table 1). In contrast to 
mammals, Drosophila ionotropic channels include N-methyl-
D-aspartate (NMDA) receptors and insect-specific glutamate-
gated chloride channels (GluCls), which are similar to 
mammalian glycine receptors. For simplicity, our discussion will 
focus on NMDA receptors and group I and II mGluRs. Single 
cell transcriptomics estimates the fly central brain is approxi-
mately 24% (24 000) glutamatergic neurons.17

Glutamate signaling in AUD

In contrast to GABA, alcohol has an inhibitory effect on glu-
tamate activity in mammals. Acute exposure to alcohol reduces 
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glutamatergic activity while also stimulating GABAergic activ-
ity. Chronic alcohol exposure has the reverse effects.34 Early 
micro-dialysis studies in the striatum reported a decrease in 
extracellular concentrations in response to alcohol,35 whereas 
extracellular glutamate significantly increases following alcohol 
withdrawal.36 Ethanol-mediated disruption of the balance 
between excitation and inhibition is also controlled by glial 
cells, which play a crucial role in maintaining glutamatergic 
tone. Astrocytic glutamate transporters EAAT1 and EAAT2 
function to clear extracellular glutamate.37 For a review on the 
role of mammalian glutamatergic signaling in AUD see 
Goodwani et al.38

NMDA channels in AUD

NMDA receptors are one of the 3 types of mammalian iono-
tropic glutamate receptors essential in neuronal plasticity and 
alcohol response. They are highly conserved ligand-gated cat-
ion channels permeable to positively charged ions like Ca2+ 
and Na+ and thus mediate rapid excitatory neurotransmission.

The human genome contains 7 genes encoding NMDA 
receptor subunits, whereas flies have 2, Nmdar1 and Nmdar2, 
that are 65% and 47% amino acid sequence similar to human 
GRIN1 and GRIN2D, respectively.22 There are many con-
served molecular and physiological characteristics between ver-
tebrate and fly NMDA receptors.39

In Drosophila, a mutant named intolerant was identified in a 
genetic screen for abnormal ethanol sensitivity and tolerance. 
This mutation is a novel allele of fly Discs large 1 (dlg1), a con-
served homolog of mammalian PSD-95 and SAP97, which are 
thought to play a role in the post-synaptic localization of 
NMDA receptors.40 Subsequent analysis of loss-of-function 
Nmdar1 fly mutants showed reduced rapid and chronic toler-
ance to ethanol further bolstering conservational evidence of 
NMDARs’ sensitivity to ethanol. Recent CRISPR-based tech-
niques have also been used to replace the fly Nmdar1 sequence 
with nonsynonmous point mutations that reduce ethanol sen-
sitivity in mice.41 Point mutations affecting either a transmem-
brane domain or the calcium-binding site influenced behavioral 
response to ethanol and increased consumption.

Group I and II metabotrophic glutamate receptors 
in AUD

The metabotrophic glutamate receptors (mGluRs) mediate slow 
excitatory and inhibitory effects through intracellular G-protein 
signaling thereby causing a wide range of physiological effects. 
In mammals, Group I (mGluR1/5) and Group II (mGluR2/3) 
mGluRs are widely studied for their roles in alcohol dependence 
processes. Group I mGluRs are predominantly localized post-
synaptically and cause slow excitatory neurotransmission by 
stimulating Gq/PLC/IP3 signaling that increases release of 
intracellular Ca2+ stores. Group II mGluRs are largely presyn-
aptic and cause slow inhibitory neurotransmission by Gi/o 

protein signaling that decreases intracellular cAMP. Both Group 
I and II mGluRs influence alcohol self-administration, condi-
tioned place preference for alcohol, and withdrawal. They are 
promising therapeutic targets for allosteric modulation in the 
pharmacologic treatment of AUD.38

The human genome encodes 8 mGluRs, whereas flies only 
have 1 functional mGluR that is 65% amino acid sequence 
similar to human GRM3.22 The fly mGluR signals with both 
Gi and Gq proteins; it regulates synaptic plasticity and is 
required for higher order behaviors like social interaction and 
memory.42 In contrast to work in mammals, mGluR in the fly 
has not yet been directly investigated in the context of alcohol. 
Thus, it is unclear whether it plays an analogous role in alco-
hol-related behaviors. However, the fly Homer protein, a 
homolog of mammalian Homer1 that is known to interact 
with Group I mGluRs, was found to be an important mediator 
of ethanol sensitivity and tolerance.43 The role of Homer fam-
ily proteins in mediating the localization and function of 
mGluRs is of great interest in the AUD field because of its role 
as a postsynaptic density scaffold protein and involvement in 
alcohol-induced behavioral plasticity.44 The precise spatial and 
temporal genetic tools in flies may help reveal Homer-mGluR 
dynamics that are associated with alcohol-induced synaptic 
plasticity and circuitry changes.

