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Abstract 

Background: Angiogenesis is not essential for tumours to develop and expand, as cancer can also grow in a non‑
angiogenic fashion, but why this type of growth occurs is unknown. Surprisingly, our data from mRNA transcription 
profiling did not show any differences in the classical angiogenic pathways, but differences were observed in mito‑
chondrial metabolic pathways, suggesting a key role for metabolic reprogramming. We then validated these results 
with mRNA profiling by investigating differential protein expression via immunohistochemistry in angiogenic and 
non‑angiogenic non‑small cell lung cancers (NSCLCs).

Methods: Immunohistochemical staining for 35 angiogenesis‑ and hypoxia‑related biomarkers were performed on a 
collection of 194 angiogenic and 73 non‑angiogenic NSCLCs arranged on tissue microarrays. Sequencing of P53 was 
performed with frozen tissue samples of NSCLC.

Results: The non‑angiogenic tumours were distinguished from the angiogenic ones by having higher levels of 
proteins associated with ephrin pathways, mitochondria, cell biogenesis, and hypoxia‑inducible factor 1 (HIF1) regula‑
tion by oxygen and transcription of HIF‑controlled genes but lower levels of proteins involved in the stroma, cell–cell 
signaling and adhesion, integrins, and Delta‑Notch and epidermal growth factor (EGF)‑related signaling. However, 
proteins classically associated with angiogenesis were present in both types of tumours at very comparable levels. 
Cytoplasmic expression of P53 was strongly associated with non‑angiogenic tumours. A pilot investigation showed 
that P53 mutations were observed in 32.0% of angiogenic cases but in 71.4% of non‑angiogenic tumours.

Conclusions: Our observations thus far indicate that both angiogenic and non‑angiogenic tumours experience 
hypoxia/HIF and vascular endothelial growth factor (VEGF) pathway protein expression in a comparable fashion. How‑
ever, angiogenesis does not ensue in the non‑angiogenic tumours. Surprisingly, metabolic reprogramming seems to 
distinguish these two types of neoplastic growth. On the basis of these results, we raise the hypothesis that in some, 
but not in all cases, initial tissue remodeling and/or inflammation could be one of the secondary steps necessary to 
trigger angiogenesis. In the non‑angiogenic tumours, in which neovascularisation fails to occur, HIF pathway activa‑
tion could be the driving force toward metabolic reprogramming.
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Background
In 1927, Otto Warburg described what would be called 
the “Warburg effect,” in which tumour cells exhibited 
characteristic changes in metabolism, particularly the 
use of glycolysis rather than oxidative phosphorylation, 
despite the presence of adequate amounts of oxygen [1, 
2]. Warburg believed that this process was the actual 
cause of neoplastic transformation [3].

Tumour development is now known to be driven by 
genetic damage. However, mutations in some metabolic 
enzymes, such as succinate dehydrogenase (SDH) and 
fumaratehydratase (FH), both parts of the tricarboxylic 
acid (TCA) cycle, can drive neoplastic transformation, 
and intermediate products of metabolism can also pro-
mote neoplastic progression [4].

Proliferating cancer cells have a high energy require-
ment to maintain homeostatic cellular processes. The 
shift in energy production to aerobic glycolysis, while 
allowing for more rapid production of adenosine triphos-
phate (ATP), yields far less energy than oxidative phos-
phorylation: there are two net molecules of ATP per 
glucose molecule in glycolysis versus 36 molecules of 
ATP via oxidative phosphorylation [5].

The reasons for the glycolytic energy dependence of pro-
liferating tumour cells are still being debated. Initially, it 
was believed that the mitochondria in tumours were intrin-
sically defective. However, it was determined that tumour 
mitochondria are actually functional, retaining the capac-
ity for oxidative phosphorylation and consuming oxygen 
at similar rates to normal tissues [6], although it should be 
appreciated that a degree of variability in mitochondrial 
activities exists across different neoplasms. Alternatively, 
high rates of glycolysis might be co-selected with factors 
that promote the expression of hypoxia-related genes (such 
as those required for angiogenesis) as an oxygen-independ-
ent energy source. Finally, increased intermediate products 
of glycolysis can easily be shunted into the biosynthetic 
pathways required for serine and nucleotide synthesis [7].

According to Folkman’s original theory [8], the onset of 
hypoxia in tumour triggers angiogenesis, which in turn is 
essential for supplying neoplastic cells with nutrients and 
oxygen and evacuating metabolic waste and carbon diox-
ide. The best understood hypoxia signaling mechanism is 
the stabilization and post-transcription activation of the 
hypoxia-inducible factor (HIF) proteins, which lead to 
the activation of many different pathways, including the 
vascular endothelial growth factor (VEGF) pathway. The 
VEGF pathway prompts and supports neoangiogenesis 
and glycolysis. Hypoxia-inducible pathway activation also 
has other effects, which include reducing the activity of 
mammalian target of rapamycin (mTOR), which in turn 
can reignite autophagy and promote survival under stress 
[9].

HIF is a heterodimer of an alpha subunit that is unsta-
ble in normoxia and a constitutively present and stable 
beta subunit. The hypoxia activation of HIF causes the 
heterodimer to bind to DNA at specific locations, called 
hypoxic response elements (HREs), eliciting the tran-
scriptional up-regulation of genes required to respond 
appropriately to hypoxia [9].

In addition to triggering the VEGF pathway, the ubiq-
uitously expressed HIF1 isoform promotes the transcrip-
tion of glucose transporter 1 (GLUT1), which activates 
glucose transport inside the cell, lactate dehydrogenase-
A (LDH-A), which is involved in the glycolytic pathway, 
erythropoietin (EPO), which enhances erythropoiesis, 
and nitric oxide synthase (NOS), which promotes angio-
genesis and vasodilatation [9].

