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Tumor development is a process involving loss of the differentiation phenotype and acquisition of stem-like characteristics,
which is driven by intracellular rewiring of signaling network. The measurement of network reprogramming and disorder would
be challenging due to the complexity and heterogeneity of tumors. Here, we proposed signaling entropy (SR) to assess the
degree of tumor network disorder. We calculated SR for 33 tumor types in The Cancer Genome Atlas database based on transcrip-
tomic and proteomic data. The SR of tumors was significantly higher than that of normal samples and was highly correlated with
cell stemness, cancer type, tumor grade, and metastasis. We further demonstrated the sensitivity and accuracy of using local
SR in prognosis prediction and drug response evaluation. Overall, SR could reveal cancer network disorders related to tumor
malignant potency, clinical prognosis, and drug response.
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Introduction
Cancer is considered a result of a series of driving mutations

obtained by one or several clones to make the cells adaptive
and reproductive (Hahn and Weinberg, 2002; Martincorena et
al., 2017). Epidemiological studies have shown that the pro-
cess of tumor development can be as long as several decades
and a solid tumor undergoes up to eight rate-limiting events
from the occurrence to clinical detection (Armitage and Doll,
1954). Meanwhile, the tumor is not a unitary environment be-
cause of tumor heterogeneity (Hanahan and Weinberg, 2011;
Prasetyanti and Medema, 2017; Reiter et al., 2019). The

existence of subpopulations and the dynamic relationship and
interaction among subpopulations lead to the complex state of
this microenvironment. Therefore, sensitive indicators are
needed to assess the complexity of tumor microenvironment.
Exploring the status of tumor development not only help us un-
derstand the causes of tumorigenesis and find the key signal-
ing pathways but also contribute to the personalized and
precise treatment, including targeted drugs.

In addition, the development of cancer can be seen as a pro-
cess in which cells gradually lose differentiation phenotype
and obtain stem-like features or ‘stemness’ that is defined as
the potential of self-renewal and differentiation from the cell of
origin. Cells with the highest level of stemness possess the
ability to give rise to all cell types in the adult organism.
Tumors with high differentiation potential are more likely to
spread to distant organs, causing disease progression and
poor prognosis, particularly because metastases are usually re-
sistant to available therapies (Visvader and Lindeman, 2012;
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Friedmann-Morvinski and Verma, 2014; Ge et al., 2017; Shibue
and Weinberg, 2017). Therefore, tumor heterogeneity can also
be attributed to the fact that tumor tissues have different
degrees of differentiation potential. Malta et al. (2018) pro-
posed an index to identify stemness features associated with
oncogenic differentiation using machine learning method.
However, this method was trained only in stem cells.
Considering that the complexity or disorder of tumor is caused
by multiple factors including heterogeneity and stemness, a
more robust and informative indicator is needed.

At present, studies characterized for cancer often focus on
the change of one or several key genes. The discovery of driver
mutations is of great significance and has been applied in drug
discovery, such as imatinib that targets BCR–ABL fusion, gefiti-
nib that binds to and inhibits EGFR, and trastuzumab that
inhibits HER2 (Carter et al., 2009; Pleasance et al., 2010;
Vogelstein et al., 2013). However, considering the existence of
tumor heterogeneity, single driver mutation is difficult to ex-
plain the overall change. Even the well-known driver mutation
on BRAF gene (e.g. V599E) was only present in 66% but not all
of malignant melanomas (Davies et al., 2002). Previous studies
have also shown that cancer is a system-level network change
by accumulation of genetic and/or epigenetic changes under
the molecular network structure (Pe’er and Hacohen, 2011;
Creixell et al., 2015). Therefore, the global network characteris-
tics are of particular importance. The biological network analy-
sis could help us understand the relationship between
biological network and cancer development and thus provide
clues for clinical treatment (Ozturk et al., 2018). For example, a
network analysis revealed the underlying molecular, tumor
type-specific networks accounted for different responses to the
inhibitor targeting BRAF V600E in melanoma and colorectal
cancer. The inferior response in colorectal cancer is caused by
feedback activation of EGFR, which maintains cell proliferation
in the presence of the inhibitor (Prahallad et al., 2012). In the
field of cancer network analysis, statistical characteristics of
the network are also of help to understand the occurrence and
development of cancer in depth (Platzer et al., 2007), which
are always quantitative features that allow for comparison be-
tween samples and contain more information without feature
selection. Some network features, such as network entropy or
signaling entropy (SR) (Teschendorff and Severini, 2010; West
et al., 2012; Teschendorff et al., 2014; Cheng et al., 2016),
have also been proposed. Entropy is a measure of the degree
of disorder in the system, and network entropy or SR, as a
global network characteristic, reflects the uncertainty of signal
transmission in the molecular interaction network. In 2012,
West et al. (2012) found that cancer samples often have higher
network entropy values than normal controls using a network
integrating microarray transcriptomic data and protein–protein
interaction (PPI) network. Banerji et al. (2015) found that SR
can be a prognostic measure by analyzing 3668 breast cancer
and 1692 lung adenocarcinoma samples. Cheng et al. (2016)
used a similar method to calculate network entropy and found
that it can be used to characterize tumor progression and

anticancer drug responses. In 2017, SR was used to analyze
single-cell data and the results showed that SR can reflect the
stemness of the cell (Teschendorff and Enver, 2017). According
to previous studies, SR has been recognized as a quantitative
measure to assess different cancer states, but the conclusion
was made by limited samples or cancer types. Besides, SR
showed limited value in prognosis prediction (Teschendorff
and Severini, 2010; West et al., 2012; Banerji et al., 2015).

