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Abstract
Purpose of Review The mixed chimerism approach is an
exceptionally potent strategy for the induction of donor-
specific tolerance in organ transplantation and so far the
only one that was demonstrated to work in the clinical
setting. Regulatory T cells (Tregs) have been shown to
improve chimerism induction in experimental animal
models. This review summarizes the development of in-
novative BMT protocols using therapeutic Treg transfer
for tolerance induction.
Recent Findings Treg cell therapy promotes BM engraftment
in reduced conditioning protocols in both, mice and non-
human primates. In mice, transfer of polyclonal recipient
Tregs was sufficient to substitute cytotoxic recipient condi-
tioning. Treg therapy prevented chronic rejection of skin and
heart allografts related to tissue-specific antigen disparities, in
part by promoting intragraft Treg accumulation.
Summary Adoptive Treg transfer is remarkably effective in
facilitating BM engraftment in reduced-intensity protocols in
mice and non-human primates. Furthermore, it promotes reg-
ulatory mechanisms that prevent chronic rejection.

Keywords RegulatoryTcells .Bonemarrowtransplantation .

Mixed chimerism . Treg therapy . Transplantation tolerance

Introduction

The age-long history of organ transplantation is a story of
miracles, myths, and science fiction until six decades ago,
when the first successful kidney transplant was performed
between identical twins [1]. Some years later, the development
of the first immunosuppressive drugs paved the way for the
success story of clinical organ transplantation and soon it be-
came the treatment of choice for end-stage organ diseases.
Current immunosuppressive drug regimens succeed in
preventing acute rejection and improve short-time survival;
however, long-term outcomes did not improve to the same
degree [2, 3]. Moreover, chronic use of immunosuppressive
drugs is associated with increased morbidity and mortality in
transplant recipients, while these medications often fail to pre-
vent the development of chronic rejection, which is a leading
cause of graft loss [4]. Induction of donor-specific immuno-
logical tolerance would not only obviate the need for life-long
immunosuppression, therefore improving patient survival, but
also eliminate the risk of late graft loss due to chronic rejection
and preserve overall protective immunity.

Regulatory Tcells (Tregs) are not only the key mediators of
self-tolerance, preventing fatal autoimmunity [5], but are also
recognized to play a critical role in the induction and mainte-
nance of tolerance after organ transplantation in spontaneous-
ly tolerant patients [6].

Induction of Tolerance

Tolerance per se is defined by as immunological non-
reactivity to a specific antigen while maintaining reactivity
to others, in the field of transplantation this means “the ab-
sence of graft rejection without the (chronic) use of immuno-
suppressive drugs” [7]. Extensive research on the way to find
the “Holy Grail” of tolerance led to the development of
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numerous protocols for intentional tolerance induction ap-
proaches in rodent models, including functional deletion [8],
costimulation blockade [9], non-depleting antibodies [10, 11],
active regulatory mechanisms including Treg expansion [12],
and infusion [13] or the establishment of mixed chimeras via
BMT [14]. While several of these protocols yielded excellent
results in mice, most of them failed when being translated into
the non-human primate (NHP) system [15•].

Although mouse models have been an invaluable tool for
uncovering the basic principles of allorecognition and defined
strain combinations as well as genetically modified mice
allowed dissection of individual pathways in transplantation
immunology, there are major limitations when it comes to
translation from mice to men [16]. A major hurdle for transla-
tion of murine models in the clinic is the high frequency of
alloreactive memory cells found in adult humans, in contrast
to young laboratory mice which are kept under SPF conditions
[17]. The use of “dirty” mice would be one step towards mim-
icking a highly experienced immune system which may inter-
fere with tolerance induction [18••]. Also, the use of mouse
strain combinations affects outcome as some are easier to
tolerize than others [19], in particular if they lack minor antigen
disparities, which is not realistic in the clinical setting and has
been shown to euphemize long-term graft survival [20••, 21].

Another barrier for translation of tolerance approaches
from mice to humans is the limited availability of pharmaceu-
ticals. Blockade of the CD40:CD40L pathway using an anti-
CD40L mAb (MR1) was the most successful and promising
approach in murine models. It is the backbone of many non-
myeloablative mixed chimerism protocols, obviating the need
for global T cell depletion and thymic irradiation [22]. A clin-
ical phase I/II trial using humanized anti-CD40L antibody
BG9588 had to be ended prematurely because of severe
thromboembolic complications [23]. Another humanized
anti-CD40L (clone hu5C8) led to severe thromboembolic
complications in NHP studies [24]. Consequently, further
clinical trials were put on hold [25]. Several clones of anti-
CD40 have been tested as an alternative strategy to block
CD40:CD40L interactions, some of them showing promising
results in the prolongation of allograft survival in NHPs [26].
One of them, namely, ASKP1240, has recently been assessed
for safety and efficacy in a phase II trial in kidney transplan-
tation (ClinicalTrials.gov Identifier: NCT01780844).
Currently, next-generation anti-CD40L mAbs devoid of the
Fc-mediated toxicity are under development and offer prom-
ise for clinical application [27].

