data reports

OPEN d ACCESS

Crystal structure of 2-(2-methylphenyl)-1,3-thiazolo[4,5-b]pyridine

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b Saud A. Alanazi^a and Benson M. Kariuki^{b*}

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales. *Correspondence e-mail: gelhiti@ksu.edu.sa', kariukib@cardiff.ac.uk

Received 29 June 2015; accepted 2 July 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title molecule, $C_{13}H_{10}N_2S$, the dihedral angle between the planes through the non-H atoms of the methylbenzene and thiazolopyridine groups is 36.61 (5)°. In the crystal, the thiazolopyridine groups of inversion-related molecules overlap, with a minimum ring-centroid separation of 3.6721 (9) Å. Furthermore, the methylbenzene groups from neighbouring molecules interact edge-to-face at an angle of 71.66 (5)°. In addition, weak $C-H \cdots N$ hydrogen bonds form chains exending along [100].

Keywords: crystal structure; thiazolopyridine; hydrogen bonding.

CCDC reference: 1410117

1. Related literature

Various thiazolopyridine derivatives have been synthesised using different synthetic methods, see: Luo et al. (2015); Chaban et al. (2013); Leysen et al. (1984); Lee et al. (2010); Rao et al. (2009); Johnson et al. (2006); El-Hiti (2003); Smith et al. (1994, 1995). For the X-ray crystal structures of related compounds, see: El-Hiti et al. (2014; 2015); Yu et al. (2007).

2. Experimental 2.1. Crystal data C13H10N2S

 $M_r = 226.29$

Orthorhombic, Pbca a = 7.6702 (1) Åb = 12.6492 (3) Å c = 22.9821 (5) Å V = 2229.77 (8) Å³

2.2. Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas CCD detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.960, \ T_{\max} = 0.989$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	146 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
2234 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots N2^i$	0.93	2.63	3.371 (2)	137
Summatry and a (i)	x 1 u 1	- ↓ 1		

Z = 8

Cu $K\alpha$ radiation

 $0.26 \times 0.17 \times 0.05 \; \rm mm$

7263 measured reflections

2234 independent reflections

1959 reflections with $I > 2\sigma(I)$

 $\mu = 2.33 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.019$

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Acknowledgements

The authors extend their appreciation to the British Council, Riyadh, Saudi Arabia, for funding this research and to Cardiff University for continued support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2340).

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.

- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- Chaban, T. I., Ogurtsov, V. V., Chaban, I. G., Klenina, O. V. & Komarytsia, J. D. (2013). Phosphorus Sulfur Silicon Relat. Elem. 188, 1611-1620.
- El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.
- El-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015). Acta Cryst. E71, o272-o273.
- El-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, 0932.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853-4856
- Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95-99.
- Leysen, D. C., Haemers, A. & Bollaert, W. (1984). J. Heterocycl. Chem. 21, 1361-1366.

Luo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631–637.

Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). *Bioorg. Med. Chem. Lett.* **19**, 6176–6180.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.
- Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.
 Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, 0968–0969.

supporting information

Acta Cryst. (2015). E71, 0562-0563 [doi:10.1107/S2056989015012797]

Crystal structure of 2-(2-methylphenyl)-1,3-thiazolo[4,5-b]pyridine

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Saud A. Alanazi and Benson M. Kariuki

S1. Introduction

Various thiazolopyridine derivatives have been synthesised using different synthetic methods (Luo *et al.*, 2015; Chaban *et al.*, 2013; Leysen *et al.*, 1984; Lee *et al.*, 2010; Rao *et al.*, 2009; Johnson *et al.*, 2006; El-Hiti, 2003; Smith *et al.*, 1994, 1995). We have synthesized 2-(2-methylphenyl)-1,3-thiazolo[4,5-*b*]pyridine in high yield (El-Hiti, 2003; Smith *et al.*, 1995) as a continuation of our research directed towards the development of novel synthetic routes towards heterocyclic derivatives. The X-ray structures for related compounds have been reported previously (El-Hiti *et al.*, 2014, 2015; Yu *et al.*, 2007).