Here, we applied and explored the concept of SR
(Teschendorff and Enver, 2017) in more extensive samples and
more diverse data types to measure tumor development and
classify cancer subtypes. We also investigated the role of local
entropy in prognosis prediction and the underlying mechanism
of high-entropy cancer. Our study also shows the correlation
between SR and drug response, which provides a guidance for
drug selection in clinical application.

Results
SR as an effective network biomarker

To calculate SR, we firstly constructed a probabilistic signal-
ing network by combining PPI network with gene expression
profiles. The nodes of the network represent different genes,
and edges indicate interactions between pairs of genes. The
weight of each edge represents the possibility of connecting
two genes, which are proportional to the expression of the two
nodes that are connected (Figure 1A; Materials and methods
section). Basically, the probabilistic signaling network assumes
that highly expressed genes are more likely to be connected in
the signaling network (Banerji et al., 2015; Teschendorff and
Enver, 2017). Local signaling entropy (LSR) was calculated for
each node by combining all the normalized weights of edges
around it (Figure 1A; Materials and methods section). The sum
of all LSR values in the network is termed as SR. We compared
SR with previously reported diagnostic and prognostic markers
including stemness and heterogeneity (Teschendorff and
Severini, 2010; Hanahan and Weinberg, 2011; Banerji et al.,
2015) and also explored the role of SR in clinical outcome pre-
diction (Figure 1A).

To investigate whether SR could reflect stemness of tissues
or cell lines, we calculated SR of samples with different differ-
entiation potentials using data from a study before (Nazor et
al., 2012). Not surprisingly, samples with the highest differenti-
ation level demonstrated the lowest SR, whereas embryonic
stem cell, induced pluripotent stem cell, and parthenogenetic
embryonic stem cell with high differentiation potential showed
significantly higher SR (Figure 1B). This result was consistent
with a previous study (Teschendorff and Enver, 2017) that SR
was a measure of differentiation potential for single cells. We
next quantitatively evaluated the relationship between SR and
the index ‘mRNAsi’ (Malta et al., 2018), which was reported as
an evaluation indicator for tumor stemness. ‘mRNAsi’ was cal-
culated using an innovative one-class logistic regression ma-
chine learning algorithm to extract transcriptomic feature sets
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derived from non-transformed pluripotent stem cells and their
differentiated progeny (Malta et al., 2018). SR showed strong
correlation with ‘mRNAsi’ in 33 tumor types in The Cancer
Genome Atlas (TCGA) database (Figure 1C; Supplementary
Table S1). Similarly, we also compared SR with mutant-allele

tumor heterogeneity (‘MATH’), a previously reported indicator
for tumor heterogeneity (Mroz et al., 2015). ‘MATH’ was calcu-
lated from the distribution of mutant allele frequency (MAF)
and normalized by the median MAF value to correct for normal
DNA in tumor sample (Mroz et al., 2015). An intermediate level

A

B C

Figure 1 Calculation and validation of SR. (A) Overview of SR. The concept of global SR and LSR. SR was explored for the association with
stemness index, heterogeneity index, cancer metastasis, and prognosis. (B) SR of cells with different differentiation probabilities. The P-
value (Student’s t-test) above each boxplot indicates whether there is a difference between this group and the tissue group. (C) The corre-
lation coefficients between SR and mRNAsi (green triangle) or MATH (red circle) in 33 tumor types of TCGA database. ACC, adrenocortical
cancer; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical cancer; CHOL, bile duct cancer; COAD, colon cancer; DLBC, large B-cell
lymphoma; ESCA, esophageal cancer; GBM, glioblastoma; HNSC, head and neck cancer; KICH, kidney chromophobe; KIRC, kidney clear
cell carcinoma; KIRP, kidney papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, low grade glioma; LIHC, liver cancer; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian cancer; PAAD, pancreatic cancer; PCPG, pheo-
chromocytoma & paraganglioma; PRAD, prostate cancer; READ, rectal cancer; SARC, sarcoma; SKCM, melanoma; STAD, stomach cancer;
TGCT, testicular cancer; THCA, thymoma; THYM, thymoma; UCEC, endometroid cancer; UCS, uterine carcinosarcoma; UVM, ocular
melanomas.
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of correlation was observed between SR and ‘MATH’ (Figure 1C;
Supplementary Table S2). These results indicate that SR can be
an effective network biomarker to measure the stemness or dif-
ferentiation potential of cells.