HIF1 also prevents the entry of pyruvate into the TCA 
cycle by inducing the expression of pyruvate dehydro-
genase kinase 1 (PDK1), thus altering the expressed 
isoform of cytochrome c and inhibiting mitochondrial 
biogenesis. This process causes reduced levels of oxygen 
consumption and a shift away from oxidative phospho-
rylation. Interestingly, HIF1 can also be activated under 
normoxic conditions by a variety of oncogenic pathways, 
such as phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha (PIK3CA), and by mutations in 
von Hippel-Lindau tumour suppressor (VHL), SDH, and 
FH [10].

In the classic angiogenic pathway, VEGF binds to 
VEGF receptor 2 (VEGFR2) on endothelial cells, 
increasing the expression of the Notch ligand Delta-
like 4 (DLL4) on the same cells. DLL4 then binds to its 
receptor Notch on the adjacent endothelium. Further 
expression of VEGFR2 and VEGFR1, as well as a smaller 
amount of VEGFR3, then follows, leading to trigger-
ing/amplification of the downstream phospholipase C 
familyγ (PLCγ)–protein kinase C (PKC)–Raf kinase–
MAP kinase-ERK kinase (MEK)–mitogen-activated pro-
tein kinase (MAPK) pathway, concomitantly prompting 
cell proliferation and cell survival throughout the phos-
phoinositide 3-kinase (PI3  K)/protein kinase B (AKT) 
pathway [11].

The switch to glycolysis in neoplasia was, according to 
Warburg, irreversible [3], yet a more complex picture has 
emerged over the last decade. There have been observed 
instances in which oxidative phosphorylation predomi-
nates during neoplastic transformation [12]. This vari-
ation between OxPhos and glycolysisin cancer cells has 
been increasingly linked to specific disturbances in cell 
signaling pathways [13].

Additionally, tumours of the same genetic lineage can 
develop different metabolic adaptations depending on the 
host tissue from which they arise, suggesting that the stro-
mal environment might play a crucial role in shaping the 
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metabolic profile [14]. The different molecular mechanisms 
being postulated to explain this variability of the Warburg 
effect include the following: inhibition of pyruvate dehy-
drogenase (PDH) by PDK1, reduction of mitochondrial 
biogenesis and inhibition of oxidative phosphorylation, 
both are caused by P53 inactivation and mutations [15].

Warburg raised two important issues: first, how tumour 
cells are supplied with glucose; and second, how they are 
supplied with oxygen [1]. Folkman’s work addressed the 
latter question with the hypothesis that tumour growth 
is strictly angiogenesis-dependent [16]. The work under-
taken to test this hypothesis led to the inclusion of “angi-
ogenesis” as one of the hallmarks of cancer [8].

Although there is strong evidence that angiogenesis fre-
quently occurs in cancer, we also now know that this event 
does not always occur. Indeed, some tumours, called “non-
angiogenic tumours,” can grow without triggering new 
vessel formation by co-opting preexisting vessels [17, 18].

Non-angiogenic growth was first identified by histol-
ogy in primary and metastatic lung carcinomas because 
neoplastic cells filled the alveolar spaces, co-opting the 
pre-existing capillary network and exhibiting a character-
istic “chicken-wire” appearance [17]. A gene expression 
signature for non-angiogenic non-small cell lung cancer 
(NSCLC) was published in 2005 [19]. Surprisingly, rather 
than the classic angiogenesis-related genes, the differ-
entially expressed genes were involved in mitochondrial 
metabolism, transcription, protein synthesis, and the cell 
cycle. Lack of differential mRNA expression between 
tumour phenotypes was noted for genes classically associ-
ated with hypoxia and angiogenesis. This result suggested 
that the response to hypoxia does not necessarily trigger 
neovascularisation, as would be observed in angiogenic 
tumours, but could actually be dependent on the genetic 
background of neoplastic cells, and in some instances, it 
could lead to metabolic reprogramming [19]. We there-
fore postulated that the degree to which a tumour will rely 
on angiogenic or non-angiogenic growth could be associ-
ated with a variety of events, including hypoxia, pseudo-
hypoxia, and metabolic re-programming.

In the first part of the present study, we investigated 
whether there were truly no differences in the expression 
of hypoxia-and angiogenesis-related proteins between 
angiogenic and non-angiogenic tumours, as suggested by 
mRNA profiling. We also investigated the degree of these 
proteins expression and the expression of some mito-
chondrial biogenesis proteins via immunohistochemistry. 
Notably high cytoplasmic P53 expression in non-angio-
genic tumours, compared to angiogenic tumours, was 
found after completing the first part of this study. We 
therefore performed a second investigation, in which we 
examined and sequenced the p53 gene in these tumours.

Methods
Tissue specimens
Clinical specimens of NSCLCs were obtained from a 
series of consecutive patients who underwent surgical 
treatment at the John Radcliffe Hospital, Oxford, UK. 
This collection had ethical committee approval (study 
number C02.216—The pathophysiology of human neo-
plasia). The tissues were formalin-fixed and paraffin-
embedded. Tissue microarrays were constructed using 
the Beecher Instrument MTA-1 manual arrayer (Beecher 
Instruments, Inc., Sun Prairie, WI, USA). Up to four suit-
able areas of appropriate tumour were chosen from a 
slide stained with hematoxylin and eosin (H&E), avoiding 
areas of necrosis.