Dopamine Receptors
Dopamine is a biogenic amine associated with many behaviors, 
including motor function, learning and memory, arousal, and 
reward. Dysfunction of the dopaminergic system is an underly-
ing cause of numerous neurological conditions, such as 
Parkinson’s disease and drug addiction. The dopamine recep-
tors are all G-protein coupled and classified into two families. 
The D1 family activates adenylyl cyclase and cAMP signaling 
upon dopamine binding, whereas the D2 family receptors 
inhibit these intracellular signals (Figure 1c; Table 1).

Dopaminergic signaling in AUD

The mesencephalon is a midbrain region composed of roughly 
90% of the total dopaminergic neurons in the human brain; 
there are nearly 600 000 midbrain dopaminergic cells.45 These 
neurons are subdivided into well-characterized circuitry systems 
including the substantia nigra projections to the basal ganglia 
(nigrostriatal pathway) and ventral tegmental area (VTA) pro-
jections to the nucleus accumbens (mesolimbic pathway) or the 
cortex (mesocortical pathway). Flies have roughly 300 dopa-
minergic neurons organized into 15 major clusters that broadly 
innervate the adult central brain with significant projections to 
the mushrooom body (MB) and central complex.46

Countless human and rodent studies have explored the rela-
tionship between the dopaminergic signaling and alcohol abuse 
with evidence amassed from anatomical, physiological, phar-
macologic, genetic, and behavioral research. Acute alcohol 
administration is thought to significantly increase firing of 
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dopamine neurons within the VTA by targeting hyperpolariza-
tion-activated cyclic nucleotide-gated cation channels (HCN), 
modulating potassium channels, and altering L-type Ca2+ 
channels.47 This results in a prominent net increase in dopa-
mine release within the ventral striatum and is thought to play 
a crucial role in the initiation of alcohol reinforcement.

Dopaminergic receptors in AUD

Within the mammalian striatum, populations of medium spiny 
neurons (MSNs) are defined by the expression of different 
types of dopamine receptors as well as opioid peptides. 
Approximately half of MSNs express excitatory D1 receptors 
whereas the remaining half express inhibitory D2 receptors.48 
In addition to being expressed in MSNs, D2 receptors are 
located on the presynaptic terminal of dopaminergic neurons 
and function as auto-receptors to regulate the release of 
dopamine.49

A large body of preclinical and clinical AUD studies report 
reduced D2 receptor ligand binding, suggesting that levels of 
the D2 receptor are significantly reduced in the striatum of 
humans with AUD and may serve as a biomarker to predict 
relapse during recovery.50 Furthermore, high levels of D2 recep-
tor in individuals might serve a protective role against develop-
ing AUD.51 In rodents, D2 receptors are critical for alcohol 
reinforcement52 and habitual alcohol seeking.53 Overexpression 
of D2 receptors in rodents reduces alcohol self-administration;54 
the role of D1 receptors in alcohol dependence is less consistent. 
Recent work, however, suggests that chronic alcohol exposure 
disrupts the balance between D1 and D2 signaling pathways in 
MSNs of the striatum leading to a more robust behavioral 
response to ethanol and resiliency to sedation.55

D1 dopamine GPCRs in AUD. There are 2 human D1 recep-
tors (DRD1 and DRD5). The fly genome encodes 4 total 
dopamine receptors and 2 have been functionally classified as 
D1-like: Dop1R1 (aka dumb, DA1, DopR) has 48% amino 
acid sequence similarity to DRD5 and Dop1R2 (aka DAMB) 
has 45% amino acid sequence similarity to ADRB1.22 A third 
unique dopamine and non-canonical ecdysone GPCR called 
DopEcR can also activate cAMP signaling.56 DopEcR has 
46% amino acid sequence similarity to human orphan GPCR 
GPR52.22 Similar to mammalian studies, D1-like receptors 
have also been implicated in alcohol-related behaviors in flies.