SR of different cancer types
The transformation of normal cells into tumor cells is a pro-

cess gradually losing the differentiation phenotype and obtain-
ing stem cell characteristics (Visvader and Lindeman, 2012;
Friedmann-Morvinski and Verma, 2014; Ge et al., 2017). If the
determination of lineage is regarded as a probabilistic process,
the choice of lineage in normal cells is deterministic, because
differentiation leads, by necessity, to activation of specific tran-
scription factors and pathways and thus to a lowering in the un-
certainty of signaling patterns, resulting in a lowering of
entropy (Teschendorff et al., 2014). Tumor cells are supposed
to have higher uncertainty or entropy as they have similar char-
acteristics with stem cells. With the increase of cancer malig-
nancy, the differentiation phenotype is further lost, and the
uncertainty of lineage selection is gradually increasing.
Considering the role of SR in measuring the differentiation abil-
ity of cells, we next applied SR to assess the degree of cancer
malignancy. We calculated SR of 10459 patients from 33 can-
cer types and 678 normal controls in TCGA database based on
transcriptomic data. The SR values of cancer samples were sig-
nificantly higher than that of normal samples (Figure 2A), which
was consistent with our assumption. Besides, SR varied a lot in
different cancer types (Figure 2B). Compared with other tumor
types, germ cell tumors (e.g. TGCT), which is a kind of stem
cell-like (SC) tumor, and lympho–hematopoietic (Ly–Hem)
tumors (e.g. DLBC, LAML, and THYM) tended to have higher SR
values (Figure 2B). When we divided all the samples based on
their histology and cell of origin into eight cancer type groups,
including SC, Ly–Hem, adenocarcinomas (Adenocarcinoma),
squamous cell carcinomas (Squamous), neuronal lineage
(Neuronal), sarcomas (Sar), kidney tumors (Kidney), and not
belonging to any of the above (Misc), significant differences
were observed among groups except for Ly–hem vs. SC, Misc
vs. Ly–hem, and Adenocarcinoma vs. Sar (Supplementary Table
S7). Hierarchical clustering using SR of different cancer types
showed that the three cancer types belonging to the Kidney
group (KICH, KIRC, and KIRP) were clustered relatively close,
and TGCT was clustered together with a Ly–Hem tumor LAML
(Supplementary Figure S5A). In addition, SR distribution pat-
terns of the three renal cell carcinomas (KICH, KIRC, and KIRP)
were similar (0.91 ±0.002, 0.91 ± 0.001, and 0.91 ±0.002, re-
spectively; Figure 2B), suggesting that SR could distinguish the
histological type of cancer and the source of cancer cells to a
certain extent.

To further explore the possibility of using SR to predict tumor
malignancy, we performed analysis in patients with breast inva-
sive cancer (BRCA) or glioma cancer (GBM and LGG). We found
a close relationship between SR and clinical characteristics in

BRCA (Figure 2C; Supplementary Figure S2A). By performing k-

means clustering using SR of BRCA samples, four clusters were
obtained. Chi-square test showed that the four identified clus-

ters were significantly related to various clinical characteristics
(Supplementary Figure S5C). Patients with high entropy were

more likely to have negative estrogen receptor (ER), negative
progesterone receptor (PR), and positive HER2 receptor

(Figure 2C). Consistently, the entropy of triple-negative breast
cancer (TNBC) was significantly higher than that of non-TNBC

(Figure 2C). Besides, the highest SR value was observed in the
basal subtype (Figure 2C), the most invasive subtype with the

highest degree of malignancy and the worst survival probability
among all BRCA subtypes (Perou et al., 2000; Sorlie et al.,

2001; Parker et al., 2009). In addition, invasive lobular breast
cancer that has a better prognosis showed significantly lower

entropy than invasive ductal breast cancer (Figure 2C).
Similarly, we found a strong correlation between entropy and

pathological grade or histological subtype of glioma (Figure 2D;
Supplementary Figure S2B). As a more malignant type of can-

cer, GBM demonstrated significantly higher SR than LGG, sug-
gesting a role of SR in prognosis prediction (Figure 2D;

Ceccarelli et al., 2016).

SR is associated with cancer prognosis and metastasis
To examine the relationship between SR and clinical progno-

sis, we next evaluated whether SR could predict overall survival
(OS) and progression-free survival (PFS) in each cancer type.

Not surprisingly, higher SR demonstrated a risk factor for both
OS and PFS in most cancer types including ACC, KIRP, LGG,

LIHC, LUAD, PCPG, PRAD, SARC, and SKCM (Figure 2F), indicat-
ing that patients with high entropy values are prone to have

disease progression and worse survival probability. However,
we also observed an opposite phenomenon in STAD where
higher SR was correlated with better survival, suggesting that

the prognosis prediction by SR is affected by the type of cancer
(Figure 2F). In addition to prognosis, a significant correlation

between entropy and metastasis was observed in the indepen-
dent breast cancer data from a previous research (Yau et al.,

2010). Patients with distal metastasis demonstrated higher en-
tropy values (Figure 2E), and patients with high SR (median

split) were more likely to have metastasis given certain period
(Supplementary Figure S2C). Moreover, we obtained similar

results in another dataset (Yu et al., 2004; Chandran et al.,
2007) with 683 breast cancer samples (Supplementary Figure

S2E). To validate this association, we next retrieved a single-
cell sequencing dataset of breast cancer (GSE75688) (Chung et

al., 2017) and observed that single cells from metastatic sites
had higher entropy values than those from primary tumors

(Supplementary Figure S2D). However, entropy values of indi-
vidual cells varied even in the same tissue from the same pa-

tient, indicating the presence of intra-tumor heterogeneity.
These results suggest that SR is a measure for the degree of
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cancer malignancy, demonstrating its role in the prediction of
clinical prognosis and metastasis.