Immunohistochemical staining of tissue sections
The 4-μm sections were cut from paraffin blocks and 
mounted on glass histology slides. Non-specific pro-
tein binding was blocked by incubating with 2.5% nor-
mal horse serum (Vector Laboratories, Burlingame, CA, 
USA), and the primary antibody was then applied. Details 
of all of the antibodies used are presented in Table 1. Sub-
stitution of the primary antibody with phosphate-buff-
ered saline (PBS) served as a negative control. The slides 
were then counterstained with hematoxylin for 20 s.

Scoring
The immunohistochemical staining was scored for cyto-
plasmic and nuclear localization and, when present, for 
membrane staining. Two observers scored the slides. 
Intensity was scored on a scale of 0–3 (0 = no staining, 
1 = weak, 2 = moderate, 3 = strong staining). The per-
centage of positive cells was recorded on a scale from 0 to 
4 (1 = 1%–10%, 2 = 11%–50%, 3 = 51%–80%, 4 = 81%–
100%) or alternatively on a continuous scale from 0% 
to 100%. The intensity and percentage values were then 
multiplied to provide a score called the “intensity per-
centage score” (IPS), the maximum score of which ranged 
from 12 to 300 [20].

Disputed scores were discussed and a consensus 
reached. For tissue microarrays, cores that did not con-
tain tumour tissue or that were more than 50% incom-
plete were excluded. The number of cases scored for each 
marker was between a minimum of 73 and a maximum 
of 194 cases for angiogenic tumours and between a mini-
mum of 48 and a maximum of 73 cases for non-angio-
genic tumours.

Statistical analysis
To evaluate the association between protein biomarker 
expression and angiogenic status, the Mann–Whitney 
two-tailed non-parametric test was performed using 
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GraphPad Prism statistical analysis software, version 4 
(GraphPad Software Inc., San Diego, CA, USA).

Pathway visualization
Three lists were made: two of proteins more highly 
expressed in angiogenic or non-angiogenic tumours at 
least in one subcellular location and the third of proteins 

always equally expressed in all of their subcellular locali-
zations (Table  2). To visualize the pathways associated 
with these proteins, each list was imported into the Web-
based Enricher facility (http://amp.pharm.mssm.edu/
Enrichr/) [21]. The data were visualized from the online 
databases for gene ontologies (GO biological process 
and GO cellular component) and for pathways [Kyoto 

Table 1 Antibodies used for immunohistochemistry

HIF hypoxia-inducible factor; CA9 carbonic anhydrase 9; VEGFA vascular endothelial growth factor A; TYMP thymidine phosphorylase; KDR vascular endothelial growth 
factor receptor 2; KDRp34 vascular endothelial growth factor p34; FIH factor-inhibiting HIF; PHD prolyl hydroxylase dehydrogenase; DLL4 Delta-like 4; TSP1 thymidine 
phosphorylase 1; CXCR4 chemokine (C-X-C motif ) receptor 4; EPH ephrin; SOD1 superoxide dismutase 1; BCL2 B cell lymphoma 2; FOS FBJ murine osteosarcoma viral 
oncogene homolog; EGF epidermal growth factor; EGFR epidermal growth factor receptor; BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3; PI3 peptidase 
inhibitor 3; SP1 Sp1 transcription factor; STAT3 signal transducer and activator of transcription 3; LON Lon protease; MEF2D myocyte enhancer factor 2D; JMY junction-
mediating and regulatory protein, p53 cofactor; TRAP1 TNF receptor-associated protein 1; GST glutathione S-transferase; NCAM neural cell adhesion molecule; CHGA 
chromogranin A; SYP synaptophysin

Antigen Clone Source

HIF1 ESEE122 Abcam (Cambridge, UK)

HIF2 EP109b NDCLS (University of Oxford, John Radcliffe Hospital, Oxford, UK)

CA9 M75 BioScience Slovakia s.r.o. (Bratislava, Slovakia)

VEGFA VG‑1 NDCLS

TYMP PGF44 NDCLS

KDR FLK1(A3) Santa Cruz Biotechnology, Inc. (Dallas, TX, USA)

KDRp34 34a NDCLS

FIH FIH162c/D6 NDCLS

PHD1 PHD112/G NDCLS

PHD2 366G/76 NDCLS

PHD3 EG188c NDCLS

DLL4 D4/37 NDCLS

TSP1 8A6B‑TSP‑1 Leica Microsystems (UK) Ltd. and Novocastra Reagents (Milton Keynes, UK)

CXCR4 MAB 172 R&D System (Minneapolis, MN, USA)

EPHB2 AF496 R&D System

EPHB3 R&D AF432 R&D System

EPHB4 R&D AF446 R&D System

SOD1 30F11 Novocastra

BCL2 124 Dako (Cambridgeshire, UK)

FOS Polyclonal 27436 Abcam

EGF EGF 10 Abcam

EGFR F4 Abcam

BNIP3 Ana40 Sigma‑Aldrich Company Ltd. (Dorset, UK)

P53 DO7 Dako

PI3 Ab 40755 Abcam

SP1 SP1 polyclonal Abcam

STAT3 E121‑21 Abcam

LON 20H1 NDCLS

MEF2D MEF2D polyclonal Abcam

JMY HMY117A NDCLS

TRAP1 TR‑1A LabVision (TorsbySjöväg, Värmdö, Sweden)

GST GST3/GST pi Abcam

NCAM IB6 Novocastra

CHGA FLEX polyclonal Dako

SYP 299 Novocastra

http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
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Encyclopedia of Genes and Genomes (KEGG) 2015, 
WikiPathways 2015, Reactome 2015, and Panther]. The 
results were visualized by bar graph sorted by combined 
score.