Preclinical animal studies using knockout, immunodeficient,
or TCR transgenic strains are definitely important for mechanis-
tic understanding of allorecognition and signaling pathways.
However, for the development of tolerance strategies, more real-
istic approaches using stringent strain combinations including
minor antigen disparities, housing in non-SPF environment and
clinically available pharmaceuticals are warranted.

Tolerance Induction Through Mixed Chimerism

Mixed chimerism denotes a state of co-existence of donor and
recipient hematopoietic cells after allogeneic BMT in a pre-
conditioned recipient [28]. Induction of persistent mixed chi-
merism has been readily achieved in murine models using
numerous different strategies, and a number of protocols with
reduced recipient conditioning could be developed. However,
these protocols could not be readily translated into NHPs or
humans as the immunologic barrier for engraftment of alloge-
neic BM is higher than in rodents. While permanent
multilineage mixed chimerism across MHC barriers can be
easily induced in rodents, the situation in NHPs and humans
is more difficult. In the clinical setting, intense recipient pre-
conditioning leads to the development of full chimerism
which is undesirable in the organ transplantation setting as
associated with the risk of GVHD and immune-
incompetence [29]. The outstanding difference between chi-
merism and other tolerance strategies is the induction of “cen-
tral” tolerance via intrathymic deletion by negative selection
[14]. Thus, utilizing a process critical for the maintenance of
self-tolerance, the mixed chimerism approach is expected to
be robust and permanent.

As current clinical protocols for HLA-mismatched BMT
are not ready for widespread clinical application for non-life-
threatening diseases due to the toxicity related to recipient pre-
conditioning and the risk of GVHD, a lot of effort has been
made to develop “safer” BMT protocols. Considering the im-
portance of regulatory mechanisms and the potency of Tregs
to suppress allo-reactivity, adoptive Treg transfer has emerged
as attractive possibility that might be the key to translating
murine chimerism-based tolerance protocols to the clinic.

A Role for Active Regulatory Mechanisms

Physiological self-tolerance not only involves central deletion but
also critically requires non-deletional mechanisms (e.g., regula-
tion, anergy) in order to maintain peripheral tolerance as
autoreactive clones can escape negative selection. Deficits in
central or peripheral tolerance cause autoimmune disease or in
terms of transplantation tolerance result in graft rejection. In pro-
tocols using myeloablative and Tcell depleting conditioning reg-
imens, non-deletional tolerance mechanisms play a minor or
even dispensable role likely due to the fact that potentially allo-
reactive T cells are destroyed at the time of BMTand high levels
of intrathymic chimerism retain central deletion of newly devel-
oping allo-reactive T cells. Experiments employing reduced in-
tensity BMT protocols have revealed the importance for regula-
tory mechanisms in the induction phase of tolerance when dele-
tion of allo-reactive T cell clones is still incomplete [30].
Tolerance, but not chimerism, could be abrogated by early treat-
ment with anti-CD25 suggesting an active role for CD4+CD25+