SR based on proteomic data
Compared to transcriptomic data, proteomic data reflect

pathway activity of an organism or the response to external
treatment more accurately, as protein is the performer of bio-
logical function. We evaluated SR of various cancer types using
multiple proteomic datasets in CPTAC database (https://proteo
mics.cancer.gov/programs/cptac) and found a high consis-
tency between SR based on proteomic and transcriptomic data
in BRCA (r¼0.27, P¼0.004) and OV (r¼ 0.46, P¼2.945e�05;
Figure 3A), indicating that SR is a robust value to reflect the
real degree of network confusion with no limit to data type. We
next explored the relationship between SR based on proteomic
data and clinical characteristics. For three cancer types with
normal controls available, a comparison of SR values of tumor
and normal samples showed that SR of normal samples was far

less than that of tumor samples (Figure 3B), consistent with the
results based on transcriptomic data (Figure 2A). In addition,
we found that proteome-based SR for grade 3 was significantly
higher than that for grade 2 in LUAD and OV (Figure 3C), consis-
tent with the result from transcriptomic data (Figure 2D).
Cancer grade is determined by the differentiation degree of tu-
mor cells (Liu, 2018). Therefore, higher differentiation degree
represents higher grade in classification, which results in
higher SR, just in line with our hypothesis that SR is a standard
for measuring the disorder and differentiation degree of tumor
cells. To sum up, SR based on proteomic data and that based
on transcriptomic data come to the same conclusion, indicating
the robustness of this method.

Distribution of LSR and enrichment analysis
SR represents the overall characteristic of a sample, i.e. the

degree of chaos. As SR is obtained by summing up all local en-
tropy values, we next explored the contribution of local entropy
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to the overall difference. By comparing with normal samples,
local entropy can be split into three parts, namely upregulated
LSR in the tumor, downregulated LSR, and LSR without signifi-
cant changes (Figure 4A). There are 22 types of cancer in TCGA
database with normal samples as control, and their composi-
tions of the three kinds of LSR are different (Figure 4B). The
sum of upregulated LSR varies between 0.002 and 0.195 (ratio
ranges from 0.3% to 21.3%), and the sum of downregulated
LSR varies from 0.0005 to 0.176 (0.06%–19.2%)
(Supplementary Table S3). The extreme values may be caused
by a small number of normal samples in some cancer types. For
the six cancer types (BRCA, KIRC, LUAD, LUSC, PRAD, and THCA)
containing >50 normal samples, BUB1B, KIF4A, and MELK were
among the 30 with the most significantly upregulated local en-
tropy of four cancer types (Figure 4C). BUB1B encodes a kinase
involved in spindle checkpoints that localizes to the centro-
mere and facilitates the proper separation of chromosomes.
According to previous reports, mutations in BUB1B were indeed
found in patients with colorectal cancer, but further studies are
needed to determine whether the mutations increase its carci-
nogenicity (Hahn et al., 2016). KIF4A-encoded kinase is

involved in intracellular trafficking of membrane organelles and
may be involved in the process of mitosis. One study reported
that, in liver cancer, upregulation of KIF4A promotes cell prolif-
eration by activating AKT signaling pathway, which makes liver
cancer patients have a worse prognosis (Huang et al., 2018).
MELK is a potential therapeutic target for cervical cancer and
its high expression is associated with poor prognosis in adre-
nocortical carcinoma (Kiseljak-Vassiliades et al., 2018; Wang
et al., 2018). ADRA1A, GRIA1, CA4, GRK5, and LIMS2 were the
most common ones with downregulated LSR (Figure 4C).
Enrichment analysis using differential LSR showed a strong
consistency of pathways enriched in different cancer types.
Pathways with the upregulated LSR were mainly in homologous
recombination, cell cycle, and DNA repair, consistent with the
concept that SR estimates the malignancy of tumor by estimat-
ing the differentiation degree. The downregulated LSR-enriched
pathways were mainly related to signaling transduction
(Figure 4D), suggesting that there may be local barriers in these
pathways in cancer, and a decrease in the partial LSR of the
pathway means a decrease in connectivity and interaction with
surrounding genes, leading to abnormal access to the pathway.
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From the microscopic perspective, LSR deconstructs the over-
all difference. High SR is usually caused by the upregulation
of signaling pathways related to cell proliferation, while low
SR is caused by the abnormality of transduction-related
pathways.