P53 sequencing
Genomic DNA was isolated from 33 specimens of 
NSCLC (25 angiogenic cases, seven non-angiogenic 
cases, and one undetermined case) and five specimens 
of peri-tumour lung tissues. The coding regions cor-
responding to exons 3–9 (amino acids 25–331) were 
sequenced. DNA was whole-genome amplified using 
GenomiPhi (GE Healthcare, Piscataway, NJ, USA). The 
primers for polymerase chain reaction (PCR) amplifica-
tion and subsequent sequencing reactions are described 
in Table 3. PCR was performed using ThermoStart PCR 
Master Mix (Thermo Fisher Scientific, Waltham, MA, 
USA), following the manufacturer’s protocol. PCR prod-
ucts were purified and bidirectionally sequenced using 
the BigDye Terminator cycle sequencing kit, version 1.1 
(Applied Biosystems, Foster City, CA, USA), and an ABI 
3100 Genetic Analyzer (Applied Biosystem, Paisley, UK). 
Sequence data were analyzed using Mutation Surveyor, 

version 3.25 (Softgenetics, State College, PA, USA). Pre-
dicted effects on protein were assessed in silico using 
PolyPhen2 software (http://genetics.bwh.harvard.edu/
pph2/). Fisher’s two-sided exact test was performed to 
compare mutation frequencies in angiogenic versus non-
angiogenic cases. All sequencing experiments were per-
formed in duplicate.

Results
Immunohistochemical staining
The complete results for the cytoplasmic and membra-
nous expression are reported in Table  4, and those for 
nuclear expression are reported in Table 5, while a sum-
mary of these results appears in Table  6. The complete 
original results of ontology and pathway visualization 
appear in Additional file 1.

In Table 7, a selection of pathways shows that proteins 
expressed in both types of tumours are associated with 
angiogenesis-, VEGF-, and oxidative stress-related path-
ways. The non-angiogenic tumours are distinguished 
from the angiogenic tumours by having higher lev-
els of proteins related to ephrin pathways, response to 
hypoxia, HIF1 regulation by oxygen, and transcription 

Table 2 Lists of proteins used for pathway visualization using the EnrichrWebd facility [21]

FGF fibroblast growth factor; RPSA ribosomal protein SA; ITGB3 integrin, beta 3; ITGAV integrin alpha-V; HIF hypoxia-inducible factor; CA9 carbonic anhydrase 9; VEGFA 
vascular endothelial growth factor A; TYMP thymidine phosphorylase; KDR vascular endothelial growth factor receptor 2; KDRp34 vascular endothelial growth factor 
p34; FIH factor-inhibiting HIF; PHD prolyl hydroxylase dehydrogenase; DLL4 Delta-like 4; TSP1 thymidine phosphorylase 1; CXCR4 chemokine (C-X-C motif ) receptor 
4; EPH ephrin; SOD1 superoxide dismutase 1; BCL2 B cell lymphoma 2; FOS FBJ murine osteosarcoma viral oncogene homolog; EGF epidermal growth factor; EGFR 
epidermal growth factor receptor; BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3; PI3 peptidase inhibitor 3; SP1 Sp1 transcription factor; STAT3 signal 
transducer and activator of transcription 3; LON Lon protease; MEF2D myocyte enhancer factor 2D; JMY junction-mediating and regulatory protein, p53 cofactor; 
TRAP1 TNF receptor-associated protein 1; GST glutathione S-transferase; NCAM neural cell adhesion molecule; CHGA chromogranin A; SYP synaptophysin
a Data for RPSA are from Ref. [18] and for ITGB3 and ITGAV are from Ref. [23]

Expression status Proteins

Equal expression in both tumour types HIF2, VEGFA, TYMP, KDR, KDRp34, FIH, PHD1, SOD1, EPHB4, BCL2, EGFR, FGF, 
SP1, LON, MEF2D, RPSAa, CHGA, SYP

Higher expression in angiogenic tumours than in non‑angiogenic tumours 
in at least one subcellular location

HIF1, PHD2, PHD3 (cytoplasmic), CXCRN, TSP, DLL4, BNIP3, PI3, EGF, FOS, 
STAT3, ITGB3a, ITGAVa

Higher expression in non‑angiogenic tumours than in angiogenic tumours 
in at least one subcellular location

CA9, PHD3 (nuclear), EPHB2, EPHB3, NCAM, P53, TRAP1, JMY, GST

Table 3 Primers for polymerase chain reaction (PCR) amplification and subsequent P53 sequencing reactions

Primer Sequence Annealing temperature (°C) Amplicon length (bp)

Exon 3–4 Forward: GTGGGAAGCGAAAATTCCAT
Reverse: GCCAGGCATTGAAGTCTCAT

60 506

Exon 5–6 Forward: TGTTCACTTGTGCCCTGACT
Reverse: TTAACCCCTCCTCCCAGAGA

60 467

Exon 7 Forward: GAGCTTGCAGTGAGCTGAGA
Reverse: GGGATGTGATGAGAGGTGGA
EX7F_seq CCTGCTTGCCACAGGTCT (to be used for  

sequencing instead of Exon 7 forward primer)

61.5 390

Exon 8–9 Forward: GACAAGGGTGGTTGGGAGTA
Reverse: GCCCCAATTGCAGGTAAAAC

60 500

http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
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Table 4 Cytoplasmic and  membranous expression of  the proteins in  angiogenic versus  non-angiogenic non-small cell 
lung cancers (NSCLCs)

