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Abstract

Background: Alzheimer’s disease (AD) is a multifactorial and complex neuropathology that involves impairment of
many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains
incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective
pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master
regulator analyses exemplify promising new approaches to study complex diseases and may help in the
identification of potential pharmacological targets.

Methods: In this study, we used transcription regulatory network and master regulator analyses on transcriptomic
data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in
AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery
package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the
ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate
the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect
new potential therapeutic interventions by drug repurposing.

Results: We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible
new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity
Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate
master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione,
and Vorinostat).

Conclusions: Using a transcription factor-centered regulatory network reconstruction we were able to identify several
potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the
use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new
perspectives on molecular targets and drug therapies for future investigation and validation in AD.
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Background
Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease and the major cause of dementia. In
the United States about 10% of people over the age of 65
years have Alzheimer’s dementia, and the worldwide
prevalence of the disease ranges from 4 to 8% [1, 2]. A
total of roughly 46 million AD cases is estimated around
the world and related cost are about U$800 billion per
year [2, 3].
This neurodegenerative disease causes gradual loss of

brain volume and synaptic dysfunction, leading to a pro-
gressive memory and reasoning impairment followed by
global cognitive decline and, ultimately, dementia [4, 5].
AD is characterized by its histopathological hallmarks,
which includes deposits of amyloid-β (Aβ) plaques and
neurofibrillary tangles composed of hyperphosphorylated
tau [6]. Recent advances in our ability to detect AD
pathophysiology using imaging biomarkers currently
allow the identification of Aβ and tau pathology in living
individuals [7, 8]. By contrast, few advancements have
been made in terms of drug treatments, which currently
are available only for ameliorating symptoms [9].
Sporadic AD, also called late-onset AD, represents the

vast majority of cases (> 95%) and is recognized as a
multifactorial, complex disease [6]. Apolipoprotein E iso-
form ε4 (APOEε4) is the main susceptibility gene for
AD, with a threefold increase in AD risk for one allele
and 12-fold increase for two alleles [10]. Genome-wide
association studies have identified more than 20 AD risk
genes and several disease-associated pathways [11].
However, the AD risk genes identified so far are neither
necessary nor sufficient for disease onset [12]. Mean-
while, evidence suggest that nongenetic factors, such as
cerebrovascular disease, diabetes, and obesity, also in-
crease the risk of developing AD [6]. Furthermore, gene
expression profiling studies in AD brains have shown
many genes working together in relevant altered bio-
logical pathways in the disease, leading to a growing ac-
ceptance that AD results from the impairment of several
complex mechanisms at once that have not yet been
fully elucidated [13].
In keeping with this, the high rate of failure in the de-

velopment of AD-modifying therapies seems to be a
consequence of the incomplete knowledge about the
underlying mechanisms of the disease. Based on this, the
use of new approaches to study the disease pathophysi-
ology and search for alternative therapeutic targets are
urgently required [9, 14, 15]. The use of integrative strat-
egies, such as regulatory networks, for analyzing
high-throughput expression data have produced signifi-
cant knowledge towards the elucidation of biological
mechanisms underlying complex diseases, such as can-
cer and obesity [16]. Furthermore, it has been observed
that regulatory networks inferred by reverse engineering

algorithms can provide sufficient accuracy to estimate
the impact of transcription factors (TFs) on phenotype
transitions according to their transcriptional targets, and
to identify the ones that are acting as master regulators
(MRs) of diseases [17]. Many approaches have shown
that TFs can operate as key elements in the phenotypic
determination by regulating large groups of transcrip-
tional targets associated with complex cellular processes
[17–20]. Therefore, the analysis of expression profiling
data using a TF-centered regulatory networks approach
seems an interesting strategy to study the mechanisms
and common drivers associated with AD.
In this study, gene expression data available in the

Gene Expression Omnibus repository (GEO; http://
www.ncbi.nlm.nih.gov/geo/) was used to infer a tran-
scriptional regulatory network, through reverse engin-
eering, for the human hippocampus, a region that
undergoes high rates of volume loss in AD. Afterwards,
expression data from AD case-control studies of the
same region were used to identify MRs potentially
modulating phenotypic changes from a normal to a
pathological scenario. Moreover, the prospection of new
drug candidates to treat AD patients was carried out by
a connectivity map approach using the inferred regula-
tory units of MR candidates.