Both SR and LSR are related to clinical characteristics. SR is
an overall value, which reflects the degree of disorder of the
samples. High SR is associated with high malignant degree or
high pathological grade of tumor samples, which are prone to
metastasis and poor prognosis. LSR could further quantify and
explain such correlation. Hierarchical clustering using LSR
showed that the three cancer types belonging to the Kidney
group (KICH, KIRC, and KIRP) were clustered together, TGCT
was clustered together with the other two types of Ly–Hem
tumors, and most Adenocarcinomas tumors were clustered to-
gether (Supplementary Figure S5B). Four clusters obtained by
clustering using LSR matrix were significantly correlated with a
variety of clinical features, including ER-positive, PR-positive,
HER2-positive, and PAM50 subtypes, and the second cluster
was significantly lower than the other three (P<2.2e�16)
(Supplementary Figure S5D).

Clinical prognosis prediction by LSR
SR is associated with OS and PFS (Figure 2F), and in most

cancer types, higher SR is associated with poorer OS and PFS
probability. However, not all cancer types have such a pattern,
indicating the complexity and heterogeneity of cancer. Thus,
we next explored applying LSR in clinical prognosis prediction.
We constructed proportional hazard regression models using
LSR as the feature, and the consistency index (C-index) was
used to evaluate the predictive ability of each model. For the
choice of LSR features, we only included those differentially
expressed in cancer compared with normal samples. Briefly,
we firstly calculated the differential LSR values in 22 kinds of
cancer separately, and then took the common LSR features in
16 kinds of cancer, including 38 upregulated and 14 downregu-
lated. We next built predictive models with these 52 features
for the survival of patients from 22 cancer types, and the
predicted result was significantly better than the model
constructed only with SR, mRNAsi, or MATH (Figure 5A). Then,
we applied the model built with 52 LSR features to predict the
survival of the other 11 cancer types, which also performed bet-
ter than other models (Figure 5A). We calculated the Cox
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proportional hazard ratio for each patient and divided patients
into high-risk and low-risk groups based on median split.
For the 11 cancer types without control, the survival of the
high-risk group was indeed significantly worse than that of the
low-risk group (Figure 5B). Since the number of samples was
smaller than that of features, we excluded two tumor types. Of
the remaining 31 tumor types, the survival of the high-risk
group we predicted was still significantly worse than that of the
low-risk group (Supplementary Table S4). Although SR has
been associated with a variety of cancer characteristics and, to
some extent, can be an indicator of patients’ prognosis,
using LSR would help us make better prognosis prediction and
gain insight into the underlying causes for different patients’
outcomes.

Drug response prediction with LSR
Although there are many indicators to measure the malignant

degree of cancer, few single clinical indicators or gene expres-
sion features can predict the responses of cancer patients to
drugs. Although gene mutations guided drug usage to certain
extent, unfortunately, the complexity of cancer determines its
strong limitations. Therefore, we next explored the role of SR,
especially LSR, in the guidance of drug use for cancer patients.

In order to study the relationship between entropy and drug
response, we retrieved gene expression and drug response
data of 265 drugs and 1018 cell lines from GDSC database
(https://www.cancerrxgene.org/). We calculated the SR based

on transcriptomic data for each cell line. For each drug, we di-
vided cell lines into resistant and sensitive groups according to
IC50 value, using the criteria from previous study (Iorio et al.,
2016; see Materials and methods section), and compared the
SR between two groups. The results showed that there was sig-
nificant difference in SR between resistant and sensitive
groups of cell lines for 165 out of 265 drugs, among which the
SR of sensitive group was higher than that of resistant group
for 146 drugs and opposite for the other 19 drugs (Figure 6A).
For drugs demonstrating significant difference in SR between
resistant and sensitive cell lines, we next focused on the asso-
ciated pathways of the drug-targeted genes. Except for drugs
targeting EGFR and ERK MAPK signaling pathways, where the
SR was higher in resistant cell lines, the SR in sensitive cell
lines was basically higher for other target pathways (Figure 6B).
Taking the cell cycle pathway as an example, the higher the SR,
the more sensitive the cells to related drugs (Figure 6B). This
could possibly be explained by that the greater degree of cell
differentiation in cell lines with higher SR provides a suitable
environment for cell cycle inhibitors to respond to drugs.
For local entropy, the LSR values of genes targeted by drugs
were also higher in sensitive cell lines than in resistant cell
lines. AT-7519 is an inhibitor targeting multiple cyclin-depen-
dent kinases including cyclin-dependent kinase 1 (CDK1),
CDK2, CDK6, and CDK9. The LSR values of these four kinases
were significantly higher in sensitive cell lines (Figure 6C).
Similarly, KIN001-270 is a CDK9 inhibitor, and the LSR values
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of CDK9 were also higher in its sensitive cell lines (Figure 6C).
As drugs targeting EGFR and ERK MAPK signaling pathways
have limited targets, we calculated the LSR ratio by dividing the
LSR of each target by the total SR to eliminate the influence of
other genes. The results showed that the LSR ratios in almost
all the sensitive cell lines were higher than in the resistant cell
lines (Figure 6D).

