
Polygenic power calculator:
Statistical power and polygenic
prediction accuracy of
genome-wide association
studies of complex traits

Tian Wu1, Zipeng Liu1,2,3, Timothy Shin Heng Mak3,4 and
Pak Chung Sham1,2,3*
1Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam,
Hong Kong SAR, China, 2State Key Laboratory of Brain and Cognitive Sciences, The University of Hong
Kong, Pok Fu Lam, Hong Kong SAR, China, 3Centre for PanorOmic Sciences, Li Ka Shing Faculty of
Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China, 4Fano Labs, Hong Kong,
Hong Kong SAR, China

Power calculation is a necessary step when planning genome-wide association

studies (GWAS) to ensure meaningful findings. Statistical power of GWAS

depends on the genetic architecture of phenotype, sample size, and study

design. While several computer programs have been developed to perform

power calculation for single SNP association testing, it might be more

appropriate for GWAS power calculation to address the probability of

detecting any number of associated SNPs. In this paper, we derive the

statistical power distribution across causal SNPs under the assumption of a

point-normal effect size distribution. We demonstrate how key outcome

indices of GWAS are related to the genetic architecture (heritability and

polygenicity) of the phenotype through the power distribution. We also

provide a fast, flexible and interactive power calculation tool which

generates predictions for key GWAS outcomes including the number of

independent significant SNPs, the phenotypic variance explained by these

SNPs, and the predictive accuracy of resulting polygenic scores. These

results could also be used to explore the future behaviour of GWAS as

sample sizes increase further. Moreover, we present results from simulation

studies to validate our derivation and evaluate the agreement between our

predictions and reported GWAS results.
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Introduction

Genome-wide association studies (GWAS) aim to systematically

identify single-nucleotide polymorphisms (SNPs) associated with

complex phenotypes. Though not necessarily causal, associated

SNPs are good starting points for elucidating biological

mechanisms of diseases and related phenotypes. GWAS on a

wide range of phenotypes have confirmed the polygenic nature

ofmost common traits, with thousands of SNPs eachmaking a small

contribution to individual differences in the population (Visscher

et al., 2017). The recent increase in the sample size of GWAS and

meta-GWAS has resulted in more of these SNPs to be identified,

leading not only to more comprehensive understanding of disease

etiology (Cano-Gamez and Trynka, 2020), but also greater accuracy

in the calculation of polygenic scores to predict individual genetic

liability to develop disease (Vilhjalmsson et al., 2015; Mak et al.,

2017; Torkamani et al., 2018).

Adequate statistical power is necessary to both detect

enough SNPs to inform etiology and to obtain accurate

effect size estimate for polygenic score calculations

(Dudbridge, 2013). Several computer programs have been

developed to perform power calculation for single SNP

association testing. For example, Genetic Power Calculator

(GPC) (Purcell et al., 2003) used closed-form analytic results

(Sham and Purcell, 2014) to perform power calculations for

linkage and association studies. Genetic Association Study

Power Calculator (GAS) (Johnson and Abecasis, 2017)

performs power calculation for genetic association studies

under case-control design. However, these tools perform

power calculation for single SNPs, ignoring the polygenic

nature of complex diseases, and the simultaneous testing of

millions of SNPs that is now standard in GWAS (Sham and

Purcell, 2014). Meta-GWAS Accuracy and Power (MetaGAP)

(de Vlaming et al., 2017) performs GWAS power calculations

and introduces genetic correlation parameters to account for

effect size heterogeneity between studies. However, it is

restricted to quantitative phenotype and random samples.

Since the goal of GWAS is to detect any truly associated SNPs,

power calculation might more appropriately address the probability

of detecting any number of associated SNPs, than the probability of

detecting a specific associated SNP. Such a calculation would require

specification of the entire distribution of effect size of all analysed

SNPs, rather than the effect size of a single SNP. Severalmethods have

been proposed to infer the underlying genetic effect size distribution

based on significant GWAS hits or GWAS summary statistics (Park

et al., 2010; So et al., 2010; Chatterjee et al., 2013; Moser et al., 2015;

Zhang et al., 2018). Evidence shows that a point-normal distribution

is adequate to fit the distribution of true effects of common variants

for some complex traits (Zhang et al., 2018) and it is more practical

than the infinitesimal model (Visscher et al., 2017).

This report describes a fast, flexible and interactive power

calculation tool for GWAS under the assumption of a point-

normal distribution of standardized effect sizes. The program

generates predictions for the key outcomes of GWAS, including

the distribution of statistical power across all independent causal

SNPs, the expected number of independent genome-wide significant

SNPs, total phenotypic variance explained by these SNPs, and the

predictive accuracy of optimally weighted polygenic scores (PGS). It

TABLE 1 Key input parameters and output indices.

General parameters

n GWAS sample size

m Number of nearly independent SNPs, after removing SNPs in strong LD

h2 SNP heritability of quantitative phenotype or of liability to disease

π0 Proportion of SNPs that do not contribute to SNP heritability

Parameter in qualitative phenotype model

K Population disease prevalence

Study design parameters

TL Lower threshold for extreme sample selection

TU Upper threshold for extreme sample selection

PL Proportion of samples below TL , in extreme sample selection

ω Proportion of cases in case-control design

Output indices

E(S) Expected number of independent significant SNPs

E(C) Expected number of detected causal SNPs

∑
j∈Ω

β̂
2

j
Apparent phenotypic variance explained by independent significant SNPs

∑
j∈Ω

[E(β2j |β̂j)]2 Corrected phenotypic variance explained by the independent significant SNPs
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allows the user to specify the nature of the phenotype under

consideration (quantitative or dichotomous), its epidemiological

features (e.g., disease prevalence) and genetic architecture (e.g.,

SNP-heritability), and the study design (e.g., case-control).

Material and methods

The input parameters and the output indices of the program

are summarized in Table 1.

Model description

The phenotype is either an observed quantitative trait or a

disease determined by a latent continuous liability (Falconer,

1965). For simplicity, SNPs are assumed to have been made

nearly independent by clumping or pruning; the total number of

SNPs (m) is the effective number of independent SNPs in the

entire genome. A proportion π0 of independent SNPs do not

contribute to phenotypic variance (i.e., the null SNPs), while the

remaining (1 − π0) × m SNPs are causally associated with the

phenotype (i.e., the non-null SNPs), explaining a proportion h2

of the phenotypic variance, known as the SNP heritability. The

effect size of a SNP j on phenotype (observed or latent), βj, is

defined as the regression coefficient of the standardized

quantitative phenotype on the standardized genotype. The

effect sizes of causal SNPs are assumed to be drawn from a

normal distribution with mean zero and variance h2

m(1−π0). Overall,
the distribution of effect sizes of all SNPs follow a point-normal

distribution:

β ~ π0δ0 + (1 − π0)N(0, h2

m(1 − π0))
where δ0 denotes a point mass at zero. When π0 is zero, effect

sizes become normally distributed, corresponding to the

infinitesimal model (Falconer, 1996).