Methods
Microarray data acquisition
A normal human brain expression dataset was obtained
from the GEO database under the accession number
GSE60862 [21]. AD case-control microarray studies
from hippocampal samples were acquired from GEO
under accession numbers GSE5281 [22, 23], GSE29378
[24], GSE36980 [25], and GSE48350 [26]. Table 1 sum-
marizes the data information from the selected GEO
datasets used in this study. Each expression dataset was
treated and analyzed independently (Additional file 1:
Figure S1).

Region-specific transcription network inference
The genome-wide region-specific transcriptional net-
work (TN) centered on TFs and their predicted target
genes were inferred using the normal brain hippocam-
pus (HIP) expression data from GSE60862. The groups
of inferred target genes associated with each TF are
hereinafter referred as its regulatory unit. These compu-
tations were performed using the RTN package, which is
designed to reconstruct and analyze TNs based on the
mutual information (MI), a measure that evaluates de-
pendencies between two random variables, using the
ARACNe (Algorithm for the Reconstruction of Accurate
Cellular Networks) method. Briefly, the regulatory struc-
ture of the network is derived by mapping significant as-
sociations between known TFs and all potential targets.
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Interactions below a minimum MI threshold are elimi-
nated by a permutation step and unstable interactions
are additionally removed by bootstrap to create a con-
sensus bootstrap network. In a final step, the data pro-
cessing inequality algorithm is applied with null
tolerance to eliminate interactions that are likely to be
mediated by another TF. Here, we used the package’s de-
fault number of permutations and number of bootstraps
(1000 permutations and 100 bootstraps), but with a p
value cutoff of 0.001. The resultant network will be here-
inafter referred to as HIP-TN [18, 27, 28].
All computational analyses were performed in R statis-

tical environment [29]. Network figures were constructed
with the RedeR graphical platform for exploration of bio-
logical networks [30], and other plots were constructed
using ggplot2 [31].

Master regulators and gene set enrichment analysis
After the hippocampus transcriptional regulatory network
(HIP-TN) inference, we applied the master regulator ana-
lysis (MRA) algorithm described by Carro et al. [17] to the
regulatory units comprised of at least 100 targets. The al-
gorithm computes the statistical significance of the over-
lap between the regulatory units in HIP-TN and the
differentially expressed genes (false discovery rate
(FDR)-adjusted p value < 0.05) obtained from each AD
study, corrected for multiple comparisons. We then se-
lected the regulatory units of the TFs showing significant
enrichment of differentially expressed target genes in three
or more studies, which we termed MR candidates.
Two-tail gene set enrichment analysis (GSEA) was also

performed using the RTN package with 1000 permuta-
tions, as previously described [32]. Briefly, the groups of
target genes for each MR (regulatory units) were split
into positive and negative mode of action targets using
Pearson’s correlation. Next, the association of each

subgroup was assessed by GSEA statistics in each ranked
phenotype, resulting in independent enrichment scores
(Es), with two enrichment distributions. Additionally, a
differential enrichment was performed among subgroups
(EsA-EsB) where maximum deviation from zero near
opposite extremes is desirable for a clear association.
Thus, a highly positive differential score implies that the
regulatory unit is induced in the disease phenotype,
while a highly negative differential score indicates that
the regulatory unit is repressed in the disease phenotype.
The two-tail GSEA computation p value cutoff was set
to 0.05 and 1000 permutations were used.
The differentially expressed genes used in the MRA

and the log fold change (logFC) metric used to obtain
the ranked phenotypes required for the GSEA were
computed using the Bioconductor package limma [33].

