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Abstract

Background: Using single-cell RNA sequencing (scRNA-seq) data to diagnose disease is an effective technique in
medical research. Several statistical methods have been developed for the classification of RNA sequencing (RNA-seq)
data, including, for example, Poisson linear discriminant analysis (PLDA), negative binomial linear discriminant analysis
(NBLDA), and zero-inflated Poisson logistic discriminant analysis (ZIPLDA). Nevertheless, few existing methods perform
well for large sample scRNA-seq data, in particular when the distribution assumption is also violated.

Results: We propose a deep learning classifier (scDLC) for large sample scRNA-seq data, based on the long
short-term memory recurrent neural networks (LSTMs). Our new scDLC does not require a prior knowledge on the
data distribution, but instead, it takes into account the dependency of the most outstanding feature genes in the
LSTMs model. LSTMs is a special recurrent neural network, which can learn long-term dependencies of a sequence.

Conclusions: Simulation studies show that our new scDLC performs consistently better than the existing methods in
a wide range of settings with large sample sizes. Four real scRNA-seq datasets are also analyzed, and they coincide
with the simulation results that our new scDLC always performs the best. The code named “scDLC” is publicly
available at https://github.com/scDLC-code/code.
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Background
The development of RNA sequencing (RNA-seq) has
enabled unprecedented insight into the dynamics of gene
expression [1–7]. In contrast to microarray data, next-
generation sequencing data improve the specificity and
sensitivity of gene expression and have been increas-
ingly popular in biological and medical research, such as
detecting differentially expressed genes and identifying
which type of diseases a new patient belongs to with gene
expression. In recent years, a single-cell RNA-sequencing
(scRNA-seq), allowing sequencing to be conducted on the
level of single cells, has become another standard tool
in biological and medical studies [8–12]. The scRNA-
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seq data analysis not only discovers new cell types, but
also reveals the deep regulatory networks [13–16]. Among
them, cell type identification is an important task in
scRNA-seq data analysis [17]. In a general way, we identify
cell types with unsupervised clustering within scRNA-seq
data and then do the manual annotation based on a set
of known marker genes [18]. In practice, we rarely know
the number of clusters in advance, and the annotation of
clusters is also somewhat subjective [19]. This may lead to
bias in the analysis of the better characterised cell types. In
contrast, supervised learningmethods can identify the cell
types more accurately and also reduce the bias associated
with marker gene selection in cell type annotation.
For the classification of RNA-seq data, several sta-

tistical methods have been developed [20, 21], in par-
ticular for the bulk RNA-seq experiments. Poisson and
negative binomial distributions are two most commonly
used distributions to model the discrete RNA-seq data.
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Witten [22] assumed that the RNA-seq data follow a
Poisson distribution and proposed the Poisson linear
discriminant analysis (PLDA). Dong et al. [23] took
into account the overdispersion of the RNA-seq data
and proposed the negative binomial linear discrimi-
nant analysis (NBLDA). Note also that RNA-seq data
may have excess zeros, especially when the sequence
depth is not enough. Zhou et al. [24] further proposed
the zero-inflated Poisson logistic discriminant analysis
(ZIPLDA) with a point mass at zero when classifying
RNA-seq data.
Nowadays, scRNA-seq data have been increasingly used

to identify cell types and disease states for new patients.
Yet to the best of our knowledge, there are still relatively
few methods in the literature to classify scRNA-seq data
despite the enormous potential of scRNA-seq data. Gen-
erally, low sequencing depths cause high noise levels and a
large fraction of so-called “dropout” events in scRNA-seq
data; and moreover, classification methods for bulk RNA-
seq data may cause unacceptably large misclassification
rates for scRNA-seq data. Especially for scRNA-seq data
with relative large sample sizes, they may follow a more
complex mixed distribution. Most existing classification
methods for RNA-seq data require a certain distribution
assumption, and they may fail in improving the classifica-
tion accuracy for scRNA-seq data with large sample sizes.
Alquicira-Hernandez et al. [25] developed a novel classi-
fication method based on singular value decomposition
and a support vector machine model for scRNA-seq data.
Zhao et al. [26] reviewed the existed classification tools
for scRNA-seq data. Lin et al. [27] proposed a scClassify
method by using a distance weighted kNN classifier. More
recently, Wang and Li [28] proposed a scale-invariant
deep-neural-network classifier (SINC) method which is
based on deep neural-network (DNN) to classify scRNA-
seq data. Their method provides a new way to dig more
information for large sample size and also a novel think-
ing of scale invariant for next generation sequencing data.
From another perspective, however, we note that the
SINC method does not consider the dependency between
the feature genes so that the settings may not be very
realistic.
In this paper, we consider a deep learning classifier