To further demonstrate the role of SR in drug response pre-
diction, we compared the SR with existing signatures like gene
mutations, which often play an important role in drug response.
Taken drugs targeting EGFR signaling pathway as an example,
EGFR or ERBB2 mutation could not accurately distinguish
whether a cell line is resistant or sensitive to the corresponding
drugs, while cell lines with smaller IC50 tend to have larger LSR
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ratio of EGFR (Supplementary Figure S4 and Table S5). We ob-
served more negative correlations between LSR ratio and drug
response than positive correlations, no matter whether EGFR or
ERBB2 was mutated or not. In other words, the higher the LSR
ratio is, the lower the IC50 value is and more sensitive the cell
line is to the corresponding drug. In particular, in the cell lines
without mutations, we still observed a significant negative cor-
relation between LSR ratio and IC50 value (Figure 6E).
Therefore, LSR ratio proposed by us has a great potential to
predict drug response and provide medication guidance to
patients without relevant mutations.

Discussion
We applied SR to assess the degree of disorder of the tumor,

which is the result of a combination of various factors such as
stemness and heterogeneity of the tumor. The level of SR is re-
lated to various clinical features of the tumor and can be used
in medication as a supplement of genomic variation. Local en-
tropy derived from SR can be used to predict the survival of tu-
mor patients. Overall, SR can help us understand the
occurrence and development of tumors and achieve more accu-
rate treatment for patients.

SR has significant correlations with stemness in various tu-
mor types (Figure 1C; Supplementary Figure S1). In 33 tumor
types, the average value of the correlation coefficient between
SR and mRNAsi reaches 0.67. The correlation coefficient is as
high as 0.92 in STAD and exceeds 0.8 in 11 tumor types. On the
other hand, the correlation coefficient between SR and MATH
varies a lot and is positively correlated only in 22 tumor types
(Figure 1C; Supplementary Figure S2). The correlation between
SR and mRNAsi/MATH is independent and there is no synergy.
SR is a quantitative indicator that can reflect the degree of disor-
der of the tumor. Compared with mRNAsi, it does not require
feature selection and also buries more information. The large
difference between SR and MATH may be caused by the distinct
data types used for their calculation; MATH is obtained through
the somatic mutation of genome, and SR is obtained using tran-
scriptomic data. Some previous studies (Peiris-Pages et al.,
2016; Li et al., 2017; Zheng et al., 2018) have used buck or sin-
gle-cell RNA sequencing data to explore the heterogeneity of
tumors and tumor stem cells, but most of them are qualitative
instead of quantitative indicators. SR as a quantitative indicator
can reflect tumor heterogeneity and stemness and helps us bet-
ter grasp the disease development of cancer patients and un-
derstand the mechanism of tumor development.

SR, as a measure of the overall state, includes complex infor-
mation and is not very suitable for prognosis prediction.
Therefore, we select LSR for predicting the survival of cancer
patients, and we found it performing well in predicting the sur-
vival for various tumor types no matter whether control exists,
which is far better than the other three indicators. Furthermore,
accurate prognostic prediction is achieved without machine
learning. Another advantage of using local entropy for

prediction is that the intersection of local entropy in different tu-
mor types is relatively large, demonstrating the wide applicabil-
ity of SR in prognosis prediction. By contrast, quite a few tumor
prognostic markers are often only suitable for certain types of
cancer, such as breast cancer (Braden et al., 2014), lung cancer
(Woodard et al., 2016), glioblastoma (Salvucci et al., 2019), and
hepatocellular carcinoma (Teufel et al., 2019), and are not uni-
versal markers of pan-cancer. There are also some studies that
use large samples of pan-cancer data to find more applicable
tumor prognostic markers. Gentles et al. (2015) present a pan-
cancer resource and meta-analysis of expression signatures
from �18000 human tumors with OS outcomes across 39 malig-
nancies. Through clustering, they discovered that one cluster is
broadly associated with inferior outcomes and is functionally
linked to cell proliferation and cell cycle phase, which is consis-
tent with our results. Compared to normal tissues, genes with
higher local entropy in tumor tissues are enriched in the cell cy-
cle pathway; among the 52 genes we used to predict survival,
8 genes (BUB1B, BUB1, DBF4, E2F3, CDC45, MCM3, PLK1,
PKMYT1) are related to the cell cycle pathway. There are also
some differences between the study and our research. They
used univariate Cox regression to find genes related to survival
and directly used the transcriptomic data (Gentles et al., 2015),
while we used the LSR features. LSR itself includes the relation-
ship among genes, which can be regarded as the overall feature
of small networks with a single gene at the core, and therefore
it contains more information, which helps to discover the core
gene related to survival that cannot be found when using the ex-
pression value of a single gene alone. Moreover, we conducted
multivariate Cox regression. Some of the features are not signifi-
cantly related to survival in one tumor type but are significantly
related to survival in another tumor type. We retain these fea-
tures to ensure that the common characteristics related to sur-
vival can be kept to the greatest extent and realize the
prediction of pan-cancer survival.