S2. Experimental

S2.1. Synthesis and crystallization

2-(2-Methylphenyl)-1,3-thiazolo[4,5-*b*]pyridine was obtained in 89% yield from acid hydrolysis of 3-(diisopropylaminothiocarbonylthio)-2-(2-methylbenzoylamino)pyridine under reflux (Smith *et al.*, 1995) or in 61% yield from the reaction of 3-(diisopropylaminothiocarbonylthio)-2-aminopyridine with 2-methylbenzoic acid in the presence of phosphorus oxychloride under reflux (El-Hiti, 2003). Crystallization from diethyl ether gave colourless crystals of the title compound. The NMR and mass spectral data for this compound were consistent with those reported (Smith *et al.*, 1995).

S2.2. Refinement

H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H)$ constrained to be 1.2 times U_{eq} for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

S3. Comment

The asymmetric unit consists of one molecule of $C_{13}H_{10}N_2S$ (Fig. 1). In the molecule, the angle between the least squares planes through the nonhydrogen atoms of the methylphenyl and thiazolopyridine groups is 36.61 (5)°. In the crystal (Fig 2), the thiazolopyridine groups of adjacent inversion-related molecules are parallel and overlap fully with a minimum ring centroid separation of 3.6721 (9) Å between the 5-membered and 6-membered components of the groups (related by -*x*, -*y* +1.-*z* +1). Methylphenyl groups from neighbouring molecules interact in an edge-to-face fashion with a dihedral angle between the rings of 71.66 (5)°. A weak intermolecular C4—H···N2ⁱ contact (Table 1) forms chains of molecules extending along [100].

Figure 1

The asymmetric unit of $C_{13}H_{10}N_2O$ with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2

The crystal packing viewed along the *a* axis of the unit cell.

2-(2-Methylphenyl)-1,3-thiazolo[4,5-b]pyridine

Crystal data	
$C_{13}H_{10}N_2S$	V = 2229.77 (8) Å ³
$M_r = 226.29$	Z = 8
Orthorhombic, Pbca	F(000) = 944
a = 7.6702 (1) Å	$D_{\rm x} = 1.348 { m Mg m^{-3}}$
b = 12.6492 (3) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
c = 22.9821 (5) Å	Cell parameters from 3613 reflections

 $\theta = 3.8-74.0^{\circ}$ $\mu = 2.33 \text{ mm}^{-1}$ T = 293 K

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas CCD detector	2234 independent reflections 1959 reflections with $L > 2\sigma(L)$
	$R_{\rm e} = 0.019$
Absorption correction: multi scan	$A_{\text{int}} = 0.019$ $A_{\text{int}} = 74.0^{\circ} A_{\text{int}} = 2.0^{\circ}$
(CrysAlis PRO; Agilent, 2014)	$h = -9 \rightarrow 6$
$T_{\min} = 0.960, \ T_{\max} = 0.989$	$k = -12 \rightarrow 15$
7263 measured reflections	$l = -28 \rightarrow 27$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_0^2) + (0.0633P)^2 + 0.2883P]$
S = 1.02	where $P = (F_0^2 + 2F_c^2)/3$
2234 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
146 parameters	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, colourless