(scDLC) to identify cell types for large sample scRNA-
seq data, which is based on the two-layer long short-
term memory recurrent neural networks (LSTMs). The
deep learning classifier can learn scRNA-seq data with-
out the need of a distribution assumption. What’s more,
the scDLCmethod considers the dependency between the
feature genes in the process of classification. LSTMs [29]
is a special kind of recurrent neural network which can
learn long-term dependencies of a sequence. For scRNA-
seq data, scDLC can automatically learn each sample of
the class as a gene sequence.

Our scDLC framework for identifying cell types in
scRNA-seq data can be summarized as four steps. For the
first fully connected layer, the gene sequences of a sam-
ple are mapped to a larger dimension. The first step aims
to enlarge the information of gene sequence and make
the class difference more obvious. Second, the output of
the first fully connected layer is taken as the input of the
two-layer long short-term memory network layer, and the
weights of all gates are estimated by network calculation
in each class. Third, we reduce the output dimensions to
the number of classes in the second fully connected layer.
Lastly, the outputs of the second fully connected layer
are transformed to a probability distribution with a soft-
max function. In the process of training, we compare the
probability of each class to the observation and estimate
the optimization parameters under the cross-entropy loss
function.
To summarize the main advantages of the scDLC frame-

work for classifying scRNA-seq data with large sample
sizes, we note that scDLC is applicable to all scRNA-
seq data no matter what the underlying distribution is.
Moreover, scDLC has the capacity to capture the differ-
ence information of gene sequence from different classes,
which is another key reason why it can perform the best
compared to the existing competitors. In Methods, we
propose the framework of scDLC and further describe the
estimation of parameters in details. In Simulation studies,
we conduct simulation studies to evaluate the perfor-
mance of the new classifier and compare it with existing
methods. In Application to Real Data, we apply the pro-
posed method to analyze four real scRNA-seq datasets to
demonstrate its usefulness in practice. We then conclude
the paper in Discussion with some discussion and future
directions.

Results
We propose a deep learning framework (scDLC) based
on the LSTMs model to classify scRNA-seq data. The
details of the scDLC model have been shown in Methods.
To validate the performance of proposed method, we con-
sider simulation studies and real data analysis. All the
R scripts that analysed the data have been uploaded at
github, which could be accessible at https://github.com/
scDLC-code/scDLC.

Simulation studies
In this section, we evaluate the performance of the pro-
posed scDLC method via simulation studies. To gener-
ate scRNA-seq read count data, we apply the Splatter
Bioconductor package [30] that is known to be simple,
reproducible and well-documented. While for compar-
ison, we also consider seven other methods including
PLDA, NBLDA, ZIPLDA, the support vector machines
(SVM), scPred, scClassify and the SINC method.

https://github.com/scDLC-code/scDLC
https://github.com/scDLC-code/scDLC
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Simulation design
In each experiment, we generate n samples for the training
set and another n samples for the test set.We first consider
the binary classification with K = 2. Study 1 investigates
the effect of different sample sizes for the binary classifi-
cation. We fix the proportions of differentially expressed
genes DE = 0.5, the probability of excess zeros pzero =
0.2, and consider the gene number g = 100, 200, 300 and
400. We then compute the misclassification rates of all
methods with different sample sizes ranging from 100 to
900. In Study 2, we evaluate the performance of all meth-
ods when the proportions of differentially expressed genes
are 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 with fixed sample size
n = 200, 300, 400 and 500. In addition, we set the proba-
bility of excess zeros pzero = 0.2 and the gene number g =
100. In Study 3, we test the performance of all methods
with the different probability of excess zeros, including
pzero = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. For other settings,
we let the gene number g = 100, the sample size n =
200, 300, 400 and 500, and 40% of genes be differentially
expressed.
For the multiple classification with K = 3, we also

conduct three studies to evaluate the performance of the
different methods. In Study 4, we evaluate the effect of
different sample sizes with three classes. All other param-
eters are kept the same as those in the binary classification
except for the sample sizes. We set n = 300, 400, 500 and
600 for three classes in Studies 5 and 6, respectively.