Tregs, even in the presence of hematopoietic donor cells.
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However, neither regulation through Tregs nor classical anergy
appear crucial several months after BMT for the maintenance of
tolerance in established chimeras [30]. In sharp contrast, regula-
tory mechanisms have been shown to be critical even late after
BMT in settings devoid of cytotoxic recipient conditioning [20••,
31]. Although the creation of “space” in distinct stem cell niches
by myelosuppressive treatments enhances BM engraftment, it
has been shown to be dispensable and can be overcome by very
high doses of BM [32, 33], modulation of the immune system by
targeting apoptosis [34], or adoptive Treg transfer [35].
Chimerism levels are generally lower in protocols without
myelosuppression by irradiation or cytotoxic drugs; however,
tolerance appears not linked to the degree of chimerism as long
as it is stable and of multilineage nature. Interestingly, chimerism
protocols relying on Tregs, and other regulatory mechanisms
instead of deletional mechanisms only, have been shown to be
superior in the prevention of chronic rejection [20••, 36] and
could alleviate GVHD [37•]. This raises the question whether
protocols involving intense recipient pre-conditioning preclude
or at least aggravate regulatory tolerance mechanisms or if regu-
latory mechanisms need to be actively induced via adoptive cell
transfer or other forms of immunomodulation. However, the lat-
ter explanation seems to be more likely as full immunological
tolerance was also induced after BMT in protocols using various
doses of TBI (up to 7 Gy) and adoptive Treg transfer [38–41].
The use of (clinically unrealistic) minor matched strain combina-
tions and the absence of pathohistological examination of donor
grafts in earlier reports of murine mixed chimerism protocols
could have led to the underestimation of the importance of active
regulatory mechanisms. However, recently, there have been nu-
merous reports on “split tolerance” in chimeras [42] and it was
acknowledged that chimerism and subsequent tolerance towards
antigens of hematopoietic origin does not always equal full im-
munological tolerance towards (tissue-specific) minor antigens.
Cells of hematopoietic origin were indeed shown to induce “pas-
sive tolerance” through mechanisms including apoptosis and an-
ergy, but active regulatory mechanisms are obviously required to
control anti-donor reactivity in the same manner as they are
required to maintain self-tolerance [43].

Tolerance in the Clinics: More than Just Chimerism

The original observation that the chimerism approach is success-
ful in the clinical setting derives from numerous case reports in
which conventional BMT recipients (most of them suffering
from hematological malignancies) subsequently received an or-
gan from the same donor for unrelated treatment of organ failure
[44]. In such cases, organs are accepted without (chronic) con-
ventional immunosuppression, even in an HLA donor-recipient
setting [45]. Nevertheless, to date, only three centers have pro-
spectively tested BMT for tolerance induction in the clinic, sys-
tematically translating findings from preclinical animal models to
clinical kidney transplantation: the Massachusetts General

Hospital/Harvard Medical School [46–47, 48••], the Stanford
University School of Medicine [49–51], and the Northwestern
Memorial Hospital/University of Louisville [52–54], all of them
located within the USA (recently reviewed in detail in [55]).

The MGH approach is based on decade-long studies in
mice and NHPs and initially tested in patient who suffered
from coincidental multiple myeloma and end-stage kidney
disease, legitimating BMT and cytotoxic recipient condition-
ing [56–59]. The initial proof-of-principle study included sev-
en patients who received simultaneous kidney and BMT from
HLA matched donors. All of them developed chimerism;
however, one case of acute GVHD and two cases of chronic
GVHD have been observed. Sustained renal allograft toler-
ance was achieved although some cases were complicated
by myeloma recurrence [59]. The second patient cohort in-
cluded 10 patients suffering from end-stage renal disease
without concomitant hematological disease, receiving HLA-
mismatched kidney and BMT. Chimerism was initially in-
duced in all patients but was only transient and lost after ap-
proximately 2–3 weeks with no incidence for GVHD in any of
the patients. Immunosuppression could be discontinued for a
prolonged period of time in seven patients; three grafts have
been lost due to rejection [48••]. Importantly, in the absence of
persistent chimerism, regulatory mechanisms seem to play a
major role in tolerance induction in these patients, although
there was also evidence for (peripheral) clonal deletion of
donor-reactive T cell clones [60•]. Tregs have been shown to
be enriched in peripheral blood [61••] and allograft biopsies
[46] after combined kidney and BMT in tolerant patients;
however, it is unclear whether this is due to clonal expansion,
de novo generation in the thymus or the periphery, or selective
advantage with regard to conditioning and BMT. Tregs
showed no decrease in demethylation status of TSDR region
which is related to stability and suppressor function; more-
over, the majority of Tregs presented with memory phenotype
by 2 weeks post-BMT. However, the mechanisms leading to
indefinite allograft survival despite the loss of chimerism in
some patients still have to be fully elucidated [62].

In contrast, in murine models, stable macrochimerism and
sustained presence of discrete populations of donor APCs in
the thymus is a pre-requisite for durable tolerance as it ensures
intrathymic deletion of alloreactive T cells. Nevertheless, high
levels of chimerism do not necessarily predict long-term allo-
graft survival and donor T cell engraftment was shown to be
critical for long-term tolerance [63]. Dissociation of hemato-
poietic chimerism and donor graft survival is referred to as
“split tolerance” phenomenon. Although still incompletely
understood, incomplete tolerance towards skin or solid organ
allografts is triggered by tissue-specific antigens and does not
involve direct allorecognition [64]. Studies in human renal
transplantation patients and NHPs have clearly demonstrated
that the situation is different and long-term allograft survival
can be achieved with transient chimerism only [46, 65, 66].
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Continued renal allograft survival in the absence of permanent
chimerism suggests a dominant role for peripheral mecha-
nisms in non-murine models. Whereas the liver has been uni-
formly recognized a “tolerogenic” organ and a sound percent-
age of operational tolerance was reported in liver allograft
recipients, also, the kidney itself was shown to induce toler-
ance towards cardiac allografts in miniature swine models
[67]. Likewise, in human tolerance studies, the kidney is sug-
gested to be important for maintaining tolerance by peripheral,
most likely regulatory mechanisms.