Connectivity map drug profiling approach
The previously identified MR candidate regulatory units
were queried in the Connectivity Map online tool (The
CMap build02; www.broadinstitute.org/cmap/) using the
GSEA algorithm described by Lamb et al. [34]. This tool
compares queried signature with gene expression profile
database of several cell lines after treatment with ap-
proximately 1000 compounds, most of which are FDA
approved. Drugs whose signature opposes the disease
signature are assumed to have a therapeutic potential.
For this, we first selected the MR candidates with

two-tail GSEA p values less or equal to 0.01. Next, for
each case-control study, the differentially expressed tar-
gets of these MR candidates (adjusted p value < 0.05)
were filtered, grouped, tagged according to the logFC
metric, converted to Affymetrix probe identifiers, and
submitted as input for the cMap webtool. Then we ob-
tained a connectivity map of drug-phenotype association
for each case-control study.

Table 1 Gene expression microarray data used to infer human hippocampus transcriptional network and AD MR candidates

GEO ID Description Samples (n) Reference

GSE60862 Gene expression data of 10 regions of postmortem brains originating from
134 neurologically and neuropathologically normal Caucasian individuals

Hippocampus (n = 114) Trabzuni et al., 2011
[21]

GSE5281 Gene expression data of 6 regions of postmortem brains originating from
33 Alzheimer’s disease and 14 neurologically normal aged individuals

Hippocampus AD individuals (n = 10)
Hippocampus normal
individuals (n = 13)

Liang et al., 2007 [22];
Liang et al., 2008 [23]

GSE29378 Gene expression data of the CA1 and CA3 hippocampus regions of
postmortem brains from 17 Alzheimer’s disease and 16 neurologically
normal aged individuals

Hippocampus AD individuals
(CA1 n = 16, CA3 n = 15)
Hippocampus normal individuals
(CA1 n = 16, CA3 n = 16)

Miller et al., 2013 [24]

GSE36980 Gene expression data of frontal and temporal cortices and hippocampal
regions of postmortem brains originating from 26 Alzheimer’s disease
and 62 neurologically normal aged individuals

Hippocampus AD individuals (n = 7)
Hippocampus normal
individuals (n = 10)

Hokama et al., 2014
[25]

GSE48350 Gene expression data of 4 regions of postmortem brains
originating from 26 Alzheimer’s disease and 33 neurologically
normal aged individuals

Hippocampus AD individuals (n = 17)
Hippocampus normal individuals
(n = 23)

Berchtold et al., 2013
[26]

AD Alzhimer’s disease, MR master regulator
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Results
Human hippocampus transcriptional regulatory network
reconstruction
HIP-TN was computed from a normal brain gene ex-
pression dataset (GSE60862) using the reverse engineer-
ing ARACNe algorithm. Transcripts were classified as
transcription factors when annotated in the Gene Ontol-
ogy with the identifier GO:0003700 (transcription factor
activity, sequence-specific DNA binding). Among a total
of 20,311 transcripts in the dataset, 766 were annotated
as TFs under GO:0003700. From these, 469 were classi-
fied as TFs with more than 25 inferred target genes. The
resultant HIP-TN, comprising 132 regulatory units with
more than 100 targets, was used for further analyses.
Figure 1a shows the inferred HIP-TN inside the blue
container, where each node symbolizes a TF regulatory
unit and node sizes correspond to the number of pre-
dicted targets for each TF (Additional file 2: Table S1).
Regulatory units with less than 100 targets are repre-
sented in black outside the blue container.