Like mammals, when flies are exposed to low doses of alco-
hol they increase locomotor stimulation and become more dis-
inhibited.57 Both mammalian DRD1 and fly Dop1R1 are 
implicated in modulating the locomotor response to alcohol 
intoxication.55,58 Knockdown of Dop1R1 in the fly brain sig-
nificantly reduces ethanol-induced increases in locomotor 
activity. The central complex, homologous to the mammalian 
basal ganglia,59 is a system of brain regions that play a critical 
role in behavioral responses including locomotor response, 

sleep, and learning and memory. Interestingly, restoring expres-
sion of Dop1R1 in a subset of central complex neurons (ellip-
soid body) rescues ethanol-induced locomotor defects in 
Dop1R1 mutants.58

Despite Dop1R1’s involvement in modulating the locomo-
tor response to alcohol intoxication, knockdown of Dop1R1 
within requisite MB circuits does not appear to affect alcohol-
associated preference.60 However, expression of Dop1R1 
within a separate subset of central complex neurons (dorsal 
fan-shaped body) is required for alcohol avoidance in naïve 
flies and the expression of Dop1R1 within the MB is required 
for experience-dependent alcohol preference in a voluntary 
consumption assay.61 Given the DRD1 hypersensitivity 
described in mammalian models,62 an overexpression model 
would be informative for exploring the role of Dop1R1 in 
chronic alcohol seeking behaviors.

When flies are exposed to substantial doses of alcohol they 
lose postural control and eventually sedate.15,57,63,64 Recently, 
DopEcR, the unique GPCR that binds dopamine and the 
major insect steroid hormones called ecdysteroids,56 was found 
to be required in alcohol-induced sedation.65 DopEcR mutants 
took longer to succumb to the sedative effects of alcohol, 
whereas neuronal overexpression of DopEcR significantly 
reduced the time to sedation. Further investigation suggested 
that DopEcR mediates an ecdysone-induced promotion of 
sedation via EGFR/ErK signaling inhibition65 and may also 
mediate a dopaminergic signal that suppresses ethanol-induced 
hyperactivity.66 DopEcR has been compared to vertebrate 
GPER1, the non-canonical estrogen receptor, which also 
responds to dopamine in heterologous expression systems.67 
GPER1 influences various nervous system functions including 
synaptic plasticity and neuroprotection,68 but to our knowledge 
its role in AUD has not been determined. Thus, the role of 
steroid hormones and their interaction with dopamine recep-
tors in mammals requires further investigation.

D2 dopamine GPCRs in AUD. The human genome encodes 3 
D2 receptors (DRD2, DRD3, and DRD4). The fly genome 
only has 1 D2 receptor, Dop2R (aka D2R). Dop2R shows 46% 
amino acid sequence similarity to human DRD2.22 For an 
extensive discussion of dopamine receptor homology, pharma-
cology, and signaling mechanisms see Karam et al.69

The role of D2-like receptors within the central complex 
has not been explored, however, D2-like receptors have an 
identified role within MB circuitry in establishing alcohol-
associated preference.60,70 Knockdown of Dop2R in a popula-
tion of dopamine neurons innervating the MB suggest that the 
regulation of dopamine release via dopamine autoreceptors is 
critical to the development of alcohol-associated preference in 
flies.60 Knocking down Dop2R in all of the cholinergic MB 
neurons also significantly reduces preference for alcohol- 
associated odor cues.70 Dop2R is also required in a single  
glutamatergic MB output neuron during consolidation of 
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alcohol-associated preference.60 Although mammalian work 
on D2 receptor function has not yet reached this level of circuit 
precision analysis, these fly studies suggest a potentially diverse 
functional repertoire of D2-like receptors in alcohol-related 
behaviors. Thus, seemingly incongruent results between mam-
mals and flies likely provide insight to the complexity and 
importance of how D2-like receptors and others uniquely 
modify responses to alcohol with circuit specificity.

Further analysis via RNA sequencing of isolated MB nuclei 
revealed that repeated alcohol-cue training caused lasting 
changes in the MB nuclear transcriptome. Most notable was a 
switch in expression of two Dop2R receptor isoforms that dif-
fer in a single amino acid—the alternative inclusion of a serine 
in the third cytoplasmic loop.70 This site in the receptor is a 
conserved place of interaction for G-proteins and thus has 
implications for downstream signaling.71 Recent work demon-
strates that particular neurotransmitter-producing populations 
have distinct RNA editing signatures,72 suggesting that flies 
may be useful for testing site- and context-specific isoform 
expression in the context of alcohol exposure.