All data are presented as mean ± standard error

HIF hypoxia-inducible factor; CA9 carbonic anhydrase 9; VEGFA vascular endothelial growth factor A; TYMP thymidine phosphorylase; KDR vascular endothelial growth 
factor receptor 2; KDRp34 vascular endothelial growth factor p34; FIH factor-inhibiting HIF; PHD prolyl hydroxylase dehydrogenase; DLL4 Delta-like 4; TSP1 thymidine 
phosphorylase 1; CXCR4 chemokine (C-X-C motif ) receptor 4; EPH ephrin; SOD1 superoxide dismutase 1; BCL2 B cell lymphoma 2; FOS FBJ murine osteosarcoma viral 
oncogene homolog; EGF epidermal growth factor; EGFR epidermal growth factor receptor; BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3; PI3 peptidase 
inhibitor 3; SP1 Sp1 transcription factor; STAT3 signal transducer and activator of transcription 3; LON Lon protease; MEF2D myocyte enhancer factor 2D; JMY junction-
mediating and regulatory protein, p53 cofactor; TRAP1 TNF receptor-associated protein 1; GST glutathione S-transferase; NCAM neural cell adhesion molecule; CHGA 
chromogranin A; SYP synaptophysin

– Indicates equal expression

Protein Intensity percentage score (IPS) of protein expression P value Tumour type with higher expression

Angiogenic tumours Non-angiogenic tumours

HIF1 6.22 ± 0.33 6.00 ± 0.48 0.87 –

HIF2 0.00 ± 0.00 0.00 ± 0.00 Not applicable –

CA9 cytoplasm 2.38 ± 0.16 3.50 ± 0.23 <0.001 Non‑angiogenic

CA9 membrane 4.00 ± 0.40 3.30 ± 0.88 0.62 –

VEGFA 8.83 ± 0.35 7.38 ± 0.78 0.07 –

TYMP 3.20 ± 0.54 2.21 ± 0.32 0.28 –

KDR 94.56 ± 1.64 97.80 ± 1.54 >0.05 –

KDRp34 10.40 ± 0.30 10.55 ± 0.62 0.71 –

FIH 9.10 ± 0.32 10.00 ± 0.47 0.22 –

PHD1 3.74 ± 0.27 4.20 ± 0.48 0.47 –

PHD2 3.50 ± 0.30 2.46 ± 0.53 0.02 Angiogenic

PHD3 2.70 ± 0.09 3.38 ± 0.17 <0.001 Non‑angiogenic

DLL4vessels 2.34 ± 0.10 1.53 ± 0.09 <0.001 Angiogenic

TSP stroma 16.98 ± 2.75 2.00 ± 1.74 <0.001 Angiogenic

CXCR4 2.47 ± 0.20 2.34 ± 0.31 0.92

EPHB2 7.78 ± 0.27 9.06 ± 0.33 <0.01 Non‑angiogenic

EPBH3 cytoplasm 159.3 ± 8.84 202.20 ± 9.95 <0.01 Non‑angiogenic

EPBH3 membrane 23.83 ± 7.23 86.51 ± 12.78 <0.001 Non‑angiogenic

EPHB4 7.82 ± 0.26 7.40 ± 0.38 0.57 –

SOD1 4.36 ± 0.45 9.39 ± 4.22 0.27 –

BCL2 1.05 ± 0.25 0.68 ± 0.35 0.54 –

FOS 8.05 ± 0.37 5.31 ± 0.55 <0.001 Angiogenic

EGFR 203.40 ± 10.79 166.30 ± 25.74 0.33 –

EGF 18.90 ± 3.03 14.44 ± 4.15 0.72 –

FGF 9.20 ± 0.42 9.72 ± 0.71 0.74 –

BNIP3 6.08 ± 0.36 5.92 ± 0.82 0.88 –

P53 0.28 ± 0.12 2.28 ± 0.56 <0.001 Non‑angiogenic

PI3 4.62 ± 0.36 4.92 ± 0.61 0.51 –

SP1 3.70 ± 0.37 3.38 ± 0.55 0.86 –

STAT3 8.78 ± 0.39 7.11 ± 0.79 0.03 Angiogenic

LON 102.50 ± 11.20 134.20 ± 17.10 0.18 –

MEF2D cytoplasm 50.11 ± 4.16 65.67 ± 9.66 0.25 –

MEF2Dmembrane 60.00 ± 7.12 67.50 ± 12.67 0.47 –

JMY 1.84 ± 0.18 2.42 ± 0.31 0.05 Non‑angiogenic

TRAP1 4.22 ± 0.28 5.48 ± 0.31 <0.01 Non‑angiogenic

GST cytoplasm 236.20 ± 7.16 249.80 ± 11.40 0.23 –

GSTmembrane 28.44 ± 5.52 69.38 ± 14.03 <0.01 Non‑angiogenic

NCAM 0.40 ± 0.09 3.92 ± 0.07 <0.001 Non‑angiogenic

CHGA 0.08 ± 0.04 0.27 ± 0.14 >0.05 –

SYP 0.12 ± 0.05 0.44 ± 0.15 >0.05 –
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of HIF-controlled genes but lower levels of proteins 
involved in stromal cell–cell signaling and adhesion, inte-
grins, and Delta-Notch- and EGF-related signaling.

Gene ontology analysis confirmed that proteins usu-
ally associated with angiogensis were present in both 
types of tumours, whereas higher levels of proteins asso-
ciated with Notch, extracellular matrix, and cell adhe-
sion were present in the truly angiogenesis-producing 
tumours. However, in the tumours that grow in a non-
angiogenic fashion, proteins associated with mitochon-
dria, cell biogenesis, carbonic dehydratase, ephrins, and 

axon guidance-related functions were more commonly 
detected (Table 8).