Simulation results
With 1000 simulations for each experiment, we report the
average misclassification rates for the binary classifica-
tion in Figs. 1-2 and Supplementary Fig. S1, respectively.
The results for the multiple classification are presented in
Supplementary Figs. S2-S4. Figure 1 shows that the mis-
classification rates of all the considered methods decrease
as the sample size increases. It is also evident that scDLC
performs much better than the other methods in all cases.
Figure 2 shows that the misclassification rates of all meth-
ods are decreased with an increasing number of differen-
tially expressed genes, and meanwhile scDLC shows its
superiority over the other methods. From Supplementary
Fig. S1, we note that an increasing probability of excess
zeros will yield a higher misclassification rate and the pro-
posed method again outperforms the other methods in all
settings.
Supplementary Figs. S2 to S4 display the simulation

results for the multiple classification with K = 3. They
coincide with the conclusions made for the binary com-
parison, and in particular, scDLC always performs the
best. Moreover, we note that SINC does not perform well
when the number of selected feature genes is small, and so
it can only be recommended for large number of selected
feature genes.

Application to real data
To further evaluate the performance of the different
classifiers, we also analyze six scRNA-seq datasets which
are from National Center for Biotechnology Information
Search database (NCBI, https://www.ncbi.nlm.nih.gov/).
The six datasets are summarized in Table 1. The first
dataset GSE99933 was released in Furlan et al. [31]. It is
used to demonstrate that large numbers of chromaffin
cells arise from peripheral glial stem cells. This dataset
has two classes, including 384 samples recombining at
E12.5 and 384 samples recombining at E13.5. The sec-
ond dataset GSE123454 illustrates the high information
content of nuclear RNA for characterization of cellular
diversity in brain tissues [32]. This dataset includes 463
samples from single nuclei and 463 samples frommatched
single cells with measurements on 42003 genes. The
third dataset GSE113069 is a testament to the diversity of
subiculum pyramidal cells from the hippocampus [33]. It
contains three classes, each with 345, 422, 423 samples,
respectively. The fourth dataset GSE84133 Baron1 was
created by Baron et al. [34], and was further analyzed
by the deep-neural-network classifier SINC [28]. Baron1
contains all major cell groups from the first human donor,
excluding those with less than 20 cells. It contains nine
classes, each with 110, 51, 236, 872, 214, 120, 130, 70 and
92 samples, respectively. The last two datasets are large
sample datasets which contain tens of thousands of cells.
Specifically, the fifth dataset GSE107585 was used to
reveal potential cellular targets of kidney disease [35]. It
came from healthy mouse kidneys, containing total 43745
cells for all fifteen classes, each with 26482, 8544, 1729,
1581, 1308, 1001, 870, 643, 549, 313, 235, 228, 110, 78 and
74 samples, respectively. The sixth dataset PBMC can be
downloaded from the Single Cell Portal with accession
numbers SCP424 in https://singlecell.broadinstitute.org/
single_cell/study/SCP424/single-cell-comparison-pbmc-
data [36]. The dataset was from human organism that
contains 31021 cells for all thirteen classes, each with
7805, 6437, 4391, 3529, 2881, 2197, 1466, 908, 620, 372,
203, 149, 52, and 11 samples, respectively.
We assess the performance of our proposed scDLC

method with seven baseline methods, including three tra-
ditional classifiers based on the Bayesian, scPred, scClas-
sify, SVM and SINC methods. We apply the AUC score,
which is the area surrounded by the coordinate axis under
the ROC curve [37], to measure the performance of the
classifiers. We randomly draw 40 to 450 of the samples to
build the training set, and regard the rest as the test set.
In real data, the majority of genes are not differentially
expressed and they are irrelevant for class distinction. For
example, we observe in Fig. 2 that the large rate of feature
genes for class distinction will improve the accuracy of the
classifiers. Thus to improve the rate of feature genes, we
follow Zhou et al. [24] to select the top p feature genes

https://www.ncbi.nlm.nih.gov/
https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data
https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data
https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data
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Fig. 1 The misclassification rates of all methods with different sample sizes for two classes (Study 1). Here, DE = 0.5 and pzero = 0.2 for all plots. The
four plots are with the gene number g = 100, 200, 300 or 400, respectively

from the training set using the BW method. Specifically
for the jth gene, the BW value is defined as the ratio of
the sum of squares between groups (BSS) to that within
groups (WSS) as follows:

BW(j) =
∑K

k=1
∑nk

i=1(x̄k.j − x̄..j)2
∑K

k=1
∑nk

i=1(xkij − x̄..j)2
, (1)

where x̄..j = 1
K

∑K
k=1

1
nk

∑nk
i=1 xkij is the averaged expres-

sion values across all samples, x̄k.j = 1
nk

∑nk
i=1 xkij is the

averaged expression value across samples belonging to

class k, and K is the number of classes. Moreover, with-
out loss of generality, we retain the top p = 100 feature
genes from each simulation as the inputs of the first layer
of scDLC.We further repeat all the experiments 100 times
and calculate the average AUC scores. We also present
their respective boxplots in Fig. 3 with the AUC scores.
From the boxplots, it is evident that our proposed scDLC
outperforms the baseline methods for all four datasets.
Next, we compare the performance of all classifiers

with different sizes of training samples. Figure 4 shows
the AUC scores of the eight methods with different sizes
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Fig. 2 The misclassification rates of all methods with different DE rates for two classes (Study 2). Here, g = 100 and pzero = 0.2 for all plots. The four
plots are with the sample size n = 200, 300, 400 or 500, respectively

of training samples for the first four real datasets with
small sample size. The number of feature genes is fixed
at 100 and the training sample size varies from 40 to 450.
From Fig. 4, although the AUC scores of the proposed
method are not outstanding when the training sample size
is smaller than 50, it is still the best classifier on the whole.
In particular, when the training sample size is larger than
100, our scDLC is consistently better than all other meth-
ods. As shown in Figs. 3 and 4, ScPred is comparable to
scDLC for GSE99933 and GSE123454 datasets and they
are both better than the other methods, which contain

Table 1 Details of the four scRNA-seq datasets

Datasets Sample size No. of classes No. of genes

GSE99933 768 2 23420

GSE123454 926 2 42003

GSE113069 1190 3 23218

GSE84133(Baron1) 1895 9 20126

GSE107585 43745 15 16272

PBMC 31021 13 29669
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Fig. 3 The classification experiment is repeated 100 times for four real datasets, and the AUC score results obtained are plotted as the boxplot

only two cell types. Figure 5 shows the AUC scores of the
eight methods with different sizes of training samples for
the last two real datasets with large sample. The number
of feature genes is fixed at 100 and the training sample
size varies from 1200 to 12000. From Fig. 5, the proposed
method outperforms the exiting methods for large train-
ing sample in the two real datasets. The AUC scores of
SVM are less than those of our scDLC but much higher
than the other methods.
Finally, we consider the performance of each classi-

fier under different selected feature genes. Specifically, we
use 70% of the dataset as the training set and the rest
as the test set. According to the degree of differential
expression, the top 20 to 100 genes are selected to test
the performance of each classification method. Figure 6
and Supplementary Figs. S5-S7 show the AUC scores of
the eight methods with different selected feature genes.
For the GSE123454 and GSE99933 datasets in Fig. 6 and
Supplementary Fig. S5, the scPred method is compara-
ble to the scDLC method and much better than the other
methods. However, NBLDA is comparable to the scDLC
method in Supplementary Fig. S7. In Supplementary Figs.
S6 and S7, we observe a similar result that the scDLC

method outperforms the other methods in the GSE84133
and GSE113069 datasets. The four Figures show that the
comparison results of the classifiers are relatively consis-
tent under different choices of the selected genes and the
proportion. Finally, it is noteworthy that the AUC scores
of scDLC are not affected much by the number of feature
genes.