Serotonin Receptors
The serotonergic (5-hydroxytryptamine or 5-HT) system is 
involved in nearly every aspect of mammalian physiology 
including neurogenesis, motor control, sleep, mood, and cogni-
tion; it also plays a key role in regulating alcohol consumption, 
dependence, and withdrawal. Similar to GABA and glutamate 
receptors, 5-HT receptors come as either ligand-gated ion 
channels (5-HT3) or metabotropic GPCRs (Figure 1d; Table 
1). However, flies do not have a homologous 5-HT3 ligand-
gated ion channel and so for the purposes of this review we will 
focus our attention on 5-HT GPCRs.

5-HT signaling in AUD

There are roughly 60 000 serotoninergic neurons in the human 
central brain, most of which reside in the raphe nuclei of the 
brainstem.73 5-HT neurons from the dorsal raphe nucleus are 
thought to modulate dopaminergic neurons in the VTA and 
enhance ethanol-induced increases in firing.74 Flies have a rel-
atively simple serotoninergic system with around 80 neurons 
spread into various clusters within the adult central brain,75 yet 
the serotoninergic system functions similarly in regulating 
mood, motivation, and response to alcohol.

Early work suggested that deficits in 5-HT were associated 
with AUD and motivation to seek alcohol.76,77 Loss of 5-HT 
neurotransmission increased alcohol consumption and 
enhanced vulnerability to dependence.78 Acute alcohol expo-
sure increases extracellular 5-HT levels,79 whereas chronic 
exposure decreases 5-HT levels in the CNS. The reduction fol-
lowing chronic alcohol exposure may be the result of acceler-
ated 5-HT reuptake by the serotonin transporter (SERT) or 
due to dysfunctional 5-HT release from the raphe nuclei.80 

Similarly, in flies reduced motivation to seek rewards is associ-
ated with decreases in 5-HT levels within the brain.81,82 
Interestingly, a depression-like state in flies could be amelio-
rated by lithium-chloride treatment, a commonly prescribed 
antidepressant.81 These works demonstrate the conserved role 
of 5-HT in modulating internal states and motivation across 
species. For a comprehensive review on the role of 5-HT sign-
aling in alcohol addiction see Belmer et al.80

5-HT GPCRs in AUD

The human genome encodes 13 different 5-HT GPCRs 
(HTR1A, HTR1B, HTR1D, HTR1E, HTR1F, HTR2A, 
HTR2B, HTR2C, HTR4, HTR5A, HTR5BP, HTR6, HTR7). 
In general, activation of 5-HT1 receptors subtypes result in 
neuronal inhibition and inhibition of second messenger ade-
nylate cyclase, whereas activation of 5-HT2, 4, 6, and 7 results 
in neuronal excitation and activates second messenger ade-
nylate cyclase or phospholipase C signaling.83 Further, 5-HT1A 
and 1B are identified as autoreceptors, which are localized to 
the presynaptic membrane of serotonergic neurons.84 A num-
ber of 5-HT GPCRs have been implicated in AUD.

The 5-HT1 autoreceptors have an identified role in modu-
lating alcohol consumption. Early studies found that 5-HT1A 
antagonists attenuated alcohol consumption,85,86 whereas mice 
lacking 5-HT1B displayed increased alcohol consumption.87 
More recent work suggests that chronic ethanol consumption 
in rodents hypersensitizes the autoreceptor 5-HT1A88 and dif-
ferentially alters expression levels of 5-HT1A in a regionally 
specific manner.89,90

The 5-HT2 receptors are also implicated in alcohol rein-
forcement and consumption. Early work reported that 5-HT2 
antagonists decrease acute ethanol reinforcement91 and alcohol 
consumption.92 More recent work suggests that different sub-
types of 5-HT2 receptors play distinct roles. For instance, 
drugs that include antagonists for 5-HT2C are reported to 
decrease voluntary ethanol consumption.93,94 Of course recep-
tors often do not work in isolation. Cyproheptadine, a potent 
5-HT2 receptor antagonist, when used in combination with 
Prazosin, a α1β-adrenergic antagonist, reversed alcohol prefer-
ence in mice, suggesting that adrenergic and serotonergic 
transmission work cooperatively to support alcohol-associated 
behaviors.95

The role of 5-HT2C receptors appears to be similarly 
regionally specific with levels of 5-HT2C receptors being 
increased in the NAc following chronic exposure, and treat-
ment with antagonists inhibit intake and behavioral sensitiza-
tion in mice.96,97 These data underscore the importance of 
obtaining an understanding of the actions of ethanol on sero-
tonin receptors with circuitry specificity. New evidence has also 
emerged showing that alterations in post-transcriptional edit-
ing of 5-HT2C mRNA may participate in the development of 
AUD as well as other psychiatric conditions.98 Specifically, the 
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5-HT2C mRNA can be RNA edited at several different posi-
tions99 causing amino acid substitutions that influence receptor 
activity.100 To what extent RNA editing impacts mammalian 
AUD is still being determined.