Sequencing
The higher level of p53 expression in the cytoplasm of the 
non-angiogenic tumours, as compared with the angiogenic 
tumours, was one of the most striking results (Table 9) and 
raised the question of whether non-angiogenic cells had 
wild-type p53 or a different set of mutations from the angi-
ogenic tumours. Our results showed that p53mutations 
were observed in eight of 25 angiogenic cases (32.0%) but 

Table 5 Nuclear expression of the proteins in angiogenic versus non-angiogenic NSCLCs

All data are presented as mean ± standard error

HIF hypoxia-inducible factor; CA9 carbonic anhydrase 9; VEGFA vascular endothelial growth factor A; TYMP thymidine phosphorylase; KDR vascular endothelial growth 
factor receptor 2; KDRp34 vascular endothelial growth factor p34; FIH factor-inhibiting HIF; PHD prolyl hydroxylasedehydrogenase; DLL4 Delta-like 4; TSP1 thymidine 
phosphorylase 1; CXCR4 chemokine (C-X-C motif ) receptor 4; EPH ephrin; SOD1 superoxide dismutase 1; BCL2 B cell lymphoma 2; FOS FBJ murine osteosarcoma viral 
oncogene homolog; EGF epidermal growth factor; EGFR epidermal growth factor receptor; BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3; PI3 peptidase 
inhibitor 3; SP1 Sp1 transcription factor; STAT3 signal transducer and activator of transcription 3; LON Lon protease; MEF2D myocyte enhancer factor 2D; JMY junction-
mediating and regulatory protein, p53 cofactor; TRAP1 TNF receptor-associated protein 1; GST glutathione S-transferase; NCAM neural cell adhesion molecule; CHGA 
chromogranin A; SYP synaptophysin

– Indicates equal expression

Protein Intensity percentage score (IPS) of protein expression P value Tumour type with higher expression

Angiogenic tumours Non-angiogenic tumours

HIF1 5.49 ± 0.31 3.79 ± 0.39 0.01 Angiogenic

VEGFA 6.09 ± 0.52 5.62 ± 0.32 0.74 –

TYMP 1.94 ± 0.22 1.16 ± 0.21 0.42 –

KDR 231.20 ± 8.55 229.80 ± 9.88 >0.05 –

KDRp34 11.69 ± 0.16 11.45 ± 0.39 0.77 –

FIH 7.50 ± 0.35 8.15 ± 0.72 0.50 –

PHD1 3.10 ± 0.34 2.50 ± 0.35 0.99 –

PHD2 2.56 ± 0.27 1.41 ± 0.35 0.02 Angiogenic

PHD3 2.18 ± 0.13 0.65 ± 0.20 <0.001 Angiogenic

CXCR4 5.13 ± 0.23 3.72 ± 0.37 <0.01 Angiogenic

EPHB2 3.26 ± 0.26 4.91 ± 0.35 <0.001 Non‑angiogenic

EPBH3 99.27 ± 7.41 147.30 ± 9.23 <0.001 Non‑angiogenic

EPHB4 5.56 ± 0.30 5.73 ± 0.34 0.81 –

SOD1 4.21 ± 0.45 5.00 ± 0.91 0.44 –

C‑FOS 7.50 ± 0.52 5.53 ± 0.75 0.05 Angiogenic

EGF 235.20 ± 5.60 214.8 ± 8.68 0.01 Angiogenic

FGF 7.51 ± 0.38 8.68 ± 0.76 0.11 –

BNIP3 3.96 ± 0.40 0.00 ± 0.00 <0.001 Angiogenic

P53 2.66 ± 0.36 2.32 ± 0.53 0.91 –

PI3 0.53 ± 0.13 0.00 ± 0.00 <0.02 Angiogenic

SP1 5.31 ± 0.46 4.04 ± 0.60 0.24 –

STAT3 7.80 ± 0.39 6.31 ± 0.81 0.09 –

MEF2D 251 ± 4.62 243.10 ± 8.04 0.38 –

JMY 2.01 ± 0.17 2.60 ± 0.27 0.07 –

TRAP1 1.57 ± 0.18 4.58 ± 0.32 <0.001 Non‑angiogenic

GST 243.30 ± 6.15 244.10 ± 10.91 0.55 –

CHGA 0.00 ± 0.00 0.34 ± 0.12 >0.05 –
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in five of seven non-angiogenic cases (71.4%) (P = 0.091 by 
Fisher’s two-tailed exact test) (Table 9).

All of the detected mutations were heterozygous, and 
almost all of them corresponded to hot spots previously 
reported in different tumour types (http://genetics.bwh.
harvard.edu/ggi/pph2/c2ea64efde6f039a5ca76a2a264ae
4f3cf922360/1121012.html). The locations of the muta-
tions were randomly distributed across the sequenced 

region. No specific pattern of mutation location seemed 
to be related to tumour subtype, angiogenic or non-angi-
ogenic (Fig. 1 and Table 9).

Discussion
As initially suggested by our mRNA profiling work [19] 
and also confirmed by the immunohistochemical data 
presented here, we failed to reveal significant differences 

Table 6 Protein biomarker expression in angiogenic and non-angiogenic NSCLCs according to their intracellular localiza-
tion

HIF hypoxia-inducible factor; CA9 carbonic anhydrase 9; VEGFA vascular endothelial growth factor A; TYMP thymidine phosphorylase; KDR vascular endothelial growth 
factor receptor 2; KDRp34 vascular endothelial growth factor p34; FIH factor-inhibiting HIF; PHD prolyl hydroxylase dehydrogenase; DLL4 Delta-like 4; TSP1 thymidine 
phosphorylase 1; CXCR4 chemokine (C-X-C motif ) receptor 4; EPH ephrin; SOD1 superoxide dismutase 1; BCL2 B cell lymphoma 2; FOS FBJ murine osteosarcoma viral 
oncogene homolog; EGF epidermal growth factor; EGFR epidermal growth factor receptor; BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3; PI3 peptidase 
inhibitor 3; SP1 Sp1 transcription factor; STAT3 signal transducer and activator of transcription 3; LON Lon protease; MEF2D myocyte enhancer factor 2D; JMY junction-
mediating and regulatory protein, p53 cofactor; TRAP1 TNF receptor-associated protein 1; GST glutathione S-transferase; NCAM neural cell adhesion molecule; CHGA 
chromogranin A; SYP synaptophysin