Discussion
The single-cell RNA sequencing (scRNA-seq) technology
has been increasingly used in molecular diagnosis of clin-
ical diseases. In this paper, we proposed a deep learning
framework with two layers of LSTMs, namely scDLC, to
classify large sample scRNA-seq data. The innovation of
scDLC is mainly manifested in two aspects. Firstly, com-
pared to the existing discriminant rules, our new method
does not require a distribution assumption so that it can
be widely applied in practice. Secondly, our scDLC also
amplifies the features of the selected genes through the
first fully connected layer. It is thus beneficial to improve
the classification accuracy and stability of the model, and
meanwhile our scDLC can be trained with less computer
resource using only the top selected feature genes.
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Fig. 4 The AUC scores of all classifiers with different training sample sizes for the first four real datasets with small sample size

To evaluate the performance of our new classifier, we
considered both the binary classification and the multi-
ple classification. Simulation results show that our deep
learning method can sufficiently capture the difference
information of classes in gene sequences, and that it per-
forms much better than, or at least as well as, the existing

competitors in a wide range of settings with large sam-
ple sizes. We also analyzed six real scRNA-seq datasets,
including both small and large sample sizes, and they all
support that our new scDLC always performs the best.
As a future work, we will study from the network

structure level why scDLC can efficiently capture class

Fig. 5 The AUC scores of all classifiers with different training sample sizes for the last two real datasets with large sample
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Fig. 6 The AUC scores of all classifiers with different feature gene number for GSE123454 dataset

differences from gene sequences, and we expect that
understanding the mechanism can bring deep insights to
gene expression and regulation. Moreover, it can also be
interesting to extend deep learning techniques to conduct
in-depth research in precision medicine such as neonatal
genetic disease-related gene screening.

Methods
We first review the framework of long short-termmemory
recurrent neural networks (LSTMs), and then introduce a
new workflow of the deep learning classifier (scDLC) for
large sample size scRNA-seq data.
Hochreiter and Schmidhuber [29] proposed a recurrent

neural network with long short-term memory network.
This network has a great performance to solve the sequen-
tial data related learning problem. LSTMs can effectively
capture both short-term and long-term time dependence.
Sak et al. [38] showed that the long short-term mem-
ory network is effective for acoustic modeling. Marchi et
al. [39] proposed a bidirectional LSTMs for audio onset
detection. Due to the gate mechanism, LSTMs solves
the problem of gradient vanishing which cannot be over-
comed by the simple recurrent neural network. The early
LSTMs was refined and popularized by many people in
the following work. The structure of this model was fur-
ther improved by Graves et al. [40] based on the previous
research [41, 42]. The core idea of the LSTMs is several
non-linear gating units that control information retention
and forgetting, as well as a memory cell that can maintain

its state over time. As shown in Fig. 7, it includes a single
cell, two tanh activation blocks and three gates (input gate,
forget gate, output gate). The input gate controls the input
information and whether the input will be read. The forget
gate controls the internal state information and whether
the current cell value is forgotten. The output gate con-
trols the output information and whether new cell values
are output. The input of the three gates is the output of
the previous time and the input of the current time. The
activation function of three gates is the sigmoid function.
Let xt , ht and Ct denote the input value, the output value
and the cell state at time t, respectively. Let b denote the
bias term, and W denote the weight matrix. Let also f, i
and o denote the forget gate, the input gate and the output
gate, respectively. The recurrent process of LSTMs can be
expressed as follows:

ft = σ(Wf ·[ ht−1, xt]+bf )
it = σ(Wi·[ ht−1, xt]+bi)

C̃t = tanh(WC ·[ ht−1, xt]+bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo·[ ht−1, xt]+bo)
ht = ot ∗ tanh(Ct),

(2)

where C̃t is a vector of new candidate values, σ(z) =
1

1+e−z is the sigmoid function, and tanh(z) = ez−e−z

ez+e−z is
the tanh function. In addition, “.” represents the matrix
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Fig. 7 The framework of LSTMs. It consists of three gates (input gate, forget gate and output gate) and two tanh modules. The data of the current
time and the cell state of the previous time are combined and input into the LSTMs. After a series of nonlinear transformations, the current cell state
and output are obtained

multiplication and “*” represents the multiplication with
scalars.

Deep learning classifier for scRNA-seq data
The scDLC framework is shown in Fig. 8, which includes
two fully connected layers and a two-layer LSTMs. The
fully connected layers are located at the first layer and the
last layer, respectively. After the model training, it results
in a scRNA-seq data classifier. Inputting a gene sequence
sample into scDLC, the probability that the gene sequence
sample belongs to each class will be obtained. Finally, we
identify which class the sample belongs to based on the
probability vector.
Fully connected layers: Each node of the fully con-