Hippocampus AD master regulator inference
Microarray gene expression from AD case-control stud-
ies available in GEO (GSE5281, GSE29378, GSE36980,
and GSE48350) were used to obtain disease MR candi-
dates considering the normal HIP-TN previously in-
ferred. MRA was performed to evaluate HIP regulatory
units enriched with genes differentially expressed be-
tween the two phenotypes (disease and control). Only
regulatory units significantly enriched in at least three
case-control studies were considered as MR candidates.
These analyses resulted in the identification of 34 MR
candidates (Fig. 1b) (Additional file 3: Table S2).
Two-tail GSEA was performed to infer the activation

state of each MR candidate. The outcome of this analysis
showed 14 MR candidates that were significantly re-
pressed and 2 MR candidates that were significantly acti-
vated in AD (FDR adjusted p value ≤ 0.05) (Fig. 2a). This
means that targets from the repressed MR candidates
had predicted positive TF-target expression association
under normal conditions but were decreased in the dis-
ease. To the contrary, targets with inferred negative
TF-target association under normal conditions had in-
creased expression in the pathology. For the activated
MR candidates, the inferred positive or negative TF tar-
get expression associations do not reverse during AD.
The remaining 18 MR candidates did not present statis-
tically significant results regarding their activation states
and thus were not considered for the next steps.
The AD subregulatory network graph in Fig. 2b and

Additional file 4 (Table S3) shows the association pattern
between those MR candidates with significant alteration
of the activation state in the disease state compared with
control. The nodes with the highest degrees of

connectivity in this network correspond to the MRs
ATF2 (activating transcription factor 2) and PARK2
(Parkin RBR E3 ubiquitin protein ligase). The number of
common targets between any two MRs are represented
by the connector line widths as assessed by the Jaccard
coefficient and indicates that certain variations in target
expression may be a result of the contiguous regulatory
action of two or more TFs.

Connectivity map
The connectivity map approach was used to search for
drugs with therapeutic repurposing potential in AD. The
16 MR candidate regulatory units identified in the previ-
ous analysis were grouped, and their up- or downregu-
lated differentially expressed targets were selected for each
AD case-control studies and used as an input in the webt-
ool (Fig. 3a). The consensus drugs are consistently present
in at least two case-control studies (p ≤ 0.05). Six drugs
were negatively associated with AD and assumed to have
a therapeutic potential: Cefuroxime, Cyproterone, Dydro-
gesterone, Metrizamide, Trimethadione, and Vorinostat.
Additionally, seven drugs were positively associated and
thus considered AD mimetic: Calmidazolium, Ciclosporin,
Disulfiram, Fluspirilene, Puromycin, Quipazine, and Spi-
perone (Fig. 3b) (Additional file 5: Table S4).

Discussion
Based on reverse engineering coexpression regulatory
network reconstruction for the human HIP, we identified
a range of transcription factors that acts on large regula-
tory units, therefore being potentially important for the
functionality of this region. Furthermore, from these
regulatory units, we selected those which differentially
expressed inferred target genes were overrepresented in
AD versus control. Interestingly, among the ten largest
hippocampal regulatory units, seven of them present dif-
ferential expression when comparing AD versus control
(Additional file 2: Table S1).
The 34 MR candidates selected in this study were an-

notated with the GO term “transcription factor activity,
sequence-specific DNA binding”. Among them, only 5
MR candidates, namely KAT7, MTA3, RREB1,
TSC22D1, and ZNF287, do not have this GO term
assigned by a curator. Moreover, some of the MR candi-
dates have also been associated with other transcription
regulation functions, such as transcription corepressor
activity (GO:0003714) and transcription coactivator ac-
tivity (GO:0003713), bringing forth the possibility that
the influence of each MR candidate on the expression
levels of its inferred regulatory units may be related to
expression regulation mechanisms other than the direct
DNA binding activity. Nevertheless, it is important to
note that, for the purpose of finding MRs for the disease,
this distinction is not necessarily relevant once the
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sought MR function relates to the expression regulation
as a broad and diverse regulatory phenomenon. The
additional GO terms annotated for each MR candidate
are described in Additional file 3 (Table S2).
Among the TFs inferred as MRs of the disease, several,

such as ATF2 and PARK2, have already had their rela-
tionship with AD previously reported [35–37]. Indeed,
both ATF2 and PARK2 showed a high degree of con-
nectivity via their inferred targets in the AD regulatory
subnetwork, thus acting as potential hubs, and predicted
elements of great importance for network maintenance

and robustness, with their regulatory units repressed in
the disease.
The PARK2 gene encodes an E3 ubiquitin ligase and it