Tregs for Tolerance Induction

Cell therapy approaches using CD4+CD25+FoxP3+ Tregs for
tolerance induction have been envisioned since the
(re)discovery of these powerful suppressor cells more than two
decades ago [68] and is currently investigated by researchers all
over the globe. Some of the world’s most renowned research
institutes are collaboratively working on gaining insight into
the immunomodulatory mechanisms, cell product development,
and clinical trial management (e.g., onestudy.org).

The therapeutic potential of Tregs was underlined by nu-
merous reports, showing potent effects in pre-clinical autoim-
mune and allo-transplantation models; however, in these re-
ports, the use of lymphopenic hosts [69, 70] or TCR transgen-
ic Tregs [71, 72] was necessary and only minor antigen dis-
parities or singleMHCmismatches could be tolerated, respec-
tively. So far, Tregs have not been shown to induce skin graft
tolerance across MHC barriers on their own in unmanipulated
recipients with a polyclonal T cell repertoire. Moreover, Tregs
with indirect antigen specificity are suggested to be required
for the prevention of chronic allograft rejection [38, 72], ex-
acerbating clinical implementation.

Although the hype has stagnated a little bit during the last
years due to the realization of several hurdles associated with
adoptive Treg therapy [73], a recent study reported on suc-
cessful induction of allograft tolerance through infusion of
regulatory cells in liver transplantation patients [74•]. Still,
tolerance protocols relying exclusively on peripheral tolerance
are in danger to be eventually overwhelmed by the continuous
thymic output of donor-reactive Tcells [75] or to be broken by
extreme activation of the immune system, e.g., by severe in-
fections [76] or by successive antigen challenges [77].

Combining Chimerism and Adoptive Treg Transfer

Given the potency of both approaches, combination of the
mixed chimerism approach and adoptive Treg transfer seems
to be the next logical step on the search for the holy grail of
tolerance [78]. The proof of principle for the success of this
combined approach was already given in several studies: co-
infusion of Tregs with allogeneic BM was shown to promote
BM engraftment [40, 41, 79] in pre-conditioned mice and

enabled the development of the first clinically relevant BMT
protocol devoid of cytotoxic recipient conditioning [35].
Although several protocols for combined BMT/Treg infusions
are published (see Table 1 [35, 36, 38–41, 79–84]), there are
still many open questions and concerns, precluding their im-
mediate translation into the NHP setting and the clinics. Based
on the experience in the murine setting [35], the first NHP
protocol for chimerism and tolerance induced by the combi-
nation of BMTand therapeutic Treg transfer has recently been
developed [85••]. Treg treatment led to the induction of
multilineage chimerism which lasted longer than in all the
previous NHP studies and which notably included the T cell
lineage. Long-term donor kidney graft survival was achieved,
even in the setting of delayed kidney transplantation. This
NHP study provides a proof of principle that Treg co-
transfer can promote BM engraftment and prevent allograft
rejection. However, early CMV reactivation interfered with
chimerism induction in some animals, necessitating further
refinement of the protocol for translation into the clinics.

Most of the protocols with combined Treg and BMT are
employing clinically achievable doses of allogeneic BM
(20 × 106 which corresponds to ≈ 1 × 109 cells/kg). Recipient
preconditioning was non-myeloablative and consisted mostly of
mild doses of irradiation and/or costimulation blockade targeting
the CD40:CD40L or CD28:B7 pathway. Notably, Treg transfer
was capable of obviating the need for recipient irradiation (or
cytotoxic drug treatment), allowing for the first time engraftment
of fully mismatched BM without myelosuppression [35].
Comparable numbers of Tregs were used in all murine protocols
ranging from0.5 to 5 × 106 cells. Themost interesting and critical
question is the source of Tregs (donor- vs recipient- vs third
party-derived) and the need for specificity (polyclonal vs allo-/
donor-specific Tregs). Several groups reported that antigen-
specific Tregs are more potent compared to a polyclonal Treg
population in models with [79] or without BMT [72, 86, 87] and
that indirect specificity is critical for the prevention of chronic
allograft rejection [13, 38]. However, most of these studies com-
pared in vitro expanded alloantigen-specific Tregs which have
been activated with IL-2 for several days to freshly sorted poly-
clonal Tregs. Indeed, whereas Treg activation is claimed to be
antigen-specific, their suppressor function might not be, at least
in in vitro assays [88]. This hypothesis is supported by the fact
that in vitro-activated polyclonal Tregs are potent in promoting
BMengraftment [35, 80] and the prevention of acute and chronic
allograft rejection [36].