SR reflects the disorder degree of whole network and is the
sum of LSR. However, for the efficacy of targeted therapy, local
network alteration is often more important than the change of
whole network. Therefore, LSR is more accurate than SR in some
aspects, such as predicting the sensitivity of cell lines to drugs
(Figure 6C–E). In this study, we focused on drugs that target the
cell cycle and EGFR pathways. Drugs that target the cell cycle
pathway, such as AT-7519 and KIN001-270, specifically target
CDKs. These kinases and their regulated cyclin partners play a
central role in the growth, division, and death of eukaryotic cells.
Although we hope that SR can be used as a universal measure of
drug efficacy, we must admit that, according to the mechanism of
drug action, SR has a different effect on predicting drug
responses. This is caused by SR itself, which is determined by
the characteristics of the cell. According to the differential local
entropy analysis between normal and tumor samples, we can see
that the difference in SR between the two groups is caused in
part by genes belonging to pathways such as cell cycle, DNA rep-
lication, and homologous recombination (Figure 4D). Higher SR
means the local networks centered of these genes (including
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CDKs) are overactive, providing a suitable target aim and environ-
ment for the drug to function. Therefore, it is more accurate to
use SR to predict the response of this kind of drugs, and the
higher SR in sensitive cell lines using these drugs is indeed seen
in the GDSC database (Figure 6B). For drugs targeting the EGFR
pathway, SR is not sufficient to predict the efficacy of drugs. The
specific proportion is not large, and thus it is necessary to focus
on local entropy as a complement. EGFR belongs to the receptor
tyrosine kinase of the HER/ERBB family, which includes HER1

(EGFR/ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4)
(Wells, 1999). EGFR tyrosine kinase activity may be regulated by
multiple carcinogenic mechanisms such as EGFR gene mutation,
increased gene copy number, and overexpression of EGFR protein
(Ciardiello and Tortora, 2008). Receptors and ligands also medi-
ate complex interactions between tumor cells and the tumor mi-
croenvironment. Improper activation of EGFR tyrosine kinase
activity inhibits tumor cell apoptosis and promotes tumor pro-
gression (Woodburn, 1999). EGFR may also interact with the
integrin pathway (Hazan and Norton, 1998; Herbst and Bunn,
2003), activate matrix metalloproteinases, change cell adhesion,
stimulate cell viability and invasion, and promote metastasis
(Ellerbroek et al., 2001). These findings make EGFR a reasonable
therapeutic target and support the development of new anti-can-
cer drugs against EGFR. Many existing studies focus on the effect
of EGFR mutations on the efficacy of EGFR tyrosine kinase inhibi-
tors (EGFR-TKIs) when judging whether to use EGFR inhibitors in
the clinical treatment (Gazdar, 2009; Ju et al., 2016; Ou et al.,
2017). However, according to Paez et al. (2004), only 21% of
patients with lung adenocarcinomas have EGFR mutations. Are
EGFR-TKIs still or not applicable to patients without relevant muta-
tions? Our analysis shows that regardless of whether the patient
has a mutation or not, IC50 is negatively correlated with the LSR
ratio of EGFR, which means that patients without EGFR mutation
but with high LSR ratio of EGFR may also be suitable for EGFR-TKI
treatment. Although we can only draw preliminary conclusions
based on cell line results due to lack of patient medication data,
this undoubtedly provides a treatment possibility for patients
who have not detectable EGFR mutations.

SR using transcriptomic and proteomic data is a biomarker to
measure the development of the tumor and can also be applied
in clinical treatment with good robustness and wide applicabil-
ity. Compared to overall SR, LSR shows more accuracy in pre-
dicting patient survival and drug responses, which provides
clues for clinical treatment.

Materials and methods
Data collection and pre-processing

Transcriptomic data include the RNA sequencing data from
TCGA database and microarray data from GEO database. TCGA
data were download from https://xenabrowser.net/datapages,
including 33 cancer types. RSEM value was used to quantify the
gene expression of RNA sequencing data and applied to calcu-
late SR. All microarray data analyzed in this work are publicly
available from the following GEO (www.ncbi.nlm.nih.gov/geo/)

accession numbers: GSE2034, GSE5327, GSE6605, GSE6606,
GSE7390, and GSE75688. All proteomic data were downloaded
from the CPTAC database (https://proteomics.cancer.gov/pro
grams/cptac), including five cancer types BRCA (Cancer Genome
Atlas Network, 2012), LUAD (Mertins et al., 2018), CCRCC (Clark
et al., 2019), OV (Cancer Genome Atlas Research Network,
2011), and UCEC (Dou et al., 2020), where the data were gener-
ated by TMT method. The log ratio values in each dataset were
normalized by columns and filled by the median of each protein
of samples before they were applied to calculate SR.

For drug data, the IC50s were recorded as the natural loga-
rithm of the half-maximal inhibitory lM concentrations.
Although the continuous IC50 values were used in the analysis,
it is necessary to define a binarization threshold. This thresh-
old is used to divide the cell lines into two classes, the sensi-
tive cell lines and the resistant cell lines, according to the
previous study (Iorio et al., 2016), which employed the proce-
dure described in Knijnenburg et al. (2016) to find the binariza-
tion threshold for each of the drugs.

Calculation of SR and LSR
The SR is calculated by firstly making an integrated network,

which in this case is the PPI network. The PPI network covering
303600 unique interactions connecting 8434 genes was down-
loaded from the Human Protein Reference Database (http://
hprd.org), which is manually curated by the literature.