For disease phenotypes, standardised log-odds ratios (γj) from

the logistic regression model can be transformed approximately to

effect size on the liability scale (βj), assuming knowledge of disease

prevalence K in the population (Wu and Sham, 2021).

βj ≈
K(1 −K)
ϕ(Φ−1(K))γj

where ϕ is the standard normal probability density function and

Φ−1is the inverse of the standard normal cumulative distribution

function.

Distribution of effect size estimates

For quantitative traits, the regression coefficient estimate β̂j
for a SNP with a true effect size βj is normally distributed with

mean βj and variance approximately 1
n, where n is the sample size

FIGURE 1
Assumed distribution of effect size estimates under a point-normal model. For illustration, the critical values for statistical significance are
shown as vertical dotted lines, while average statistical power for detecting non-null SNPs is given by the shaded areas under density curve for non-
null SNPs. Parameter values h2 = 0.7, m = 60,000, π0 = 0.9, n = 50,000, α = 5 × 10−8.
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(Dudbridge, 2013). Thus, the overall distribution of β̂ is a mixture

of two normal distributions (Figure 1):

β̂ ~ π0 N(0, 1
n
) + (1 − π0)N(0, h2

m(1 − π0) +
1
n
)

For binary traits, the sampling variance of the per-standard

deviation effect estimate on the liability scale depends on the

disease prevalence (K) in the population and the proportion of

cases (w) in the sample, as well as the total (case and control)

sample size, as follows (Wu and Sham, 2021):

Var(β̂) ≈ Var(β) + 1
n

K2(1 −K)2
w(1 − w)

1

ϕ2(Φ−1(K))
The sample size n can be rescaled by a factor

w(1−w)
K2(1−K)2ϕ

2(Φ−1(K)) to obtain the size of a random sample with

equivalent sampling variance for β̂, for an observed quantitative trait

with the same parameters (π0 ,m,andh2) as the disease liability.

Distribution of statistical power across
causal single-nucleotide polymorphisms

The statistical power for an individual SNP is determined by its

effect size, the sample size, and the desired significance level. In a

random sample of size n, the test statistic for the association between

a quantitative phenotype and a SNP is β̂
�
n

√
, which approximately

follows a non-central chi-squared distribution with non-centrality

parameter (NCP) nβ2. The statistical power of detecting a SNP is

given by the tail area of this distribution beyond the critical value for

the desired significance level. Thus, given an assumed distribution of

β across all non-null SNPs, we can obtain the distribution of

statistical power, for any sample size and desired level of

statistical significance. This was done by partitioning possible β

values, for example, [−10 sd, 10 sd] of the assumed effect size

distribution, into narrow intervals, and calculating the probability

of the effect size to be within intervals and the statistical power for an

effect size at the mid-point of the intervals. This method provides

increasingly more accurate approximations to the probability

density function of statistical power as the intervals become

narrower. Based on this approximate probability density function

of statistical power, we calculated the average and variance of

statistical power across causal SNPs (E(p) and Var(p)).

Distribution of the number of and variance
explained by independent significant
single-nucleotide polymorphisms

From the expectation and variance of statistical power, we

derived formulae for the expectation and variance of the number

of independent significant SNPs, as well as the proportion of

phenotypic variance explained by these SNPs. These formulae

were validated by simulation studies. For SNP j, (j � 1, 2, . . .m),

we generated minor allele frequency fj ~ Uniform (0.01, 0.5)
and independent genotype value Xj ~ Binomial (2, fj)
(subsequently standardised to have mean zero and variance

one). We randomly selected m(1 − π0) SNPs to be causal, with

standardised effect size βj ~ N(0, h2

m(1−π0)); the remaining mπ0
SNPs were assigned effect size zero. We also generated error term

ε ~ N(0, 1 − h2), which was added to the total effect of the causal

SNPs to calculate the phenotypic value of each individual.We then

performed association analysis for SNPs to obtain the estimated

effect sizes β̂j and associated p-values. This procedure was repeated

100 times using LDAK (Speed et al., 2017), and the results were

checked for consistency with the theoretical number of significant

SNPs and its 95% probability interval calculated by our formulae.

Polygenic score predictive accuracy

The polygenic model specifies that the phenotypic value is

related to SNP genotypes by yi � Gi + εi, where Gi � ∑m
j�1βjxij is

defined as the true additive genetic value of individual i, andm is

the number of SNPs. In practice, the true effect size βj are

unknown, and we calculate individual PGS using estimates of

βjas weights, i.e., ~Gi � ∑m
j�1~βjxij.

A number of different methods to determine the weights ~βj
have been proposed. The simplest method is to use the regression

coefficient estimates (β̂j) from simple linear or logistic regression

of the phenotype, on each SNP separately. When the SNPs are

independent and both phenotype and genotype data are

standardised to have mean 0 and variance 1, the sampling

variance of the regression coefficient estimate for a

quantitative phenotype is Var(β̂j) � σ2e∑n

i�1(xij−�x)2
�

σ2e
(n−1)s2 ≈

σ2e
n ≈ 1

n and the efficacy of PGS relative to the true

additive genetic value is r2(Ĝi, Gi) � 1
1+ m

nh2
, i � 1, 2, . . . n

(Daetwyler et al., 2008), where Ĝi denotes the PGS

constructed by β̂j. The prediction accuracy of PGS on

phenotype, i.e., r2(Ĝi, yi),is then given by r2(Ĝi, Gi)h2 (Wray

et al., 2013). Furthermore, the prediction accuracy of PGS for

binary phenotypes on the liability scale can be easily obtained

based on the aforementioned effect size transformation. Once the

variance explained on the liability scale is obtained, it can be

easily transformed to the area under the curve (AUC) of receiver-

operator characteristic (ROC) or Nagelgerke’s pseudo-R2

following Lee et al. (2012). However, the marginal effect

estimates are poor proxies of true SNP effect sizes. Also, not

all SNPs contribute to the phenotypic variance, so only a number

of SNPs should be included in the PGS. To address these issues,

shrinkagemethods to construct PGS have been proposed (Purcell

et al., 2009; Vilhjalmsson et al., 2015; Bigdeli et al., 2016; Mak

et al., 2016; So and Sham, 2017; Qian et al., 2020; Song et al.,

2020). A classic way of selecting SNPs contributing to PGS is

p-value thresholding (Euesden et al., 2015), where only SNPs

with GWAS p-value less than a certain threshold are retained, in

effect shrinking the regression coefficient estimates of SNPs with
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p-value above the threshold to zero. The threshold is usually

determined by optimizing the PGS prediction accuracy of the

target phenotype by split-sample or out-sample validation.