Expression status Intracellular  
expression localization

Proteins

Equal expression in both tumour types Nuclear VEGFA, TYMP, KDR, KDRp34, FIH, EPHB4, PHD1, SOD1, FGF, P53, SP1, 
STAT3, MEF2D, JMY, GST, CHGA

Cytoplasm HIF1, HIF2, VEGFA, TYMP, KDR, KDRp34, FIH, PHD1, SOD1, CXCR4, EPHB4, 
BCL2, EGF, EGFR, FGF, BNIP3, PI3, SP1, LON, MEF2D, GST, CHGA, SYP

Membrane CA9, MEF2D

Higher expression in angiogenic tumours than 
in non‑angiogenic tumours in at least one 
subcellular location

Nuclear HIF1, PHD2, PHD3, CXCR4, BNIP3, PI3, EGF, FOS

Cytoplasm PHD2, TSP (stroma), DLL4 (endothelium), FOS, STAT3

Membrane None

Higher expression in non‑angiogenic tumours 
than in angiogenic tumours in at least one 
subcellular location

Nuclear EPHB2, EPHB3,TRAP1

Cytoplasm CA9, PHD3, EPHB2, EPHB3, NCAM, P53, TRAP1, JMY

Membrane EPHB3, GST

Table 7 Selection of visualized pathways

Proteins equally expressed in angiogenic 
and non-angiogenictumours

Proteins up-regulated in angiogenic tumours Proteins up-regulated in  
non-angiogenic tumours

Pathway Databases Pathway Databases Pathway Databases

Focal adhesion KEGG, WikiPathways Focal adhesion KEGG, WikiPathways – –

VEGF‑related KEGG, Panther, Reactome – – – –

Angiogenesis Panther, WikiPathways Angiogenesis Panther Angiogenesis Panther

– – Itegrin signalling Panther – –

Oxidative stress Panther, WikiPathways – – – –

Cell response to stress Reactome – – – –

– – Delta‑Notch WikiPathways – –

– – Collagen‑related pathways Reactome – –

– – Cell–cell communication Reactome – –

– – Integrin signaling Panther – –

EGF‑related pathways WikiPathways, Panther – –

– – – – Response to Hypoxia Reactome

Ephrins signaling Reactome – – Ephrins‑related pathways Reactome

– – – – Regulation of HIF by oxygen Reactome

– – – – Regulation of genes by HIF Reactome

– – – – Nitrogen metabolism KEGG

http://genetics.bwh.harvard.edu/ggi/pph2/c2ea64efde6f039a5ca76a2a264ae4f3cf922360/1121012.html
http://genetics.bwh.harvard.edu/ggi/pph2/c2ea64efde6f039a5ca76a2a264ae4f3cf922360/1121012.html
http://genetics.bwh.harvard.edu/ggi/pph2/c2ea64efde6f039a5ca76a2a264ae4f3cf922360/1121012.html
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between angiogenic and non-angiogenic NSCLCs as far 
as the expression of proteins associated with the clas-
sic hypoxia/angiogenesis pathway is concerned. Because 
neovascularisation is found in some tumours but not in 
others, we suggest that activation of the classical angio-
genic pathways is necessary, but not sufficient, to induce 
the sprouting of new vessels in cancer.

The higher levels of expression of proteins associated 
with extracellular matrix, cell adhesion, and inflamma-
tion were in agreement with the observed presence of 
tumour-associated stroma and chronic inflammation in 
many angiogenic tumours [18, 22]. mRNA profiling of 

these tumours has equally shown that stromal remod-
eling, cell adhesion, and inflammation are enhanced in 
angiogenesis [19]. Both mRNA and immunohistochemi-
cal data suggest a crucial role in angiogenic cancers for 
FBJ murine osteosarcoma viral oncogene homolog (FOS), 
a protein involved in cell proliferation, remodeling, and 
inflammation. The question remains of whether tissue 
remodeling is a consequence or a cause of the triggering 
of angiogenesis. Because non-angiogenic tumours usually 
preserve the pre-existing architecture, we hypothesize 
that the triggering of tissue destruction could be a sec-
ondary step necessary for the activation of angiogenesis. 

Table 8 Selection of visualized ontologies

Proteins equally expressed in angiogenic 
and non-angiogenic tumours

Proteins up-regulated in angiogenic tumours Proteins up-regulated in non-angiogenic 
tumours

