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Abstract 33 

Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. 34 

These cells exhibit highly plastic responses in phenotype during fibrosis in response to 35 

environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs 36 

differentially regulate measures of cardiac fibroblast phenotype, which may help identify 37 

treatments for cardiac fibrosis. We conducted a high content microscopy screen of human 38 

cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, 39 

measuring phenotype across 137 single-cell features. We used the phenotypic data from our 40 

high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for 41 

fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce F-42 

actin assembly and F-actin stress fiber formation, respectively. Validating the LogiMML model 43 

prediction that PI3K partially mediates the effects of Src inhibition, we found that PI3K 44 

inhibition reduces F-actin fiber formation and procollagen I production in human cardiac 45 

fibroblasts. In this study, we establish a modeling approach combining the strengths of logic-46 

based network models and regularized regression models, apply this approach to predict 47 

mechanisms that mediate the differential effects of drugs on fibroblasts, revealing Src inhibition 48 

acting via PI3K as a potential therapy for cardiac fibrosis. 49 

Significance  50 

Cardiac fibrosis is a dysregulation of the normal wound healing response, resulting in excessive 51 

scarring and cardiac dysfunction. As cardiac fibroblasts primarily regulate this process, we 52 

explored how candidate anti-fibrotic drugs alter the fibroblast phenotype. We identify a set of 53 

137 phenotypic features that change in response to drug treatments. Using a new 54 

computational modeling approach termed logic-based mechanistic machine learning, we 55 

predict how pirfenidone and Src inhibition affect the regulation of the phenotypic features F-56 

actin assembly and F-actin stress fiber formation. We also show that inhibition of PI3K reduces 57 

F-actin fiber formation and procollagen I production in human cardiac fibroblasts, supporting a 58 

role for PI3K as a mechanism by which Src inhibition may suppress fibrosis.  59 

Introduction 60 

Cardiac fibroblasts are the primary regulators of remodeling following cardiac injury1. 61 

Extracellular matrix (ECM) deposition by activated myofibroblasts is essential to this response, 62 

but excessive deposition can lead to ventricular stiffness, diastolic dysfunction, and heart 63 

failure1. While fibroblasts are critical to the wound healing response, current standard-of-care 64 
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therapeutics for cardiac injury, such as myocardial infarction (MI), affect downstream 65 

symptoms but do not specifically target fibroblast signaling2. Recent drug discovery and 66 

development has focused on identifying drugs such as Entresto (sacubitril/valsartan) that 67 

reduce fibrosis in part by modulating fibroblast signaling3,4.  68 

Collagen secretion, αSMA expression, and F-actin assembly are traditional markers for a 69 

profibrotic fibroblast phenotype5,6. While high expression of these markers provides an initial 70 

indication of myofibroblast activation, traditional marker expression is inconsistent and does 71 

not fully capture the fibrotic response7. Recent studies of fibroblast phenotype have shown that 72 

fibroblasts exhibit high phenotypic heterogeneity across many facets in response to injury, and 73 

that phenotypic changes are also sensitive to drug perturbations8–11. Identifying drugs that 74 

regulate fibroblast signaling may provide targeted control of fibrosis. 75 

Previously, we developed a logic-based mechanistic network model of fibroblast signaling and 76 

applied it to perform virtual screens for anti-fibrotic drugs12,13. That study predicted and 77 

experimentally validated an antifibrotic role for the TGFβ receptor inhibitor galunisertib13. 78 

While the fibroblast network model predicts a number of drugs that modulate fibroblast 79 

activation, substantial experimental characterization is needed to capture phenotypic 80 

responses to drugs that were not captured by prior modeling.  81 

In this study, we combined high content microscopy, network modeling, and machine learning 82 

to identify drugs that differentially regulate fibroblast phenotypic metrics and predict their 83 

underlying network mechanisms. We used image-based feature extraction to more deeply 84 

characterize drug response and fibroblast phenotype, capturing drug-induced changes across a 85 

set of single-cell metrics relevant to fibrosis. Using a novel logic-based mechanistic machine 86 

learning approach, LogiMML, we predicted signaling pathways that determine how drugs 87 

regulate fibroblast phenotype. Finally, we experimentally validated the main pathway 88 

mechanism predicted by the LogiMML model that mediates how Src inhibition suppresses 89 

fibrotic responses.  90 

 91 

Results 92 

An in vitro screen for candidate fibrosis drugs  93 

Previously, we applied our published cardiac fibroblast network model12 to identify candidate 94 

therapies predicted to reduce cardiac fibrosis13. This logic-based differential equation network 95 

model was developed from a wide range of fibroblast signaling relationships from in vitro 96 

studies in the literature. The model predicts changes in fibrotic outputs including collagen I and 97 

III, αSMA, EDA fibronectin, matrix metalloproteases, and F-actin in response to changes in 98 

extracellular signaling contexts and drug treatment12. This model was previously integrated 99 

with the drug-target database DrugBank to make predict the response of fibroblasts to 121 100 