Another, more sophisticated, shrinkage method is to replace

the regression coefficient by the posterior expectation E(βj|β̂j),
assuming a certain prior distribution for βj (Vilhjalmsson et al.,

2015; Lloyd-Jones et al., 2019; Song et al., 2020). Thus the

magnitude of shrinkage depends on the value of β̂j non-

linearly, with small values being shrunk to zero while large

values are relatively unchanged. The efficacy of PGS

constructed by various shrinkage methods can be calculated

by r2(Gi, ~Gi) � Cov2(βj ,~βj )
Var(βj)Var(~βj )

, where ~Gi denotes the estimated

PGS constructed by shrunk estimators of β̂j. Numeric method

is adopted to calculate this efficacy index given the parameters in

the genetic effect-size distribution.

Other study designs and meta-genome
wide association studies analysis

We enabled the above framework to be used for power

calculation in other study designs, including phenotypic

selection of continuous traits (e.g., extreme phenotype

design), and case-control studies of binary traits, by

deriving the equivalent sample size n*, defined as the

sample size that would give the same power to detect

associated SNPs as a population study of a continuous

phenotype with sample size n. For meta-analysis of case-

control studies of a binary trait, we first calculate the

equivalent sample sizes of the component studies (which

may have different case-control ratios) and then combine

them to give a total equivalent sample size.

Application to real data

We applied our method to four phenotypes including height,

body mass index (BMI), major depressive disorder (MDD) and

schizophrenia (SCZ) to evaluate how well the predicted GWAS

outcomesmatch upwith the reportedGWAS outcomes (Wray et al.,

2018; Yengo et al., 2018; The Schizophrenia Working Group of the

Psychiatric Genomics Consortium Ripke et al., 2020). We selected

these four phenotypes because at least three sizeable GWAS ormeta-

GWAS had been conducted, so that earlier GWAS outcomes could

be used to set a reasonable range for π0. For example, given Wood

et al. (2014) (Wood et al., 2014) reported 623 independent genome-

wide significant SNPs detected by meta-analysis for height, we

searched for π0 such that the 95% probability interval of the

predicted number of significant SNPs covered 623. As a result,

the range of π0 is estimated as [0.6505, 0.6800]. Similarly, we used

Locke et al. (2015), Hyde et al. (2016), and Ripke et al. (2014) to

estimate the range of π0 for BMI, MDD, and SCZ, respectively

(Supplementary Table S1).

For SNP heritability, we assumed the latest estimated value

reported in literature; when several SNP heritability estimates

were reported at about the same time, their average value was

used. Specifically, we assumed the SNP heritabilities of height,

BMI, MDD, and SCZ were 0.483 (Yengo et al., 2018), 0.249 (see

Web resources), 0.089 (Howard et al., 2019) and 0.23 (Lam et al.,

2019; Lee et al., 2019), respectively. In all of our applications, we

set m as 60,000 (Wray et al., 2013), assuming meta-analysis

samples are from European ancestry. For quantitative trait

GWAS using a population cohort, the parameter n was simply

the sample size of GWAS or meta-GWAS, whereas for binary

phenotypes, we used the equivalent sample size described above.

If earlier study was a meta-analysis, we calculated the equivalent

sample size for each cohort in the meta-analysis, and used the

sum of equivalent sample sizes as our model parameter n

(Supplementary Tables S2, S3). We set the genome-wide

significant level α as 5 × 10−8 except when predicting GWAS

key outcomes for height and BMI. For these two studies, αwas set

as 1 × 10−8 to be consistent with the literature.

Results

Distribution of statistical power across
causal single-nucleotide polymorphisms

Our model is based on the assumption that the effect size

follows a point-normal distribution. Accordingly, the effect size

estimate follows a normal mixture distribution (Figure 1).

Figure 2A shows the relationship between statistical power and

sample size for different effect sizes for a single SNP. We define

SNP explaining 0.01%, 0.1%, and 1% of SNP heritability as having

small, moderate and large effect, respectively. When the effect size

is large, power curve increased rapidly and saturated soon. The

proportion of SNPs with at least that level of statistical power on

the x-axis is shown in Figure 2B. This proportion is equivalent to

one minus the cumulative probability of power. With the increase

of sample size, larger proportions of SNPs remain high statistical

power. The expectation and variance of power, given different

levels of heritability, π0, and sample sizes, are shown in Table 2.

Distribution of number of independent
significant single-nucleotide
polymorphisms

The number of independent significant SNPs is a function of

statistical power across all causal SNPs. Testing the significance

of each independent SNP could be regarded as a Bernoulli trial

Xj, which is either 0 or 1, with probability of success rate

sj � π0α + (1 − π0)pj, j � 1, 2, . . .m,where α is the Type

1 error rate and pj is the statistical power of detecting SNP j.

Hence, the total number of significant SNPs S � ∑m
j�1Xj and its
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expectation is E(S) � mπ0α + (1 − π0)E(∑m
j�1pj) � m[π0α +

(1 − π0) E(p)], where E(p) is the average power of causal

SNPs. The expected number of detected causal

SNPs E(C) � (1 − π0)E(∑m
j�1pj) � m(1 − π0) E(p).

When calculating the variance of the number of significant

SNPs, null and non-null SNPs are also considered separately. For

null SNPs, the number of significant SNPs is binomial with mean

mπ0α and variance mπ0α(1 − α). As α is often small in GWAS,

the variance is approximately mπ0α thus the distribution is

approximately a Poisson. For non-null SNPs, the number of

significant SNPs is a convolution of m(1 − π0) Bernoulli trials
with different success rates pj, i.e., a Poisson binomial

distribution. The variance of the number of significant SNPs

is therefore m(1 − π0)[E(p)(1 − E(p)) − Var(p)], where

Var(p) is the variance of power across causal SNPs. Hence,

Var(S) � mπ0α(1 − α) +m(1 − π0)[E(p)(1 − E(p)) −Var(p)].
This variance is used to construct the 95% probability interval of

the number of significant SNPs.

In our model, sample size and π0 of phenotype are two

factors that would affect the number of independent significant

SNPs. Specifically, the more polygenic a phenotype is, the smaller

the averaged effect size. With the increase of sample size, the

smaller the averaged effect size, the slower the expected number

of significant SNPs curve plateaus out (Figure 2C).

Distribution of variance explained by
independent significant single-nucleotide
polymorphisms

The phenotypic variance explained by independent significant

SNPs in a GWAS is
Var(∑

j∈Ω
βjxij)

Var(yi) � ∑
j∈Ω

β2j , i � 1, 2, . . . n, where Ω

denotes the set of such SNPs. However, since the true effect size is

unknown, an approximation of the variance explained is ∑
j∈Ω

β̂
2

j . This is

referred as the apparent variance explained, because substituting β by β̂

would inflate the result due toWinner’s curse (Palmer andPe’er, 2017).