is one of the genes involved in autosomal recessive juven-
ile parkinsonism [38]. In addition to its function in the
ubiquitin proteasome system, PARK2 is also involved in
the regulation of gene expression, modulating genes asso-
ciated with apoptosis or cellular stress reactions [39]. Fur-
thermore, PARK2 also acts as a direct transcriptional
repressor of p53 promotor activity, thus modulating cell
death pathways [40]. Remarkably, PARK2 was also shown

a

b

Fig. 1 Transcriptional regulatory network and master regulators. a Human hippocampus transcription regulatory network centered on
transcription factors was reconstructed from normal brain dataset (GSE60862). The network shows 469 regulatory units of transcripts classified
under transcription factor activity, sequence-specific DNA binding (GO:0003714), with more than 25 inferred targets; 132 of them showed more
than 100 inferred targets and were considered tissue-specific regulatory units (blue container). These were then tested in AD case-control studies
using master regulator analysis, resulting in 34 tissue-specific regulatory units significantly enriched with differentially expressed genes (red
container). The 337 regulatory units with less than 100 targets are represented in black outside the blue container. b Tile plot representation of
the MR candidates for each case-control expression dataset (GSE5281, GSE29378, GSE36980, and GSE48350). ns not significant
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to directly mediate expression of two proteins related to
the amyloidogenic pathway, Presenilin 1 and Presenilin 2,
which are components of the γ-secretase complex [35].
Mutations in the coding regions of these two proteins are
related to AD familial cases [41].
ATF2 is a member of the ATF/CREB family that regu-

lates gene expression through homodimerization or het-
erodimerization with several other protein partners.
However, the role of each dimer in target regulation is
very difficult to determine and the knowledge about them
is still limited [42]. ATF2 is activated by several
cell-damaging stimuli, such as cisplatin-induced genotoxic
stress and ultraviolet (UV) radiation exposure [43, 44].
This TF regulates the expression of genes involved in

important cellular processes also altered in AD, such as
inflammatory signaling, apoptotic pathway, DNA damage
response, and cell cycling control, being regarded as an
early stress response protein [42, 45–48]. In agreement
with the results obtained in this study, reduced expression
of ATF2 has been shown for the CA1 to CA4 hippocam-
pal areas, granule cells of the dentate gyrus, and adjacent
entorhinal cortex in AD patients [36, 37].
Furthermore, nuclear availability of ATF2 and PARK2

are strongly influenced by stressing factors. ATF2 trans-
location from the nucleus to the cytoplasm was found to
be increased in situations of cellular stress and disease
states, leading to cell death triggering by induced open-
ing of mitochondrial membrane pores [46]. PARK2

a

b

Fig. 2 Activation state of MR candidates and AD subregulatory network. a Tile plot representing the state of activation of MR candidates (two-tail
gene set enrichment analysis) for each case-control expression dataset. b Subregulatory network showing the associations between the
significantly activated and repressed MR candidates. Node size represents the number of inferred targets of the master regulator transcription
factor candidate; node shape shows their activation state; node color maps their connectivity (subnetwork average degree = 5.75 ± 2.65); edge
width shows the Jaccard coefficient of common targets between transcription factor pairs. ns not significant
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a

b

Fig. 3 (See legend on next page.)
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solubility is compromised by oxidative and nitrosative
stress and aging, in some cases showing behavioral pat-
terns equivalent to those PARK2 mutations correlated
with Parkinson’s disease [38]. Thus, the reduced nuclear
availabilities of both TFs in response to severe stress
may account for the target expression reductions identi-
fied in this study.
We also identified novel TFs that seem to be involved in