 $0.26 \times 0.17 \times 0.05 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.21789 (18)	0.50224 (11)	0.38130 (6)	0.0457 (3)	
C2	0.03446 (19)	0.40362 (11)	0.43105 (6)	0.0496 (3)	
C3	-0.07616 (19)	0.48902 (12)	0.42082 (6)	0.0527 (3)	
C4	-0.1768 (3)	0.31679 (15)	0.48019 (8)	0.0706 (5)	
H4	-0.2140	0.2579	0.5010	0.085*	
C5	-0.2954 (2)	0.39752 (16)	0.47141 (8)	0.0705 (5)	
H5	-0.4082	0.3917	0.4859	0.085*	
C6	-0.2461 (2)	0.48645 (16)	0.44130 (8)	0.0670 (4)	
H6	-0.3229	0.5422	0.4350	0.080*	
C7	0.37539 (18)	0.54080 (11)	0.35116 (6)	0.0470 (3)	
C8	0.48582 (19)	0.47301 (13)	0.31980 (6)	0.0527 (3)	
C9	0.6265 (2)	0.51824 (15)	0.29070 (7)	0.0644 (4)	
H9	0.6997	0.4749	0.2690	0.077*	
C10	0.6608 (2)	0.62498 (15)	0.29292 (8)	0.0675 (4)	
H10	0.7555	0.6528	0.2728	0.081*	
C11	0.5547 (2)	0.69041 (14)	0.32501 (8)	0.0664 (4)	
H11	0.5787	0.7623	0.3274	0.080*	
C12	0.4124 (2)	0.64853 (12)	0.35362 (7)	0.0563 (4)	
H12	0.3399	0.6930	0.3749	0.068*	