Assuming that if both genes are highly expressed, the possi-
bility of their interaction in the network is greater, which is con-
structed by appealing to a simple version of the mass action
principle, namely that the rate of a reaction is proportional to the
product of the active masses of the reagents involved. SR is the
entropy rate of the probabilistic signal process on the network,
which quantifies the speed of the signal propagates throughout
the network, thus measuring the number of biological processes
that are ‘active’ in some sense. Therefore, normal or less vicious
cells activate only specifically in functionally related pathways
and are expected to exhibit lower entropy rates because the sig-
nals cannot spread to ‘inactive’ regions of the network.

The normalized transcriptomic or proteomic data matrix was
used to evaluate the weight of each edge in the PPI network. The
weight of gene i and gene j is recorded as wij, and wij is propor-
tional to the expression of gene i and gene j, i.e. wij � xixj, where
wij represents the possibility of connecting two genes. In other
words, if the expression of two genes is high, we think that the
possibility of connecting two genes is relatively large. Then, we
normalize the weights so that the sum of the weights of each
gene was 1, and thus obtain the matrix P:

pij ¼
xjP

k2NðiÞxk
¼ xj

ðAxÞi

where N(i) represents all adjacent genes of gene i and A is the
adjacency matrix of the PPI network (Aij ¼ 1 if i and j are con-
nected, 0 otherwise, and with Aij ¼ 0).
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The SR:

Sr ~xð Þ ¼ �
Xn

i¼1

ki

X

j2NðiÞ
pij log pij

where k is the invariant measure, satisfying kP¼k and the nor-
malization constraint kT¼1. The invariant measure, also known
as steady-state probability, represents the relative probability
of finding the random walker at a given node in the network
(under steady-state conditions, i.e. long after the walk is initi-
ated). Nodes with high values thus represent nodes that are
particularly influential in distributing signaling flux in the net-
work. In the steady-state, we can assume detailed balance
(conservation of signaling flux, i.e. kipij¼kjpji), and it can be
shown (Teschendorff et al., 2014) that ki¼xi (Ax)i/(xTAx).

We denote this maximum entropy rate by maxSr, which is the
logarithm of the maximum eigenvalue of the adjacency matrix,
and define the normalized entropy rate (with range of values
between 0 and 1) as:

SR ~xð Þ ¼ Srð~x Þ
maxSr

:

Since the SR is formed by adding LSR, we define it as:

LSR ~xð Þ ¼ � ki

X

j2NðiÞ
pij log pij :

The calculation method of SR comes from Teschendorff and
Enver (2017). In that paper, there is also a calculation method
of LSR, which has been modified in this study to be more con-
sistent with the notion that SR is a sum of LSR.

Hierarchical clustering and k-means clustering
The mean value of SR of the 34 cancer types (originally 33 can-

cer types; due to the existence of Squamous and Adenocarcinoma
subtypes in ESCA, ESCA was divided into two categories and thus
a total of 34 cancer types) was calculated and used for hierarchi-
cal clustering. The mean value of LSR of each of the 34 cancer
types was calculated and used for hierarchical clustering. The dis-
tance between two observed values was Euclidean distance, and
the clustering method was average linkage method. The k-mean
method was adopted to divide the clusters by the SR and LSR ma-
trix of breast cancer, respectively, and the nstart option in the
kmeans function was used to help select the appropriate initial
configuration. The above clustering was realized by hclust and
kmeans functions of R language, respectively.

Differential LSR enrichment analysis
LSR was calculated for each gene in each sample. Given the

huge difference between tumor and normal samples, we ex-
plored which LSR features affect the final overall SR. Therefore,
we calculated the differential LSR values between tumor and
normal samples in 22 tumor types and defined them as differ-
ential local signaling entropy (DLSR). Two-sided Students’ t-test

and FDR multiple adjustment test were used to calculate the
DLSR values. At the same time, we calculated the Cohen’s d ef-
fect size, choosing LSR with FDR value <0.05 and the absolute
value of Cohen’s d>1 as different one. According to whether
the value of Cohen’s d is >0, we divided the local entropy of
difference into two types, upregulated and downregulated. The
R package clusterProfiler was used for enrichment analysis.

The 10 most frequent signaling pathways in 22 tumor types
are shown in Figure 4D, and all signaling pathways enriched
are listed in Supplementary Table S6.

Survival analysis
Cox proportional hazard model was used to estimate the haz-

ard ratios and C-index for OS and PFS in different cancer types.
Fifty-two different LSR features (38 upregulated and 14 downregu-
lated) existed in at least 16 cancer types were taken as indepen-
dent variables, and their relationship with survival was explored
by Cox proportional hazard model. The samples were divided into
two groups with high risk and low risk according to whether the
logarithmic hazard ratio of each sample was greater than the me-
dian of the logarithmic hazard ratio of all samples.

Statistical analysis
All the correlation coefficients in this study are Pearson cor-

relation coefficients. Two-sided Students’ t-test was used to
compare the difference of SR between tumor and normal sam-
ples. One-tailed Students’ t-test was used to compare the dif-
ference of proteomic SR in different pathological grades of the
same tumor type.

Supplementary material
Supplementary material is available at Journal of Molecular

Cell Biology online.
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