In Drosophila there are 5 genes encoding 5-HT GPCRs—
5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT7—which 
range from 37%-52% amino acid sequence similarity com-
pared to their human homologs.22 Similar to mammals, 5-HT 
in flies mediates diverse processes including short- and long-
term memory, circadian rhythm, aggression, and courtship 
behavior. The fly 5-HT receptors are expressed in various 
regions of the adult protocerebrum, including the mushroom 
body, central complex, and optic lobes.101,102

In regard to modeling AUD, knockdown of fly protein 
kinase C (PKC) in 5-HT and dopaminergic neurons resulted 
in ethanol resistance, a phenotype that was mitigated by phar-
macological inhibition of serotonin reuptake.103 5-HT has also 
been shown to bidirectionally influence olfactory attraction to 
alcohol.104 A recent study also found that 5-HT signaling in 
flies was required for dietary yeast-induced increases in alcohol 
consumption and resistance to sedation.105 This study high-
lights the conserved link between 5-HT, diet, and alcohol-
related behavior across species. It is interesting that both 
adrenergic and serotonergic transmission influence mamma-
lian alcohol-associated behaviors as it was recently discovered 
that flies have a novel adrenergic-like receptor (DmOcta2R).106 
This receptor is activated by 5-HT as well as its cognate ligand 
octopamine, which is analogous to norepinephrine and impli-
cated in alcohol attraction and sedation.10,107 Perhaps further 
characterization of this unique receptor’s cellular mechanisms 
will reveal conserved interactions between these neurotrans-
mitter systems in AUD.

Voltage-Gated Calcium Channels
Voltage-gated calcium channels (VGCCs) are voltage sensitive 
ion channels embedded in the membrane of excitable cells that 
regulate the rapid entry of Ca2+ during depolarization. At the 
core of these channels is a principal pore-forming α1 subunit and 
up to 3 supporting α2δ, β, and γ subunits. There are 5 classified 
types of high-voltage-activated channels (L-type, P/Q-type, 
N-type, R-type, and T-type) and 3 low-voltage-activated chan-
nels each composed of a sole α1 subunit (Figure 1e; Table 1).

Ca2+ channels in AUD

VGCCs play a wide range of roles in physiological and patho-
physiological conditions, particularly in controlling neuronal 
excitability. They are common therapeutic drug targets108 and 
implicated in acute and chronic effects of alcohol as well as 
withdrawal. Acute alcohol-induced inhibition of VGGCs may 
induce a compensatory upregulation during chronic alcohol 
intoxication and this upregulation may be revealed during 
withdrawal. For reviews on VGCCs in AUD see N’Gouemo.109

Each type of VGCC has been examined in models of AUD, 
although L-type current is the most investigated. Inhibition of 
L-type VGCCs decreases alcohol consumption and mediates 
alcohol-seeking behavior.110 However, human alcohol-related 
clinical trials using L-type blockers and modulators showed 
conflicting effects on alcohol intake, withdrawal, and absti-
nence.111-113 Additionally, gabapentin, which binds the α2δ 
subunit, suppresses central amygdala (CeA) activity and pro-
motes abstinence in human alcoholics.113 Chronic alcohol 
exposure leads to increased P-type current in the cerebellum,114 
and P/Q-type VGGCs also mediate the ethanol- and CRF-
sensitivity of GABAergic synapses in the CeA.115 N-type cur-
rent is affected by both acute and chronic ethanol in vitro and 
acute exposure in mice lacking functional N-type VGCCs 
show increased ethanol-induced ataxia, resistance to righting 
reflex, reduced ethanol consumption, and conditioned place 
preference compared to wildtype.116 Low or high concentra-
tions of ethanol can also enhance or decrease T-type current, 
respectively in thalamic brain slices.117 These findings suggest 
that there are various roles for VGCCs in modulating responses 
to ethanol and in the development of alcohol reward and 
preference.