To correct this overestimation, we use E(β2j |β̂j), the possibly best

estimator of β2j , to replace β̂
2

j , i.e., ∑
j∈Ω

[E(β2j |β̂j)]2 .This is referred as
the corrected variance explained.

When effect size estimates are calculated in different samples,

the number of significant SNPs and β̂jwould vary due to

FIGURE 2
The relationship between statistical power, sample size, expected number of significant SNPs, and apparent variance explained by significant
SNPs. (A) The relationship between sample size and the statistical power to detect a single SNP with different effect sizes “small”, “moderate”, and
“large” representing SNPs that explain 0.01%, 0.1%, and 1% of SNP heritability. (B) Proportion of SNPs with at least that level of statistical power on the
x-axis for different sample sizes. (C) Relationship between expected number of significant SNPs and sample sizes. (D) Relationship between the
expected variance explained by the significant SNPs and sample sizes. For all figures, h2 = 0.4, m = 60,000, α = 5 × 10−8. For B, π0 = 0.99.
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sampling error. In other words, both the number of significant

SNPs S and β̂j are random variables. The expected variance

explained by the significant SNPs is

E⎛⎝∑
j∈Ω

β̂
2

j
⎞⎠ � E(∑m

j�1Xj)E(β̂2j ∣∣∣∣∣β̂j >T)
T is the critical value given the significance level.

The variance of variance explained by the significant SNPs is

obtained using the law of total variance.

Var⎛⎝∑
j∈Ω

β̂
2

j
⎞⎠ � E⎛⎝Var⎛⎝∑

j∈Ω
β̂
2

j

∣∣∣∣∣∣∣∣∣∣S⎞⎠⎞⎠ + Var⎛⎝E⎛⎝∑
j∈Ω

β̂
2

j

∣∣∣∣∣∣∣∣∣∣S⎞⎠⎞⎠

Similarly, the variance of corrected variance explained by

significant SNPs can also be calculated.

The relationship between the expected apparent variance

explained and sample size shows consistent pattern with that of

expected number of significant SNPs and sample size (Figure 2D).

Simulation results

To validate the derived formula, we performed simulation

studies using specific genetic architecture parameters (Figure 3).

For both continuous and binary phenotypes, the 95% probability

intervals of the theoretical number of significant SNPs and

variance explained covers the mean of 100-time simulation

results, which supports our analytic derivation. In addition, In

Table 3, we listed necessary sample sizes to detect 5%, 50%, and

95% of causal SNPs for traits with different levels of π0 and SNP

heritability. It shows that we need disproportional increase of

sample size to detect more significant SNPs.

Application to other study designs

For study design with phenotypic selection of continuous traits,

we first consider the extreme phenotype (EP) study design (Barnett

et al., 2013), which recruits subjects with extreme phenotypic values

from both tail regions of truncated normal distribution (YS). This

sampling strategy is shown to be effective for detecting rare variants

that contribute to complex traits (Amanat et al., 2020). This is

because rare variants are assumed to be enriched in individuals with

extreme phenotypic values, and the statistical power to detect these

variants is thus increased.

The relationship between sample regression coefficient β̂jS
and regression coefficient without phenotypic value selection is

β̂j �
β̂jS

var(YS). Under this study design, the equivalent sample size

n* � nVar(YS)2, where Var(YS) can be calculated by the law of

total variance:

Var(YS) � Var(Y|A1)P(A1) + Var(Y|A2)P(A2) + E(Y|A1)2(1
− P(A1))P(A1) + E(Y|A2)2(1 − P(A2))P(A2)
− 2E(Y|A1)(Y|A2)P(A1)P(A2).

TABLE 2 The expectation and variance of statistical power across causal SNPs for different SNP heritability, polygenicity, and sample sizes. m =
60,000, α = 5 × 10−8.

h2 π0 Sample size Expected power Variance of power

0.1 0.9 103 6.43 × 10−8 5.13 × 10−16

0.1 0.9 105 8.43 × 10−4 7.17 × 10−5

0.1 0.9 107 0.67 0.19

0.1 0.99 103 4.49 × 10−7 2.96 × 10−12

0.1 0.99 105 0.19 0.11

0.1 0.99 107 0.89 0.08

0.1 0.999 103 8.43 × 10−4 7.17 × 10−5

0.1 0.999 105 0.67 0.19

0.1 0.999 107 0.97 0.03

0.4 0.9 103 1.31 × 10−7 3.34 × 10−14

0.4 0.9 105 0.05 0.02

0.4 0.9 107 0.83 0.12

0.4 0.99 103 2.42 × 10−5 9.44 × 10−8

0.4 0.99 105 0.51 0.21

0.4 0.99 107 0.95 0.04

0.4 0.999 103 0.05 0.02

0.4 0.999 105 0.83 0.12

0.4 0.999 107 0.98 0.01
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P(A1)is the proportion of samples with extreme small

phenotypic values whereas P(A2) is the proportion of extreme

large samples. In fact, this method applies to any method of

selection based on Y, not just the truncated normal selection.

Similarly, to calculate the equivalent sample size for case-control

study, the key is to build up the relationship between the estimated

log odds ratio based on standardised genotype, i.e., γ, and the per-

standard deviation effect on the liability scale. The equivalent sample

size for a case-control study is K2(1−K)2
w(1−w)

1
ϕ(Φ−1(K))2 n as mentioned in

the Material and methods section.

Efficacy of polygenic scores is improved
using shrinkage method

Under the assumption of point-normal genetic effect

distribution, we also compared the efficacy of PGS constructed

by the ordinary least square estimate (OLSE), p-value thresholding

method and the aforementioned posterior expectation shrinkage

relative to the true additive genetic value (Figure 4). In this figure,

the p-value threshold is chosen to maximize the r2(Ĝ, G). When

PGS is constructed by OLSE, π0would not affect the PGS efficacy.

When sample size is large enough, PGS constructed by p-value

thresholding method can provide efficacious polygenic prediction.

However, when the proportion of causal SNPs is high and effect

sizes are small, shrinkage method can greatly improve polygenic

score efficacy.

Real data results

We compared the predicted results with the reported meta-

GWAS outcomes (Table 4). The predicted number of

independent significant SNPs, the apparent and corrected

variance explained are calculated based on π0such that 95%

probability interval of the predicted number of significant

SNPs would cover the number reported in earlier GWAS.

For BMI and MDD, the predicted key GWAS outcomes are

close to the reported values. However, our model over-estimated

the results for height and SCZ. For height, one of the possible

reasons is that the effect size distribution is not as simple as a

point-normal, which is supported by other reference (Zhang

et al., 2018). For schizophrenia, mixed population in discovery

samples, for example, Asian samples are included in Ripke et al.