nected layer is connected to all nodes of the previous layer.
It can synthesize the extracted features through the recti-
fied linear unit (ReLU) activation function. The function
of the first fully connected layer in scDLC is to amplify the
information of the gene sequence and make the class dif-
ference more obvious. This layer can greatly improve the
accuracy of discrimination. The ReLU activation function
is

a = max(0,Wx + b), (3)

where x is the input vector, W is the weight matrix, b
is the bias vector, and a is the activation vector which is
the output of the fully connected layer. Using the ReLU

activation function in the network can make the classifier
perform better. At the end of the model, we map the out-
put of the second fully connected layer to the probability
distribution of the class through a softmax function as

softmax(yc) = eyc
∑M

j=1 eyj
, (4)

whereM is the number of classes.
LSTMs layer: In the LSTMs layer, we take two

LSTMs sublayers to learn data. The horizontal connec-
tion between sublayers means that the output h of the
first sublayer is entered into the second sublayer as input.
The vertical connection means that the cell state C of
the previous time is transferred to the next time in the
same sublayer. The output of this layer will be used as
the input to the second fully connected layer. The for-
ward recursions of this layer refer to the formulas in
(Fig. 7).
The trainable parameters (all weights and biases) in

this deep model are denoted as θ . The partial derivatives
∂L/∂θ of the loss function L with respect to any trainable
parameter in the network can be calculated by the back
propagation algorithm [43]. We further take the cross
entropy as the loss function since it can well describe the
difference between the true probability distribution and
the predicted probability distribution. To be specific, we
define the loss function as
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Fig. 8 The framework of scDLC with three layers. The first layer and the third layer are two fully connected layers, and the middle layer is an LSTMs
layer that consists of two long short-term memory network sub layers. A softmax layer is connected at the end to map the output of the classifier to
a probability distribution

L = − 1
N

N∑

i=1

M∑

c=1
yiclog(pic), (5)

where N is the sample size,M is the number of classes, yic
is an indication variable which is 1 if class c is the same as
the class of the sample or otherwise 0, and pic represents
the prediction probability that sample i belongs to class c.
The gradient descent method is a widely used optimiza-

tion algorithm in machine learning. We use a mini-batch
gradient descent algorithm (MBGD) [44] to train our
model. For a set of training samples, MBGD does not use
all the training samples to calculate the real gradient of the
target, but instead calculates the gradient of a small batch
samples. We then minimize the loss function by updat-
ing the trainable parameter θ . According to the MBGD
algorithm, the rule for updating is as follows:

θ ← θ − η
∂L
∂θ

, (6)

where η is the learning rate. In order to avoid fluctuation
in the later stage of training, we further set the learning
rate decay exponentially during the training. That is

η̃ = ηeγ /s, (7)

where η̃ is the learning rate after decay, γ is the decay
rate, and s is the global step. The exponential-decay learn-
ing rate means that the learning rate is correlated with the
number of training times, and it will decline exponentially
with the increase of training times. Here, r is the decay
rate, s is the global step, the maximum learning rate is
set to max_lr = 0.005, the minimum learning rate is set
to min_lr = 0.001, epoch is the training times, x is the

sample size in the total training set, batch_size represents
the sample size in a batch, then decay rate is computed
with r = log(max_lr/min_lr)/(epoch ∗ x/batch_size).
Then the learning rate after decay can be obtained accord-
ing to the calculated decay_rate.

Hyperparameter settings
To implement the proposed scDLC, it is further needed
to determine the hyperparameters in the model. Note
that the hyperparameters are the configuration outside
the model, and their values cannot be estimated from the
data. Appropriate hyperparameters can greatly improve
the performance of themodel. According to the test of dif-
ferent hyperparameter combinations, we set the following
parameters that can yield a good performance for the clas-
sification.
hidden size=64: The parameter represents the size of the
hidden state of LSTMs and we set it as 64.
batch size=11: For the number of samples in a batch, we
randomly choose 11 samples throughout the simulations.
grad clip=5: To stabilize the network in the process of
training, we set the threshold as 5 for the gradient to con-
trol the weight update within a certain range.
train keep prob=0.3: To prevent overfitting, we let the
train keep probability equal to 0.3, which means that only
30% of the information will be used in the next time.
initial learning rate=0.005: For the appropriate learn-
ing rate that can make the objective function converge
to a local minimum at a suitable time, we set the initial
learning rate as 0.005. Since the learning rate will decline
with training, we further set the minimum learning rate as
0.001.
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