C13	0.4583 (3)	0.35571 (14)	0.31637 (9)	0.0730 (5)
H13A	0.5337	0.3264	0.2872	0.109*
H13B	0.3391	0.3414	0.3064	0.109*
H13C	0.4845	0.3243	0.3534	0.109*
N1	0.20074 (17)	0.41287 (9)	0.40814 (5)	0.0514 (3)
N2	-0.0128 (2)	0.31754 (12)	0.46089 (7)	0.0659 (4)
S1	0.03278 (5)	0.58334 (3)	0.38069 (2)	0.06317 (17)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0444 (7)	0.0476 (7)	0.0451 (7)	0.0040 (5)	-0.0043 (5)	-0.0027 (5)
0.0486 (8)	0.0529 (8)	0.0471 (7)	0.0024 (6)	0.0008 (6)	-0.0006 (6)
0.0452 (7)	0.0625 (8)	0.0502 (7)	0.0045 (6)	-0.0035 (6)	0.0007 (6)
0.0698 (10)	0.0746 (11)	0.0673 (10)	-0.0082 (8)	0.0169 (8)	0.0047 (8)
0.0526 (9)	0.0951 (13)	0.0637 (9)	-0.0068 (8)	0.0099 (7)	-0.0010 (9)
0.0474 (8)	0.0870 (12)	0.0667 (9)	0.0106 (8)	0.0017 (7)	0.0036 (8)
0.0441 (7)	0.0502 (7)	0.0468 (7)	0.0005 (6)	-0.0055 (5)	0.0007 (5)
0.0497 (7)	0.0567 (8)	0.0517 (8)	0.0026 (6)	-0.0004 (6)	-0.0013 (6)
0.0562 (9)	0.0778 (11)	0.0591 (9)	0.0018 (8)	0.0097 (7)	-0.0019 (8)
0.0600 (9)	0.0795 (11)	0.0630 (9)	-0.0143 (8)	0.0057 (7)	0.0089 (8)
0.0685 (10)	0.0609 (9)	0.0700 (10)	-0.0140 (8)	-0.0009 (8)	0.0052 (8)
0.0555 (8)	0.0530 (8)	0.0605 (8)	-0.0010 (7)	-0.0038 (7)	-0.0009 (6)
0.0769 (12)	0.0564 (9)	0.0856 (12)	0.0054 (8)	0.0211 (9)	-0.0104 (9)
0.0490 (7)	0.0508 (7)	0.0544 (7)	0.0062 (5)	0.0033 (5)	0.0039 (5)
0.0665 (8)	0.0622 (8)	0.0691 (8)	0.0026 (6)	0.0133 (7)	0.0116 (7)
0.0491 (3)	0.0616 (3)	0.0789 (3)	0.01227 (16)	0.00281 (17)	0.01779 (18)
	U^{11} 0.0444 (7) 0.0486 (8) 0.0452 (7) 0.0698 (10) 0.0526 (9) 0.0474 (8) 0.0441 (7) 0.0497 (7) 0.0562 (9) 0.0600 (9) 0.0685 (10) 0.0555 (8) 0.0769 (12) 0.0490 (7) 0.0665 (8) 0.0491 (3)	U^{11} U^{22} 0.0444 (7) 0.0476 (7) 0.0486 (8) 0.0529 (8) 0.0452 (7) 0.0625 (8) 0.0698 (10) 0.0746 (11) 0.0526 (9) 0.0951 (13) 0.0474 (8) 0.0870 (12) 0.0441 (7) 0.0502 (7) 0.0497 (7) 0.0567 (8) 0.0562 (9) 0.0778 (11) 0.0600 (9) 0.0795 (11) 0.0685 (10) 0.0609 (9) 0.0555 (8) 0.0530 (8) 0.0769 (12) 0.0564 (9) 0.0490 (7) 0.0508 (7) 0.0665 (8) 0.0616 (3)	U^{11} U^{22} U^{33} 0.0444 (7) 0.0476 (7) 0.0451 (7) 0.0486 (8) 0.0529 (8) 0.0471 (7) 0.0452 (7) 0.0625 (8) 0.0502 (7) 0.0698 (10) 0.0746 (11) 0.0673 (10) 0.0526 (9) 0.0951 (13) 0.0637 (9) 0.0474 (8) 0.0870 (12) 0.0667 (9) 0.0441 (7) 0.0502 (7) 0.0468 (7) 0.0497 (7) 0.0567 (8) 0.0517 (8) 0.0562 (9) 0.0778 (11) 0.0591 (9) 0.0600 (9) 0.0795 (11) 0.0630 (9) 0.0685 (10) 0.0609 (9) 0.0700 (10) 0.0555 (8) 0.0530 (8) 0.0605 (8) 0.0769 (12) 0.0564 (9) 0.0544 (7) 0.0665 (8) 0.0622 (8) 0.0691 (8) 0.0491 (3) 0.0616 (3) 0.0789 (3)	U^{11} U^{22} U^{33} U^{12} 0.0444 (7) 0.0476 (7) 0.0451 (7) 0.0040 (5) 0.0486 (8) 0.0529 (8) 0.0471 (7) 0.0024 (6) 0.0452 (7) 0.0625 (8) 0.0502 (7) 0.0045 (6) 0.0698 (10) 0.0746 (11) 0.0673 (10) -0.0082 (8) 0.0526 (9) 0.0951 (13) 0.0637 (9) -0.0068 (8) 0.0474 (8) 0.0870 (12) 0.0667 (9) 0.0106 (8) 0.0441 (7) 0.0502 (7) 0.0468 (7) 0.0005 (6) 0.0497 (7) 0.0567 (8) 0.0517 (8) 0.0026 (6) 0.0562 (9) 0.0778 (11) 0.0591 (9) 0.0018 (8) 0.0600 (9) 0.0795 (11) 0.0630 (9) -0.0143 (8) 0.0685 (10) 0.0609 (9) 0.0700 (10) -0.0140 (8) 0.0555 (8) 0.0530 (8) 0.0605 (8) -0.0010 (7) 0.0769 (12) 0.0564 (9) 0.0856 (12) 0.0054 (8) 0.0490 (7) 0.0508 (7) 0.0544 (7) 0.0026 (6) 0.0491 (3) 0.0616 (3) 0.0789 (3) 0.01227 (16)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0444 (7)0.0476 (7)0.0451 (7)0.0040 (5) -0.0043 (5)0.0486 (8)0.0529 (8)0.0471 (7)0.0024 (6)0.0008 (6)0.0452 (7)0.0625 (8)0.0502 (7)0.0045 (6) -0.0035 (6)0.0698 (10)0.0746 (11)0.0673 (10) -0.0082 (8)0.0169 (8)0.0526 (9)0.0951 (13)0.0637 (9) -0.0068 (8)0.0099 (7)0.0441 (7)0.0502 (7)0.0468 (7)0.0005 (6) -0.0055 (5)0.0497 (7)0.0567 (8)0.0517 (8)0.0026 (6) -0.0004 (6)0.0552 (9)0.0778 (11)0.0591 (9)0.0018 (8)0.0097 (7)0.0667 (9)0.018 (8)0.0097 (7)0.0665 (10) 0.0609 (9) 0.0700 (10) -0.0143 (8) 0.0057 (7)0.0685 (10)0.0609 (9)0.0700 (10) -0.0140 (8) -0.0009 (8)0.0555 (8)0.0530 (8)0.0605 (8) -0.0010 (7) -0.0038 (7)0.0490 (7)0.0508 (7)0.0544 (7)0.0062 (5)0.0033 (5)0.0665 (8)0.0622 (8)0.0691 (8)0.0227 (16)0.0281 (17)