(2014) and PGC3—SCZ (The Schizophrenia Working Group of

the Psychiatric Genomics Consortium Ripke et al., 2020), may

lead to the phenomenon that the reported number of significant

SNPs is less than expected and it is out of the scope of our model.

For different populations, m would be different, but how exactly

FIGURE 3
Theoretical expected number of independent significant SNPs and variance explained with 95% probability intervals i.e., dots and whiskers, with
different parameters settings in 100 simulations. h2 = 0.4, m = 50,000, α = 10–6. For binary trait, π0 = 0.99, w = 0.5.
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the mixed population in discovery sample would affect the

detected number of significant SNPs needs further study.

Discussion

In this paper, we derived theoretical results and provided

computational algorithms for predicting the key outcomes of

GWAS or meta-GWAS using parameters regarding the genetic

architecture of phenotype and sample size, under the assumption

that the standardised effect sizes of all SNPs in the genome follow

a point-normal distribution. We conducted simulation studies to

validate our theoretical results, and applied our model to GWAS

data on four example complex traits.

Our results show that the density function of statistical power

across causal SNPs under the assumed effect size distribution is

bimodal with peaks near 0 and 1 (a variation of Figure 2B;

Supplementary Figure S1). In other words, most causal SNPs

have statistical power close to either zero or one, because of

“floor” and “ceiling” effects. The relative heights of the two peaks

are influenced by sample size; increasing sample size will increase the

statistical power of all causal SNPs and thus reduce the height of the

peak near zero and increase the height near one. From the

distribution of statistical power, the expectations and variances of

key GWAS outcomes, such as the number of independent genome-

wide significant SNPs and the phenotypic variance explained by these

SNPs, can be calculated. These calculations have been implemented

in an online interactive tool named Polygenic Power Calculator.

For many phenotypes, meta-GWAS sample sizes have not

reached the halfway point of the desired level to detect most of

the contributing SNPs. Taking MDD as an example, we estimate that

7.36 × 10 (deVlaming et al., 2017) equivalent total samples are needed

to detect 95% of all causal SNPs when MDD prevalence is 15%

whereas the existing equivalent sample size only reaches 3.05 × 10

(Torkamani et al., 2018). On the other hand, it takes a much smaller

sample size to capture most of the genetic variance. Figures 2C,D

shows that when π0 is 0.9, i.e., there are 6,000 causal SNPs, it takes

~10 million samples to detect ~80% causal SNPs but only takes

~400 thousand samples to capture ~80% of SNP heritability. This is

because under the assumed normal distribution of causal effects,

detecting the SNPs with very small effects requires a very large sample

size but does not add very much to variance explained. In practice,

with the increase of global collaboration in studying genetics of

complex traits, meta-GWAS sample sizes for many phenotypes are

steadily increasing. As a result, we would expect to be increasingly able

to identifymore trait-associated SNPswith small effect sizes.However,

we will eventually see a diminishing marginal return in terms of the

variance explained and polygenic score prediction accuracy.

In genetic association studies, the most common definition of

effect size is the per-allele effect b, estimated by regressing

phenotypic value on allele count. However, we adopted the per-

standard deviation effect β � ���������
2f(1 − f)√

b, where f is the allele

frequency. Our assumption that the distribution of β is independent

of allele frequency implies that per-allele effect sizes are inversely

related to SNP variance. Although the per-allele effect has more

explicit biological meaning, adopting per-standard deviation effect

and assuming this to be independent of allele frequency simplifies

power calculation. Indeed, theoretical models and analytical

methods of complex trait genetics have widely adopted

standardised effect sizes (Yang et al., 2010; Bulik-Sullivan et al.,

2015; Privé et al., 2020). It is possible to relax the assumption of

independence between standardized effect size and allele frequency;

this would then require the allele frequency distribution in the

population to be specified. Since the relationship between effect size

and allele frequency depends on selective pressure on the phenotype,

it is expected to be different for different phenotypes.

The parameter π0 in this paper is not equivalent to polygenicity in

the usual sense, which usually refers to the proportion of all SNPs that

directly influence the phenotypes, and can be estimated by tools such

as GENESIS (Zhang et al., 2018) and MiXeR (Holland et al., 2020).

TABLE 3 The sample sizes needed to detect 5%, 50%, and 95% of independent significant SNPs for phenotypes with different levels of polygenicity,
assuming the effect size following point-normal distribution, m = 60,000. m1 is the total number of causal SNPs.

h2 π0 Total number
of independent
significant SNPs
(m1)

Sample size
needed to
detect 5%
of m1

Sample size
needed to
detect 50%
of m1

Sample size
needed to
detect 95%
of m1

0.1 0.95 3,000 2.02 × 105 1.93 × 106 2.27 × 108

0.98 1,200 8.08 × 104 7.72 × 105 9.07 × 107

0.99 600 4.04 × 104 3.86 × 105 4.53 × 107

0.3 0.95 3,000 6.74 × 104 6.43 × 105 7.56 × 107

0.98 1,200 2.69 × 104 2.57 × 105 3.02 × 107

0.99 600 1.35 × 104 1.29 × 105 1.51 × 107

0.5 0.95 3,000 4.04 × 104 3.86 × 105 4.53 × 107

0.98 1,200 1.62 × 104 1.54 × 105 1.81 × 107

0.99 600 8.08 × 103 7.72 × 105 9.07 × 106
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TABLE 4 Predicted versus reported numbers of independent significant SNPs and variance explained by these SNPswith 95% probability intervals (PIs)
based on the range of estimated π0 for height, body mass index (BMI), major depressive disorder (MDD), and schizophrenia (SCZ).

Phenotype (SNP
heritabilitya)

Estimated π0
b Sample

size
Number of significant SNPs Variance explained by significant

SNPs (%)

Predicted Reported Apparent Corrected Reported

Height (0.483) 0.66 [0.65, 0.68] 693,529 3466.91 [3380.98,
3547.29]

2388 30.67 [29.24,
32.14]

27.27 [25.87,
28.72]

24.6d

BMI (0.249) 0.36 [0.30, 0.40] 681,275 523.47 [419.5, 637.36] 656 3.27 [2.58, 4.05] 2.17 [1.66, 2.76] 6.0d

MDD (0.089) 0.85 [0.83, 0.88]
(K = 0.15)

305,431c 62.2 [31.74,101.84] 44 0.76 [0.37, 1.28] 0.45 [0.19, 0.8] 0.51e

0.88 [0.86, 0.90]
(K = 0.25)

262,344c 60.34 [31.07, 97.97] 0.86 [0.43, 1.45] 0.53 [0.23, 0.93]

SCZ (0.23) 0.86 [0.85, 0.87] 265,238c 494.71 [430.06, 556.73] 294 8.26 [6.98, 9.55] 6.57 [5.3, 7.55] 2.6

aSNP heritability is on the liability scale for MDD and SCZ.
bπ0 was estimated based on earlier GWAS. Details of calculations are listed in Supplementary Table S3.
cEquivalent sample sizes. Details of calculations are listed in Supplementary Tables S1, S2.
dThe reported variance explained included nearly independent SNPs detected using GCTA-COJO, i.e., 3,290 and 941 nearly independent SNPs.
eThis value is the average of liability variance explained by SNPs with p-value less than 5 × 10−8 in row 29, Supplementary Table S4 of Wray et al. (2018).