Ontology GO-ontology  
database

Ontology GO-ontology  
database

Ontology GO-ontology  
database

Cell migration/sprout‑
ing angiogenesis

GO.0002042

Biological process Immune response‑
activating signals

GO.0002757

Biological process Regulation of synapses
GO.0051965

Biological process

Endothelial cell  
migration

GO.0043534

Biological process Immune response‑reg‑
ulating cell signaling

GO.0002768

Biological process Axon guidance and 
neuronal regulation

GO.0031290
GO.0007413
GO.0021952
GO.0021955
GO.0008038

Biological process

VEGF signaling path‑
ways

GO.0038084

Biological process Mesodermal cell dif‑
ferentiation

GO.0048333

Biological process – –

– – Activation of immune 
response

GO.0002253

Biological process – –

– – – – Positive regulation cell 
biogenesis

GO.0044089

Biological process

– – Basement membrane
GO.0005604

Cell component – –

– – Extracellular matrix part
GO.0044420

Cell component Mitochondrial inter‑
membrane space 
and matrix

GO.0005758
GO.0005759

Cell component

– – Complex involve in cell 
adhesion

GO.0098636

Cell component – –

PDGF receptor‑binding
GO.0005161

Molecular function Fibronectin‑ and 
extracellular matrix‑
binding

GO.0001968
GO.0050840

Molecular function Ephrin receptor activity
GO.0005003

Molecular function

Extracellular matrix‑
binding

GO.0050840

Molecular function Notch‑binding
GO.0005112

Molecular function Carbonate dehydratase 
activity

GO.0004089

Molecular function

– – – – Axon guidance
GO.0008046

Molecular function
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Nonetheless, this process would be far from a general 
rule because we have observed, in a subset of NSCLC, 
that angiogenesis can occur in the absence of tissue 
destruction [23]. Clearly, other mechanisms must exist.

If classical angiogenesis pathways are similarly active in 
both angiogenic and non-angiogenic tumours, how does 
their biology differ? Our previous transcriptional profil-
ing work demonstrated higher levels of mRNA coding 
for molecules associated with oxidative phosphorylation 
and mitochondrial biogenesis in non-angiogenic tumours 
[19]. In the present study, we did not examine compo-
nents of the oxidative phosphorylation pathway, although 
we did investigate the expression of some proteins 
involved in mitochondrial functions. Our results showed 
that proteins related to mitochondria and to cell biogen-
esis-promoting processes were more highly expressed 

in non-angiogenic tumours than in angiogenic tumours. 
This feature was consistent with higher mitochondrial 
regulatory activity and a possible metabolic switch in 
non-angiogenic tumours. Again, whether this switch is a 
cause or an effect of HIF activation remains unclear.

Interestingly, our data suggested increased involvement 
of response to hypoxia and to HIF regulation by oxygen 
in non-angiogenic tumours. We hence speculate that, 
in these tumours, although the HIF pathway failed to 
induce new vessel formation, it could well be involved in 
metabolic reprogramming.

Finally, we noted markedly higher levels of cytoplas-
mic P53 expression in non-angiogenic tumours than in 
angiogenic tumours via immunohistochemistry. In a pilot 
study, we sequenced p53 in a limited number of angio-
genic and non-angiogenic NSCLCs. Non-angiogenic 
tumours had a higher incidence of mutations, which were 
all missense mutations, whereas angiogenic tumours had 
an amalgam of frame shifts and missense and nonsense 
mutations. Because p53 also affects mitochondrial respi-
ration [24], it will be necessary to investigate further how 
the observed p53 mutations could functionally affect its 
ability to regulate respiration and/or angiogenesis.

Conclusions
On the basis of our observations collected so far, from 
the mRNA profiling, immunohistochemical and histo-
pathologic data, we conclude that all tumours, angiogenic 
and non-angiogenic, experience hypoxia/HIF and VEGF 
pathway activation. However, angiogenesis does not 
always ensue. Based on these findings, we suggest that in 
non-angiogenic tumours, HIF pathway activation could 
be the driving force toward metabolic reprogramming.

Table 9 Summary of p53 mutations detected in non-angiogenic and angiogenic NSCLC cases

Affected domains are listed. The software used to predict the functional effect of the detected sequence changes was PolyPhen_2 (http://genetics.bwh.harvard.edu/
ggi/pph2/c2ea64efde6f039a5ca76a2a264ae4f3cf922360/1121012.html)

HCD highly conserved domain

Sample ID Sample type Mutation location Mutation type Domain Predicted effect on protein activity

104 Non‑angiogenic c.761T>TA; p.I254S Missense HCD IV Damaging

105 Non‑angiogenic c.734G>GA; p.G245D Missense HCD IV Damaging

121 Non‑angiogenic c.488A>AG; p.Y163C Missense DNA binding Damaging

152 Non‑angiogenic c.634T>TG; p.F212 V Missense DNA binding Benign

249 Non‑angiogenic c.314G>GA; p.G105D Missense DNA binding Damaging

133 Angiogenic c.511G>GT; p.E171X Nonsense (truncated protein) HCD III Truncating

138 Angiogenic c.824G>GA; p.C275Y Missense HCD IV Damaging

139 Angiogenic c.het_del216C; p.V73 Wfs48X Frameshift (truncated protein) Prolinerich Truncating

141 Angiogenic c.407A>AC; p.Q136P Missense HCD II Damaging

98 Angiogenic c.524G>GA; p.R175H Missense HCD III Potentially damaging

147 Angiogenic c.524G>GA; p.R175H Missense

274 Angiogenic c.471_472TC>GA; p.V157G Missense DNA binding Damaging

Fig. 1 Localization of the mutations detected on the p53 gene. 
The sequenced region is indicated with an orange line in the figure 
above. Mutation locations are indicated with arrowheads (purple 
mutations found in angiogenic samples; gray: mutations found in 
non‑angiogenic samples). Human P53 protein (HP53) can be divided 
into five domains, each corresponding to specific functions: yellow is 
the highly conserved domain I (HCD I)/transactivation domain; red is 
the second transactivation domain, which is proline‑rich; blue is the 
DNA‑binding domain essential for p53‑DNA interactions that also 
contains HCD II‑V and is the target of 90% of the p53 mutations found 
in human cancers; green is the nuclear export signal (NES) localized in 
the oligomerization domain of p53

http://genetics.bwh.harvard.edu/ggi/pph2/c2ea64efde6f039a5ca76a2a264ae4f3cf922360/1121012.html
http://genetics.bwh.harvard.edu/ggi/pph2/c2ea64efde6f039a5ca76a2a264ae4f3cf922360/1121012.html
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