Geometric parameters (Å, °)

C1—N1	1.2944 (18)	C7—C12	1.393 (2)
C1—C7	1.476 (2)	C7—C8	1.404 (2)
C1—S1	1.7518 (14)	C8—C9	1.392 (2)
C2—N2	1.337 (2)	C8—C13	1.501 (2)
C2—N1	1.3848 (19)	C9—C10	1.377 (3)
C2—C3	1.394 (2)	С9—Н9	0.9300
C3—C6	1.386 (2)	C10—C11	1.375 (3)
C3—S1	1.7240 (16)	C10—H10	0.9300
C4—N2	1.334 (2)	C11—C12	1.380 (2)
C4—C5	1.382 (3)	C11—H11	0.9300
C4—H4	0.9300	C12—H12	0.9300
C5—C6	1.374 (3)	C13—H13A	0.9600
С5—Н5	0.9300	C13—H13B	0.9600
С6—Н6	0.9300	C13—H13C	0.9600
N1—C1—C7	126.56 (13)	C7—C8—C13	123.08 (14)
N1-C1-S1	115.65 (11)	C10—C9—C8	122.24 (16)
C7—C1—S1	117.79 (10)	С10—С9—Н9	118.9

N2-C2-N1	120.92 (13)	С8—С9—Н9	118.9
N2—C2—C3	123.54 (14)	C11—C10—C9	119.80 (15)
N1—C2—C3	115.54 (13)	C11—C10—H10	120.1
C6—C3—C2	119.80 (15)	C9—C10—H10	120.1
C6—C3—S1	130.81 (13)	C10-C11-C12	119.51 (16)
C2—C3—S1	109.37 (11)	C10-C11-H11	120.2
N2—C4—C5	124.51 (17)	C12—C11—H11	120.2
N2C4H4	117.7	C11—C12—C7	121.16 (16)
С5—С4—Н4	117.7	C11—C12—H12	119.4
C6—C5—C4	119.85 (16)	C7—C12—H12	119.4
С6—С5—Н5	120.1	C8—C13—H13A	109.5
С4—С5—Н5	120.1	C8—C13—H13B	109.5
C5—C6—C3	116.67 (17)	H13A—C13—H13B	109.5
С5—С6—Н6	121.7	C8—C13—H13C	109.5
С3—С6—Н6	121.7	H13A—C13—H13C	109.5
С12—С7—С8	119.67 (14)	H13B—C13—H13C	109.5
C12—C7—C1	118.11 (13)	C1—N1—C2	110.40 (12)
C8—C7—C1	122.21 (13)	C4—N2—C2	115.61 (15)
C9—C8—C7	117.58 (15)	C3—S1—C1	89.04 (7)
C9—C8—C13	119.33 (14)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4···N2 ⁱ	0.93	2.63	3.371 (2)	137

Symmetry code: (i) x-1/2, -y+1/2, -z+1.