FIGURE 4
Efficacy of PGS constructed under different π0 by different methods relative to the true additive genetic value, against sample size. OLSE:
ordinary least square estimate. p-value threshold is chosen to maximize r2. m = 60,000. h2 = 0.5.
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Instead, our model makes the simplification of considering only

independent SNPs (obtained via linkage disequilibrium pruning or

clumping), so that 1 − π0 is the proportion of causal SNPs in

~60,000 nearly independent SNPs. Taking the total number of

SNPs in the genome to be approximately 4.5 million (Genomes

Project Consortium Auton et al., 2015), each independent SNP on

average represents approximately 75 SNPs in the genome. We have

assumed that the testing of an equivalent number of independent SNP

will have similar properties to the testing of all genotyped and

imputable SNPs in current GWAS.

In the early days of GWAS, only a few independent

significant SNPs were observed from GWAS and meta-

GWAS due to limited sample size. Visscher et al. (Visscher

et al., 2012) made the empirical observation of a roughly linear

relationship between discovery sample size and the number of

genome-wide significant hits, once the sample size reached a

level sufficient to detect a few SNPs. This pattern matches the

linear part of the S-shape in Figure 2C. In this study, we

further extended the range of sample size to that needed to

detect nearly all mπ0 independent SNPs, and obtained the

predicted relationship in the entire range.

Our method has some limitations. First, we assumed the SNPs to

be independent, on the basis that GWAS or meta-GWAS usually

report independent SNPs after pruning or clumping. This assumption

simplifies the model and bridges the relationship between genetic

architecture parameters and key GWAS outcomes directly in a

concise manner. We adopted 60,000 as the number of

independent SNPs, but the appropriate number may depend on

the population,minor allele frequency cutoff, and sample size. Amore

satisfactory approach in the future may be to explicitly take LD into

account, expressing marginal SNP effects by weighted sums of joint

effects, while making reasonable assumptions for the joint effect size

distribution. Second, we adopted the per standard deviation allele

effect as effect size and ignored possible differences in the relationships

between allele frequency to effect size distribution for different

phenotypes. Although this definition has been widely adopted

(Daetwyler et al., 2008; Dudbridge, 2013), models taking allele

frequency into account in effect size distribution are not

uncommon (Park et al., 2010; So et al., 2010). Third, we assumed

the standardised effect sizes followed a point-normal distribution but

several other effect size distributions have been proposed (Zhou et al.,

2013). Thus, it would be interesting to investigate how these other

distributionswould alter the predicted behaviour ofGWASoutcomes.

Fourth, our model ignores the contribution of rare variants (allele

frequency < 1%). As GWAS are increasing in both sample size and

number of genotyped or imputed SNPs, more rare variants with large

effect size are being detected. The observed discrepancies between the

predicted values fromourmodel and the reported empirical results for

height and schizophrenia also suggest possible inadequacies in our

model, includingmisspecification of effect size distribution, inaccurate

estimates of parameters such as π0 and m, the ignoring of rare

variants, and the failure to account for cross-study phenotypic or

population heterogeneity in the meta-GWAS.

Web resources

Heritability of BMI can be found here: http://www.nealelab.

is/uk-biobank/. The online power calculator is available at

https://twexperiment.shinyapps.io/PPC_v2_1/.

Data availability statement

The original contributions presented in the study are

included in the article and its Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

PS conceived of the presented idea. TW, ZL, and TM developed

the theory. TW performed the computations and drafted the article.

ZL and PS made revision of the article. All authors discussed the

results, contributed to, and approved the final manuscript.

Funding

This work was supported by Hong Kong Research Grants Council

CollaborativeResearchGrantC7044-19G,Theme-basedResearchScheme

Grant T12-712/21-R, Hong Kong Innovation and Technology Bureau

funding for the State Key Laboratory of Brain andCognitive Sciences, and

National Natural Science Foundation of China (32170637).

Conflict of interest

Author TM was employed by Fano Labs.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.989639/full#supplementary-material

Frontiers in Genetics frontiersin.org11

Wu et al. 10.3389/fgene.2022.989639

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://twexperiment.shinyapps.io/PPC_v2_1/
https://www.frontiersin.org/articles/10.3389/fgene.2022.989639/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.989639/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989639


References

Amanat, S., Requena, T., and Lopez-Escamez, J. A. (2020). A systematic review of
extreme phenotype strategies to search for rare variants in genetic studies of
complex disorders. Genes 11, 987. doi:10.3390/genes11090987

Barnett, I. J., Lee, S., and Lin, X. (2013). Detecting rare variant effects using
extreme phenotype sampling in sequencing association studies. Genet. Epidemiol.
37, 142–151. doi:10.1002/gepi.21699

Bigdeli, T. B., Lee, D., Webb, B. T., Riley, B. P., Vladimirov, V. I., Fanous, A. H.,
et al. (2016). A simple yet accurate correction for winner’s curse can predict signals
discovered in much larger genome scans. Bioinformatics 32, 2598–2603. doi:10.
1093/bioinformatics/btw303

Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N.,
et al. (2015). LD Score regression distinguishes confounding from polygenicity in
genome-wide association studies. Nat. Genet. 47, 291–295. doi:10.1038/ng.3211

Cano-Gamez, E., and Trynka, G. (2020). From GWAS to function: Using
functional genomics to identify the mechanisms underlying complex diseases.
Front. Genet. 11, 424. doi:10.3389/fgene.2020.00424

Chatterjee, N., Wheeler, B., Sampson, J., Hartge, P., Chanock, S. J., and Park,
J. H. (2013). Projecting the performance of risk prediction based on polygenic
analyses of genome-wide association studies. Nat. Genet. 45, 400–405. doi:10.
1038/ng.2579

Daetwyler, H. D., Villanueva, B., and Woolliams, J. A. (2008). Accuracy of
predicting the genetic risk of disease using a genome-wide approach. PLoS One 3,
e3395. doi:10.1371/journal.pone.0003395

de Vlaming, R., Okbay, A., Rietveld, C. A., Johannesson, M., Magnusson, P. K. E.,
Uitterlinden, A. G., et al. (2017). Meta-GWAS accuracy and power (MetaGAP)
calculator shows that hiding heritability is partially due to imperfect genetic
correlations across studies. PLoS Genet. 13, e1006495. doi:10.1371/journal.pgen.
1006495

Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores.
PLoS Genet. 9, e1003348. doi:10.1371/journal.pgen.1003348

Euesden, J., Lewis, C. M., and O’Reilly, P. F. (2015). PRSice: Polygenic risk score
software. Bioinformatics 31, 1466–1468. doi:10.1093/bioinformatics/btu848

Falconer, D. S. (1996). Introduction to quantitative genetics. Harlow, United
Kingdom: Prentice-Hall.