Humans have 9 genes encoding VGCC α1 subunits, all of 
which are expressed in the CNS.118 In flies there is only 1 α1 
gene, cacophony (cac), which shows 55% amino acid sequence 
similarity to CACNA1B.22 Furthermore, humans also have 16 
genes encoding the α2δ, β, and γ auxiliary subunits, whereas 
flies have 6. The fly cac mutants are highly studied in neuro-
muscular synapse regulation and in various behaviors including 
seizures,119-121 but there have been no direct studies published 
on the role of cacophony in fly alcohol response. A recent study, 
however, identified a new mechanism downstream of Ca2+ 
influx by which intoxicating levels of ethanol inhibit presynap-
tic release.122 This presynaptic modulation required Unc13 
proteins, which are known to interact with vesicle fusion 
machinery and VGCCs.123 The work is consistent with etha-
nol causing homeostatic synaptic changes that lead to func-
tional alcohol tolerance. The simplicity of having fewer VGCC 
genes in flies has been helpful in unraveling the functional con-
tributions of different VGCC auxiliary subunits. For example, 
there are distinct roles between D-type Ca-α1D subunits and 
the α2δ subunits straightjacket and CG4587.124 Thus, flies 
offer a possible model in which to characterize any redundancy 
or exclusive functions of VGCC subunits in neuromodulation 
following alcohol exposure.

RNA editing also factors into the final protein products and 
function of VGCCs.125 For instance, editing of human 
CACNA1D in the CNS influences calmodulin (CaM) interac-
tions and behavior in mice.126 RNA editing is quite common in 
invertebrates with ~4% of transcripts being edited and two-
thirds of those causing nonsynonmous (nonsyn.) substitu-
tions.23 In the adult fly central brain neurons there were  
9 detected editing sites in cac (7 nonsyn.), 7 in Ca-α1D  
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(5 nonsyn.), 6 in Ca-α1D (2 nonsyn.), 5 in Ca-β (4 nonsyn.), 
and 2 in stj (2 nonsyn.).72 Thus, flies can likely be used to deter-
mine the extent to which alcohol affects RNA editing of 
VGCC subunits, or conversely how edited channels influence 
response to alcohol.

Potassium Channels
Potassium channels (KCNs) are found in most cell types and 
control a wide variety of cell functions. KCNs have a K+-
selective pore and are sub-classified into 4 classes, either Ca2+-
activated (KCNN), K+-activated (KCNA), inwardly rectifying 
(KCNJ), 2 pore domain channels (KCNK), or Na+-activated 
(KCNT) (Figure 1f; Table 1). Regulation of K+ flux is critical 
for setting or resetting the resting membrane potential, thus 
controlling the sharp action potential of excitable cells. KCNs 
are tetrameric complexes and properties of their gating and 
inactivation ultimately control the channel’s conductance.

K+ channels in AUD

Several KCNs are implicated in various alcohol-associated 
responses. Ethanol alters voltage/calcium-gated large conduct-
ance potassium (BK, slo) channels leading to perturbations in 
physiology and behavior. Slo channels have ethanol-binding 
sites and are generally inhibited by ethanol, but their responses 
vary depending on subunit composition, modification by phos-
phorylation, and the lipid microenvironment.127 G-protein-
gated inwardly rectifying potassium channels (GIRKs) regulate 
neuronal responses in the brain reward circuit and are possible 
targets for AUD therapeutics.128 Ethanol enhances GIRK 

currents in VTA neurons129 and GIRK knockout mice show 
various behaviors associated with alcohol withdrawal, intake, 
self-administration, and changes in motor response.130 The K+-
activated (Shaw) channels have crucial residues necessary for 
inhibition by ethanol. Acute alcohol can increase the expression 
of two-pore potassium channel KCNK12 in the VTA and 
knockdown causes increased alcohol consumption.131

Humans have 78 genes encoding the KCN subunits, 
whereas flies have 26. The fly large-conductance BK channel 
slowpoke (slo) has 64% amino acid sequence similarity to 
KCNMA1.22 Following its discovery in flies, slo was first iden-
tified for its role in alcohol response in a screen for ethanol-
resistance in C. elegans.132 Expression of slo is increased after 
alcohol-induced sedation leading to a counter-intuitive increase 
in excitability following neuroadaptive homeostasis.133,134 
Furthermore, slo is required for the development of functional 
tolerance and withdrawal-associated increases in seizure 
susceptibility.135

To our knowledge, many of the fly’s K+-activated and 3 Irk 
channels have not been implicated in alcohol-induced responses, 
but all show ~50%-70% similarity to human homologs.22 There 
also seem to be no apparent fly Na+-activated (KCNT) 
homologs although SLO2 shows 53% amino acid sequence 
similarity. The single KCNQ channel in flies shows 51% amino 
acid sequence similarity to human KCNQ4; it’s more sensitive 
to acute ethanol block than it is in mammals and KCNQ null 
flies display increased sensitivity and tolerance to the sedative 
effects of alcohol.136 Lastly, there is one particular KCN tool 
routinely used in fly neurogenetic studies. Overexpression of the 
human KCNJ2 inwardly rectifying potassium channel (often 

Figure 2. General tools available for investigating alcohol-associated receptors, channels, and other proteins.
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called Kir2.1) can hyperpolarize neurons of interest thereby 
inhibiting their activity. In addition to using KCN expression to 
control neuronal silencing, flies also afford a model in which to 
study the role of KCN modulation by ethanol.