AD: CNOT7 (CCR4-NOT transcription complex subunit 7),
CSRNP2 (cysteine and serine rich nuclear protein 2),
SLC30A9 (solute carrier family 30 member 9), and TSC22D1
(TSC22 domain family member 1). These MR candidates
have also shown a high degree of connectivity in the AD
subregulatory network, being also potentially important for
this disease. In the following sections we discuss each of
these MRs with a brief description of its known functions.
CNOT7 is a catalytic component of one of the major

mRNA deadenylase complexes (CCR4-NOT). It has an
antiproliferative function dependent both on its deade-
nylase activity and its association with BTG1 (BTG
anti-proliferation factor 1) [49, 50]. SLC30A9, also called
ZnT9, belongs to a family of zinc transporters. This pro-
tein contains a motif for interaction with nuclear recep-
tors, apparently migrating to the nucleus in a cell
cycle-dependent manner [51, 52]. It has been shown that
SLC30A9 acts as a hormone-dependent nuclear receptor
coactivator and also participates in the Wnt signaling
pathway by interacting with β-catenin [53, 54]. TSC22D1
is the most studied among these transcription factors
due to its tumor suppressor activity. It was isolated as a
transforming growth factor (TGF)-β-induced transcript
which encodes a leucine-zipper transcription factor and
has transcriptional repressor activity [55, 56]. TSC22D1
has been shown to be a p53-positive regulator, inhibiting
its degradation. Furthermore, it also inhibits cell prolifer-
ation, promoting apoptosis when overexpressed [57].
Although it was not possible to determine the activation

state of several other MRs found, a handful of studies dir-
ectly correlating MEF2A (myocyte enhancer factor 2A),
STAT1 (signal transducer and activator of transcription 1),
and YY1 (Yin and Yang 1 protein) TFs to AD are available
in the literature. It was shown that YY1 is directly involved
in the regulation of important AD-related genes, such as
BACE1 (Beta-secretase 1) and APH1A (aph-1 homolog A,
gamma-secretase subunit), which have binding sites for
YY1 in their promoter regions [58–60]. STAT1 also has a
role in controlling the gene expression of BACE1, binding

to its promoter region, and can be upregulated by Aβ, char-
acterizing a positive feedback loop that could lead to the
progressive increase of production and further accumula-
tion of Aβ [61–63]. Regarding MEF2A, Burton et al. [64]
and Gonzalez et al. [65] have suggested that deregulation in
the control of these TF activation pathways could be associ-
ated with increased risk of developing AD. Additionally, the
genes MEF2C and CELF1, identified by genome-wide asso-
ciation studies as having a small effect on AD risk [11],
were inferred as MEF2A and YY1 targets, respectively (data
not shown), which reinforces the idea that these genes are
part of a broad and complex context and that to discuss
their roles in the whole scenario could be a much more
constructive approach.
Neuronal loss and astrocytosis are well-known events

related to AD, and both have been observed in postmor-
tem brains of AD patients [66–68]. A reduction in the
neuronal population is directly related to the progression
of hippocampal atrophy, to the severity of the dementia
[69, 70], and to the Braak stage of the disease [71]. The
presence of astrocytosis in AD has also been described,
and it is thought to be related either to the proliferation of
astrocytes to replace dying neurons, or to an increased ac-
tivity of these cells in an effort to scavenge the toxic Aβ
peptides [72, 73]. Although astrocytosis is known to be es-
sential for tissue repair and early mitigation of lesions, it
can also lead to further deleterious effects, either by amp-
lifying the inflammatory response [73] or by diminishing
the trophic support for neurons [74, 75].
To investigate whether our results could be related to

these histopathological alterations, we conducted a prelim-
inary GSEA to compare the expression levels of the 34
regulatory units (HIP-TN) in mouse neuron versus astro-
cyte data from the microarray dataset GSE9566 [76]. We
found that all 34 regulatory units were enriched with differ-
entially expressed genes in astrocytes compared with neu-
rons. Notably, 16 regulatory units followed the same
pattern of activation found in the AD case-control analysis,
whereas 18 showed nonsignificant states of activation (Add-
itional file 6: Figure S2). These findings indicate that our re-
sults can be, at least in part, a reflex to an increase in the
influence of astrocyte-related regulatory units in the overall
signature of the disease, which may be compatible with the
astrocyte hyperactivation and proliferation hypothesis in
AD. Therefore, a reversion of the inferred transcriptional
signature as a whole can be a promising strategy to alleviate
deleterious effects potentially mediated by these responses.