Falconer, D. S. (1965). The inheritance of liability to certain diseases estimated
from the incidence among relatives. Ann. Hum. Genet. 29, 51–76. doi:10.1111/j.
1469-1809.1965.tb00500.x

Genomes Project ConsortiumAuton, A., Brooks, L. D., Durbin, R. M., Garrison,
E. P., Kang, H. M., Korbel, J. O., et al. (2015). A global reference for human genetic
variation. Nature 526, 68–74. doi:10.1038/nature15393

Holland, D., Frei, O., Desikan, R., Fan, C. C., Shadrin, A. A., Smeland, O. B., et al.
(2020). Beyond SNP heritability: Polygenicity and discoverability of phenotypes
estimated with a univariate Gaussian mixture model. PLoS Genet. 16, e1008612.
doi:10.1371/journal.pgen.1008612

Howard, D. M., Adams, M. J., Clarke, T. K., Hafferty, J. D., Gibson, J., Shirali, M.,
et al. (2019). Genome-wide meta-analysis of depression identifies 102 independent
variants and highlights the importance of the prefrontal brain regions. Nat.
Neurosci. 22, 343–352. doi:10.1038/s41593-018-0326-7

Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R.,
et al. (2016). Identification of 15 genetic loci associated with risk of major
depression in individuals of European descent. Nat. Genet. 48, 1031–1036.
doi:10.1038/ng.3623

Johnson, J. L., and Abecasis, G. (2017). GAS power calculator: Web-based power
calculator for genetic association studies. bioRxiv.

Lam, M., Chen, C. Y., Li, Z. Q., Martin, A. R., Bryois, J., Ma, X. X., et al.
(2019). Comparative genetic architectures of schizophrenia in East Asian and
European populations. Nat. Genet. 51, 1670–1678. doi:10.1038/s41588-019-
0512-x

Lee, P. H., Anttila, V., Won, H., Feng, Y. A., Rosenthal, J., Zhu, Z., et al.
(2019). Genomic relationships, novel loci, and pleiotropic mechanisms across
eight psychiatric disorders. Cell 179, 1469–1482. e1411. doi:10.1016/j.cell.
2019.11.020

Lee, S. H., Goddard, M. E., Wray, N. R., and Visscher, P. M. (2012). A better
coefficient of determination for genetic profile analysis. Genet. Epidemiol. 36,
214–224. doi:10.1002/gepi.21614

Lloyd-Jones, L. R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K.
E., et al. (2019). Improved polygenic prediction by Bayesian multiple
regression on summary statistics. Nat. Commun. 10, 5086. doi:10.1038/
s41467-019-12653-0

Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Felix, R., et al.
(2015). Genetic studies of body mass index yield new insights for obesity biology.
Nature 518, 197–206. doi:10.1038/nature14177

Mak, T. S. H., Kwan, J. S., Campbell, D. D., and Sham, P. C. (2016). Local true
discovery rate weighted polygenic scores using GWAS summary data. Behav. Genet.
46, 573–582. doi:10.1007/s10519-015-9770-2

Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X., and Sham, P. C. (2017).
Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol.
41, 469–480. doi:10.1002/gepi.22050

Moser, G., Lee, S. H., Hayes, B. J., Goddard, M. E., Wray, N. R., and Visscher, P.
M. (2015). Simultaneous discovery, estimation and prediction analysis of complex
traits using a bayesian mixture model. PLoS Genet. 11, e1004969. doi:10.1371/
journal.pgen.1004969

Palmer, C., and Pe’er, I. (2017). Statistical correction of the Winner’s Curse
explains replication variability in quantitative trait genome-wide association
studies. PLoS Genet. 13, e1006916. doi:10.1371/journal.pgen.1006916

Park, J. H., Wacholder, S., Gail, M. H., Peters, U., Jacobs, K. B., Chanock, S. J.,
et al. (2010). Estimation of effect size distribution from genome-wide
association studies and implications for future discoveries. Nat. Genet. 42,
570–575. doi:10.1038/ng.610

Privé, F., Arbel, J., and Vilhjálmsson, B. J. (2020). LDpred2: Better, faster,
stronger. Bioinformatics 36, 5424–5431. doi:10.1093/bioinformatics/
btaa1029

Purcell, S., Cherny, S. S., and Sham, P. C. (2003). Genetic power calculator: Design
of linkage and association genetic mapping studies of complex traits. Bioinformatics
19, 149–150. doi:10.1093/bioinformatics/19.1.149

Purcell, S., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan,
P. F., et al.International Schizophrenia Consortium (2009). Common polygenic
variation contributes to risk of schizophrenia and bipolar disorder. Nature 460,
748–752. doi:10.1038/nature08185

Qian, J., Tanigawa, Y., Du,W., Aguirre, M., Chang, C., Tibshirani, R., et al. (2020).
A fast and scalable framework for large-scale and ultrahigh-dimensional sparse
regression with application to the UK Biobank. PLoS Genet. 16, e1009141. doi:10.
1371/journal.pgen.1009141

Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K., Holmans, P. A., et al.
(2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature
511, 421–427. doi:10.1038/nature13595

The Schizophrenia Working Group of the Psychiatric Genomics
ConsortiumRipke, S., Walters, J. T. R., and O’Donovan, M. C. (2020). Mapping
genomic loci prioritises genes and implicates synaptic biology in schizophrenia.
medRxiv. doi:10.1101/2020.09.12.20192922

Sham, P. C., and Purcell, S. M. (2014). Statistical power and significance testing in
large-scale genetic studies. Nat. Rev. Genet. 15, 335–346. doi:10.1038/nrg3706

So, H. C., and Sham, P. C. (2017). Improving polygenic risk prediction from
summary statistics by an empirical Bayes approach. Sci. Rep. 7, 41262. doi:10.1038/
srep41262

So, H. C., Yip, B. H., and Sham, P. C. (2010). Estimating the total number of
susceptibility variants underlying complex diseases from genome-wide association
studies. PLoS One 5, e13898. doi:10.1371/journal.pone.0013898

Song, S., Jiang, W., Hou, L., and Zhao, H. (2020). Leveraging effect size
distributions to improve polygenic risk scores derived from summary statistics
of genome-wide association studies. PLoS Comput. Biol. 16, e1007565. doi:10.1371/
journal.pcbi.1007565