Genetic Tools for All Receptors/Ion Channels
A clear benefit to using Drosophila as a model system is its 
genetic tractability and simplicity. There are rich mutant and 
transgenic tools available that provide the opportunity to con-
trol, visualize, and measure molecules in vivo (Figure 2). Here 
we provide examples of established as well as recently devel-
oped tools and discuss how they might be employed in study-
ing the aforementioned receptors and channels in the context 
of alcohol.

Tools for precise spatiotemporal control and 
visualization

A distinct advantage of using flies is the ability to use refined 
intersectional genetic strategies. There are multiple binary tran-
scriptional factor/enhancer systems such as the GAL4/UAS, 
LexA/LexAop, and QF/QUAS systems that can be used to tar-
get multiple cell types simultaneously for circuit level analyses. 
The split-GAL4 and split-LexA systems, which separately 
express the activation and DNA-binding domains can further 
refine targeting even to single cell resolution.137 Various genetic 
mosaicism techniques can also be readily performed to test cell 
autonomy and clonal patches.138 Furthermore, there is an impres-
sive versatile collection of nearly 7400 MiMIC gene trap lines, 
which provide essential mutagenetic, reversible, and replaceable 
endogenous insertions throughout the Drosophila genome.139

The recently designed “FlpStop” approach provides a means 
to control cell-type-specific genetic disruption or rescue of 
endogenous gene function.140 Specifically, a FlpStop cassette 
lies dormant within a gene of interest’s intron, which can then 
be inverted via cell-type specific expression of Flp recombinase 
revealing premature transcription and translation stop signals 
and fluorescently labeling genetically modified cells. As proof-
of-principle candidates, both Rdl and Gad1, the glutamic acid 
decarboxylase 1 enzyme required for GABA synthesis, were 
used to showcase conditional null targeting. Although GABAB 
receptors were not modified in this study, another recent site-
specific knock-in (“KI”) approach was performed on GABA-
B-R1, GABA-B-R3, and VGAT, the vesicular GABA 
transporter.141 The “KI” cassette introduced a self-cleaving T2A 
peptide and GAL4 or LexA transcription factor sequence prior 
to a gene of interest’s stop codon. This method beautifully 
revealed the specific adult neural expression patterns of these, 
and almost 200 other neurotransmitters, neuropeptides, and 
receptors.

Further aiding in visualization methods, a recent T2A-
GAL4 insertion library has been created, which endogenously 
modified 75 of the 113 fly genes encoding neurotransmitter 
receptors.142 Specifically, T2A-GAL4 integrated upstream of 

stop codons results in a pre-mRNA that self-cleaves thereby 
producing an unmodified receptor plus a yeast GAL4 tran-
scription factor. The GAL4 transcription factor can then acti-
vate any UAS-based reporter or effector transgene in a 
spatiotemporal specific expression fashion. For instance, Kondo 
et al142 demonstrate the expression patterns of ionotropic glu-
tamate receptors in the adult brain and larval muscle tissues. 
They further calculate that an average adult neuron expresses 
30% of known neurotransmitter receptors. The T2A-GAL4 
cassettes can also be replaced with other reporter cassettes for 
endogenous protein tagging and activity reporters. Thus, co-
receptor expression patterns and endogenous labeling of recep-
tors can be studied in the context of alcohol exposure.

As an update to traditional protein tagging, the tissue-spe-
cific tagging of endogenous proteins (T-STEP) was created.143 
The T-STEP method simultaneously RFP-tags an endoge-
nous protein and then allows tissue-specific rippase recombi-
nation to switch the tag to a GFP signal. Given that the actions 
of ethanol on dopamine and serotonin receptors appear to be 
circuit specific, these tools would be especially helpful in resolv-
ing the changes in receptor expression in discrete circuits before 
and after different alcohol exposure paradigms. This approach 
can also be tremendously useful for determining pre- versus 
post-synaptic localization of different receptors. This may be 
especially useful considering the heterogeneity of dopamine 
receptors and neurons throughout the nervous system as well 
as the proposed relationship between D1-like and D2-like 
receptors expression in AUD models.