Treg Conundrum: Less Chimerism, More Tolerance?

We and others could previously show that therapeutic Treg
treatment leads to engraftment of clinically realistic doses of
BM and sustainable tolerance in stringent strain combinations
[35, 38]. Tolerance induced by Tregs was superior to other
chimerism protocols, which failed to prevent chronic rejection
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triggered by minor antigens; moreover, tolerance could be
verified in primarily vascularized cardiac allografts and highly
immunogenic skingrafts likewise. Both protocols were based
on different conditioning regimens (irradiation vs
costimulation blockade) and used different Treg populations
(in vitro-activated polyclonal vs antigen-specific), highlight-
ing the potency of Tregs in chimerism-based tolerance strate-
gies. Unfortunately, both protocols are not ready for immedi-
ate clinical translation as either 5 Gy total-body-irradiation or
costimulation blockade with anti-CD40L was utilized, so
some fine-tuning is warranted.

In our “Treg-BMT” protocol, clinically, realistic numbers
of BM and Tregs were infused into the recipient under the
cover of costimulation blockade and a short course of
rapamycin. Treg infusion is critical for BM engraftment and
could not be replaced by IL2/anti-IL2 complex-based
immunomodulation [89]. Importantly, the tolerance achieved
using Tregs was superior to well-established BMT protocols
using recipient TBI to allowBM engraftment [21, 22, 36]. The
use of fully mismatched strain combinations revealed incom-
plete tolerance in non-myeloablative regimens relying primar-
ily on deletional tolerance mechanisms [21]. Chimeras in-
duced with low-dose irradiation presented with profound his-
topathologic signs of chronic rejection at the end of follow-up
in both skin and heart allografts, which were shown be caused
by minor antigen disparities. However, in sharp contrast,
grafts from Treg-induced chimeras were devoid of chronic
rejection [35, 36]. Leucocyte infiltrates in the grafts of Treg-
treated chimeras were enriched in FoxP3+ Tregs, which were
shown to have an active role in the mediation of graft survival
[20••, 35]. Our data suggest that adoptive Treg transfer not
only allows BM engraftment and the induction of chimerism
in the absence of cytotoxic recipient conditioning but prevents
graft rejection mediated by minor antigens via linked suppres-
sion [20••]. Thus, regulatory mechanisms due to adoptive
Treg transfer maintain tolerance towards tissue-specific minor
antigens of the donor via active intragraft regulation [20••].
Therapeutic Tregs transfer in the absence of substantial cyto-
toxic “danger-prone” host conditioning is therefore likely to
allow for creation of a tolerogenic state involving “infectious
tolerance”-like mechanisms that protect allografts from chron-
ic rejection directed towards non-MHC tissue-specific
antigens.

Conclusion

More than 60 years after Owen and Medawar’s ground-
breaking work on experimental tolerance induction by crea-
tion of mixed hematopoietic chimeras, tolerance has become a
clinical reality only in a few highly selected recipients of
living-donor kidney transplantation. Decades of intensive re-
search in murine, swine, and NHP models led to the

acknowledgement of peripheral regulatory mechanisms as
critical factor for sustained allograft survival and the preven-
tion of chronic rejection. Although peripheral regulation of
(allo)immune responses is recognized as a complex network
of multiple regulatory cell types, CD4+CD25+FoxP3+ Tregs
have emerged as the most potent and important population in
the maintenance of self- and allograft tolerance. The combi-
nation of the mixed chimerism approach with therapeutic Treg
cell therapy has shown great potency in preclinical animal
models in terms of both safety and efficacy. Treg treatment
not only enabled tremendous decrease in recipient condition-
ing, a prerequisite for widespread clinical application, but also
created genuine tolerance inhibiting chronic rejection of allo-
grafts. We think that combining the mixed chimerism ap-
proach and adoptive Treg transfer allows for implementation
of complementary tolerance mechanisms in the recipient,
therefore mimicking the complex system of self-tolerance.
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