Speed, D., Cai, N., Johnson, M. R., Nejentsev, S., Balding, D. J., and Consortium,
U. (2017). Reevaluation of SNP heritability in complex human traits.Nat. Genet. 49,
986–992. doi:10.1038/ng.3865

Torkamani, A., Wineinger, N. E., and Topol, E. J. (2018). The personal and
clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590. doi:10.1038/
s41576-018-0018-x

Vilhjalmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindstrom, S., Ripke,
S., et al. (2015). Modeling linkage disequilibrium increases accuracy of
polygenic risk scores. Am. J. Hum. Genet. 97, 576–592. doi:10.1016/j.ajhg.
2015.09.001

Visscher, P. M., Brown, M. A., McCarthy, M. I., and Yang, J. (2012). Five
years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24. doi:10.1016/j.ajhg.
2011.11.029

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A.,
et al. (2017). 10 years of GWAS discovery: Biology, function, and translation. Am.
J. Hum. Genet. 101, 5–22. doi:10.1016/j.ajhg.2017.06.005

Frontiers in Genetics frontiersin.org12

Wu et al. 10.3389/fgene.2022.989639

https://doi.org/10.3390/genes11090987
https://doi.org/10.1002/gepi.21699
https://doi.org/10.1093/bioinformatics/btw303
https://doi.org/10.1093/bioinformatics/btw303
https://doi.org/10.1038/ng.3211
https://doi.org/10.3389/fgene.2020.00424
https://doi.org/10.1038/ng.2579
https://doi.org/10.1038/ng.2579
https://doi.org/10.1371/journal.pone.0003395
https://doi.org/10.1371/journal.pgen.1006495
https://doi.org/10.1371/journal.pgen.1006495
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1093/bioinformatics/btu848
https://doi.org/10.1111/j.1469-1809.1965.tb00500.x
https://doi.org/10.1111/j.1469-1809.1965.tb00500.x
https://doi.org/10.1038/nature15393
https://doi.org/10.1371/journal.pgen.1008612
https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/ng.3623
https://doi.org/10.1038/s41588-019-0512-x
https://doi.org/10.1038/s41588-019-0512-x
https://doi.org/10.1016/j.cell.2019.11.020
https://doi.org/10.1016/j.cell.2019.11.020
https://doi.org/10.1002/gepi.21614
https://doi.org/10.1038/s41467-019-12653-0
https://doi.org/10.1038/s41467-019-12653-0
https://doi.org/10.1038/nature14177
https://doi.org/10.1007/s10519-015-9770-2
https://doi.org/10.1002/gepi.22050
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1371/journal.pgen.1004969
https://doi.org/10.1371/journal.pgen.1006916
https://doi.org/10.1038/ng.610
https://doi.org/10.1093/bioinformatics/btaa1029
https://doi.org/10.1093/bioinformatics/btaa1029
https://doi.org/10.1093/bioinformatics/19.1.149
https://doi.org/10.1038/nature08185
https://doi.org/10.1371/journal.pgen.1009141
https://doi.org/10.1371/journal.pgen.1009141
https://doi.org/10.1038/nature13595
https://doi.org/10.1101/2020.09.12.20192922
https://doi.org/10.1038/nrg3706
https://doi.org/10.1038/srep41262
https://doi.org/10.1038/srep41262
https://doi.org/10.1371/journal.pone.0013898
https://doi.org/10.1371/journal.pcbi.1007565
https://doi.org/10.1371/journal.pcbi.1007565
https://doi.org/10.1038/ng.3865
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1038/s41576-018-0018-x
https://doi.org/10.1016/j.ajhg.2015.09.001
https://doi.org/10.1016/j.ajhg.2015.09.001
https://doi.org/10.1016/j.ajhg.2011.11.029
https://doi.org/10.1016/j.ajhg.2011.11.029
https://doi.org/10.1016/j.ajhg.2017.06.005
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989639


Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., et al.
(2014). Defining the role of common variation in the genomic and biological
architecture of adult human height. Nat. Genet. 46, 1173–1186. doi:10.1038/ng.
3097

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui,
A., et al. (2018). Genome-wide association analyses identify 44 risk variants and
refine the genetic architecture of major depression. Nat. Genet. 50, 668–681. doi:10.
1038/s41588-018-0090-3

Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E., and Visscher, P. M.
(2013). Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14,
507–515. doi:10.1038/nrg3457

Wu, T., and Sham, P. C. (2021). On the transformation of genetic effect size from
logit to liability scale. Behav. Genet. 51, 215–222. doi:10.1007/s10519-021-10042-2

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R.,
et al. (2010). Common SNPs explain a large proportion of the heritability for human
height. Nat. Genet. 42, 565–569. doi:10.1038/ng.608

Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N.,
et al. (2018). Meta-analysis of genome-wide association studies for height and body
mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet. 27,
3641–3649. doi:10.1093/hmg/ddy271

Zhang, Y., Qi, G., Park, J. H., and Chatterjee, N. (2018). Estimation of complex
effect-size distributions using summary-level statistics from genome-wide
association studies across 32 complex traits. Nat. Genet. 50, 1318–1326. doi:10.
1038/s41588-018-0193-x

Zhou, X., Carbonetto, P., and Stephens, M. (2013). Polygenic modeling with bayesian
sparse linear mixed models. PLoS Genet. 9, e1003264. doi:10.1371/journal.pgen.1003264

Frontiers in Genetics frontiersin.org13

Wu et al. 10.3389/fgene.2022.989639

https://doi.org/10.1038/ng.3097
https://doi.org/10.1038/ng.3097
https://doi.org/10.1038/s41588-018-0090-3
https://doi.org/10.1038/s41588-018-0090-3
https://doi.org/10.1038/nrg3457
https://doi.org/10.1007/s10519-021-10042-2
https://doi.org/10.1038/ng.608
https://doi.org/10.1093/hmg/ddy271
https://doi.org/10.1038/s41588-018-0193-x
https://doi.org/10.1038/s41588-018-0193-x
https://doi.org/10.1371/journal.pgen.1003264
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989639

	Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of compl ...
	Introduction
	Material and methods
	Model description
	Distribution of effect size estimates
	Distribution of statistical power across causal single-nucleotide polymorphisms
	Distribution of the number of and variance explained by independent significant single-nucleotide polymorphisms
	Polygenic score predictive accuracy
	Other study designs and meta-genome wide association studies analysis
	Application to real data

	Results
	Distribution of statistical power across causal single-nucleotide polymorphisms
	Distribution of number of independent significant single-nucleotide polymorphisms
	Distribution of variance explained by independent significant single-nucleotide polymorphisms
	Simulation results
	Application to other study designs
	Efficacy of polygenic scores is improved using shrinkage method
	Real data results

	Discussion
	Web resources
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