(See figure on previous page.)
Fig. 3 Connectivity map analysis and drug repurposing to AD therapy. a Schematic representation of connectivity map analysis: differentially
expressed targets of repressed or activated MR candidates, for each case-control study, were ranked and used as query signature to the
connectivity map webtool against gene expression profiles database of several cell lines treated with thousands of FDA-approved compounds. b
Case-control associated drugs: consensus drugs consistently matched with at least two case-control studies. Drugs with negative AD association
are assumed with therapeutic potential, and the ones with positive association are considered AD mimetic. ns not significant
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The transition from a single-gene approach to a
network-centric view is seen as a new path in the search for
pharmacological strategies for complex diseases [77]. In
addition, drug repositioning has been shown to be a
cheaper and faster alternative method for the development
of new therapeutic regimens [14]. The connectivity map
proposal enables us to combine both of these paradigms by
incorporating a data-driven method for exploring transcrip-
tional profile alterations with drug effects on expression.
We applied a connectivity map adaptation centered on
transcription factor regulatory units and obtained six
FDA-approved drug candidates that seem to revert AD
phenotype (Cefuroxime, Cyproterone, Dydrogesterone,
Metrizamide, Trimethadione, and Vorinostat). Interestingly,
these drugs have several self-related or class-related neuro-
protective effects previously reported in the literature. Not-
ably, Cyproterone and Vorinostat have already been shown
to be neuroprotective in AD models. Cyproterone is an
antiandrogen that antagonizes androgen-mediated gene ex-
pression, although it exerts a testosterone-like neuroprotec-
tive effect against Aβ toxicity in primary neuronal cultures
by an androgen receptor activation-dependent mechanism
[78]. Vorinostat is a histone deacetylase inhibitor (HDACi)
used for cancer treatment, and it has been shown to restore
memory deficits in an AD animal model and protects
against Aβ toxicity in an AD cell model [79]. This drug is
currently at phase 1 clinical trial for assessment of its mem-
ory performance improvement capabilities in AD [80]
(www.clinicaltrial.gov). Furthermore, there are several stud-
ies showing the role of HDACis in the reduction of inflam-
matory mediator expression, excitotoxicity, and oxidative
stress, as well as enhancement of neurotrophic factor ex-
pression, which are relevant pathways for AD [81]. Tri-
methadione is a T-type calcium channel inhibitor used as
an anticonvulsant drug. It has been reported as a neuropro-
tective compound leading to both prevention of calcium
homeostasis impairment, potentially associated with the
onset of AD, and reduction of age-related degenerative ef-
fects in animal models [82, 83].
Cefuroxime is a second-generation cephalosporin anti-

biotic that can cross the blood-brain barrier, and Dydroges-
terone is a progestogen usually administered in conditions
associated with progesterone deficiency [84, 85]. Although
neither of them has reported neuroprotective effects, there
are several class-related central nervous system benefits
associated with them in the literature [86–88]. Finally,
Metrizamide, a radiocontrast shown to effectively inhibit
the brain hexokinase, has a recent pharmacodynamic study
exploring its effects on neuronal function [89].

Conclusion
Systems biology is an integrative, hypothesis-free approach
based on biological component interactions and repre-
sents an interesting avenue to study complex diseases.

Indeed, regulatory networks centered in TF have already
been shown effective in identifying cancer drivers [17, 18,
32]. Furthermore, this approach is also gradually becom-
ing the methodology of choice to study multifactorial
complex neurodegenerative diseases [19, 90, 91]. Herein,
employing a systems approach, we identified several TFs
previously related to the disease as well as novel potential
targets to be investigated. In addition, new therapeutic
strategies using drug repositioning were prospected from
the obtained transcriptional signatures. Nevertheless,
further studies using both in vitro and in vivo models are
required to fully evaluate the impact and benefits of these
findings in AD.
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