Lastly, new tools, like the fly TransTimer,144 are providing a 
means in which to study the real-time spatiotemporal dynamics 
of gene expression. TransTimer is a method that uses 2 fast-
folding fluorescent proteins, where one has a shorter half-life 
(ie, a destabilized GFP) and the other has a longer half-life (ie, 
a stable RFP). Both reporters are positioned under the same 
promoter such that the relative relationship of the 2 signals con-
veys information about dynamic changes in gene expression. 
Tools like TransTimer can reveal in vivo transcriptional activity 
in real-time or in fixed immunohistochemical experiments, 
which are useful for lineage tracing, cell differentiation, labeling 
for FACS, or high-throughput sequencing methods. If applied 
in the AUD field, researchers could assess transcriptional and 
translational dynamics of particular systems concomitantly. For 
instance, the dynamic expression of slo across different exposure 
paradigms could be determined. The transcriptional regulation 
of other receptors can also be observed in the context of fetal 
alcohol models, immediate-early gene expression patterns, and 
in determining circadian-regulated changes that are currently 
undetectable with long-live reporter systems.

Visualization of neural activity

Visualizing neuronal changes in intracellular calcium are an 
important measure of pre- and post-synaptic activity as cal-
cium influx often corresponds with neuronal firing 
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and neurotransmitter exocytosis.145 The recently developed 
genetically-encoded calcium indicators (GECIs) provide a 
means to measure free intracellular Ca2+ with an extended 
sensor color palette and reversible photoactivation capaci-
ties.146 Another exciting, newly developed imaging tool is the 
genetically-encoded voltage indicator, Voltron.147 Voltron uses 
photostable synthetic dyes rather than fluorescent proteins to 
directly measure action potentials and subthreshold events that 
are not captured with calcium indicators. The use of synthetic 
dyes significantly improves the brightness and photostability of 
the signal. These imaging tools can be applied to any of the 
previously mentioned signaling pathways to better understand 
alcohol-induced disruptions in different circuitry in vivo.

Measuring neurotransmission

There are various ways to experimentally assess neurotrans-
mission, including real-time voltammetry measurements, 
optogenetic control, and electrochemistry methods.148 
Although the adult fly brain is quite small—roughly 50 µm3—
measuring both real-time and tissue content levels of neuro-
transmitters could help reveal underlying changes that occur 
during alcohol exposure. Furthermore, newly developed 
genetically encoded fluorescent dopamine sensors, like 
GRABDA1m, allow for the detection of extracellular dopamine 
dynamics with subcellular spatial and subsecond temporal 
resolution in defined neurons.149 This would be especially 
informative in evaluating how dopamine circuits change as 
flies develop preference for alcohol instead of focusing on 
models where preference is already established. Similar tools 
have recently been developed for directly measuring acetyl-
choline release, such as GRABACh, which would be especially 
useful in defining the role of acetylcholine in alcohol- 
associated behaviors across species.150

Conclusions
Drosophila is an important model system that has significantly 
contributed to our understanding of the neuromolecular and 
genetic underpinnings of AUD. By leveraging established and 
recently developed genetic and experimental tools the field is 
better able to reveal the precise in vivo molecular actions of etha-
nol, and will certainly advance our understanding of AUD. We 
have focused on comparing the most prominent alcohol-associ-
ated receptors and channels (GABA, glutamate, dopamine, sero-
tonin, calcium channels, and potassium channels). We conclude 
by describing general tools that provide nearly limitless genetic 
modification and control for examining the roles of many mol-
ecules, cellular processes, circuit dynamics, and complex etho-
logical mechanisms involved with AUD. Other AUD-relevant 
receptors and channels not highlighted in this review include 
mammalian receptors for corticotropin-releasing hormone, opi-
oids, oxytocin, glycine, neuropeptide Y, norepinephrine, and 
finally the Drosophila octopamine receptors. Another important 
consideration is the comparative analysis between transcript 

isoforms and the proteomic diversity of these proteins across 
species, which is an exciting avenue for studying molecular 
mechanisms of AUD.

Maintaining the bridge between translational insights 
across species and taking advantage of each animal models’ 
unique tools and systems will bring the field closer to achieving 
a comprehensive understanding of AUD and facilitate effective 
treatment strategies.
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