FDA-approved or investigational drugs that have targets in this network13.  101 
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To expand upon the in silico modeling work done in that previous study13, we aimed to develop 102 

a list of drug candidates to test experimentally for their ability to reduce fibrosis in cardiac 103 

fibroblasts in vitro. As the model predicted many drugs to reduce fibrosis effectively13, we 104 

included drug selection criteria outside of our modeling results alone to further narrow-down a 105 

list of candidate drugs. First, we prioritized pathway diversity of the drug targets to ensure that 106 

we would perturb fibrotic signaling comprehensively and avoid testing redundant drugs in our 107 

experiments. As drug repurposing has become an increasingly effective and efficient strategy 108 

for treating cardiovascular disease, we next looked to prioritize drugs that had previous clinical 109 

indications for other disease areas14,15. Using these criteria, we selected thirteen drugs to 110 

evaluate experimentally: anakinra, valsartan, defactinib, HW-4-023, glutathione, CW-HM12, 111 

salbutamol, marimistat, fasudil, SB203580, pirfenidone, brain natriuretic peptide (BNP), and a 112 

combination of valsartan and BNP (Table S1). Among the list of candidate drug targets are 113 

regulators for inflammatory signaling, mechanical stretch response, non-canonical TGFβ 114 

signaling, and modification of secreted proteins.   115 

We next aimed to test these candidate drugs for their ability to quantitatively reduce fibrosis as 116 

characterized by image-based single-cell profiling of procollagen I, α-smooth muscle actin 117 

(αSMA), and F-actin. In injury signaling conditions, such as following myocardial infarction (MI), 118 

myocardial cells are exposed to elevated proinflammatory and profibrotic stimuli16–18. To 119 

represent these signaling contexts in an in vitro system, we included IL1β and TGFβ, shown to 120 

be elevated following cardiac injury, in our treatment conditions to represent proinflammatory 121 

and profibrotic contexts respectively19–21. We tested our candidate drugs under four total 122 

cytokine contexts (baseline context with no added cytokine, fibrotic context represent by TGFβ, 123 

inflammatory context represented by IL1β, and combined context represent by both TGFβ and 124 

IL1β)19–21. In total, we used 108 treatment conditions consisting of one of the thirteen drugs at 125 

a low, medium, or high dose combined with one of the four cytokine contexts. We also included 126 

treatments of each cytokine context with no drug to establish a control baseline for cell 127 

responses to cytokines. We imaged and quantified single-cell protein expression of three 128 

fibrotic markers, procollagen I, α-smooth muscle actin (αSMA), and F-actin using high-content 129 

microscopy and a custom CellProfiler software pipeline22.  130 

Interestingly, the antifibrotic drugs in our screen induced differential effects on fibrosis. Of the 131 

13 candidate drugs, WH-4-023, fasudil, and defactinib caused the strongest reduction of 132 

procollagen I, F-actin, and αSMA expression in a TGFβ signaling context, even at the lowest 133 

dose (Figure 1A). Conversely, a second set of drugs including anakinra and glutathione 134 

increased fibrotic marker expression in both TGFβ and combined TGFβ/IL1β contexts when 135 

applied directly to fibroblasts. In a previous clinical study, anakinra, an IL1 receptor inhibitor, 136 

was shown to improve cardiac function and reduced heart failure incidence following acute MI 137 

in human patients23. While anakinra has been shown to reduce infarct scar area in a mouse MI 138 

model, it also exhibits other beneficial cardiac effects post-MI including inhibition of post-MI 139 

myocyte apoptosis and reduction in systemic inflammation24,25. Based on these previous 140 

studies, it is likely that anakinra has a net antifibrotic effect on fibroblasts in the presence of 141 
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other myocardial cell types even though anakinra treatment increased fibrotic marker 142 

expression in this experiment. A third set of drugs showed more selective antifibrotic effects. 143 

For example, while fasudil significantly reduced expression of all three fibrosis markers in a 144 

TGFβ signaling context, pirfenidone only significantly reduced F-actin (Figure 1 B-E). This third 145 

set of drugs is of particular interest as it contains drugs that differentially regulate markers for 146 

fibrosis. Given the recent clinical effectiveness of pirfenidone for lung fibrosis, and success in 147 

diseases models for cardiac fibrosis26,27, we further investigated the mechanisms by which it 148 

regulates F-actin in cardiac fibroblasts. 149 
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  151 

LogiMML: logic-based mechanistic machine learning model predicts how drugs regulate 152 

fibroblast phenotype 153 

Assembled F-actin filaments play a key role in contractility as fibroblasts transition to become 154 

myofibroblasts28. Therefore, we asked whether the previous mechanistic computational model 155 

of the fibroblast signaling network12 could predict our experimentally measured inhibition of F-156 

actin by pirfenidone from Figure 1D. While the model had correctly predicted responses to a 157 

number of drugs including galunisertib13, here, the original mechanistic model did not capture 158 

the ability of pirfenidone to suppress F-actin in a TGFβ signaling context (Figure 2 A).  159 

Given the limitations of a model based only on prior knowledge, we asked whether drug 160 

predictions could be improved by combining the mechanistic model with a machine learning 161 

model that leverages data from the drug screen. Motivated by ‘white-box’ machine learning 162 

strategies that combine mechanistic models with machine learning29,30, we designed a logic-163 

based mechanistic machine learning (LogiMML) model to predict key regulators that conduct 164 

signaling from network model inputs and simulated drugs to experimentally measured 165 

phenotypic outputs (Figure 2 B). As the 108 treatments were insufficient to infer new links to 166 

phenotypic outputs from all 91 model nodes, we reduced the model’s dimensionality by 167 

clustering nodes into modules. Eleven signaling modules were computed based on a combined 168 

influence and sensitivity analysis, grouping nodes with similar predicted behavior across 169 

signaling contexts. The machine learning component was then trained by mapping the model-170 

predicted activity of each network module for each of the 108 drug+cytokine treatments to 171 

respective experimentally measured outputs. Regularized ridge regression was selected for the 172 

machine learning layer of the LogiMML model to reduce the likelihood of overfitting31. As 173 

measured experimentally, the LogiMML model correctly predicted the respective induction and 174 

suppression of F-actin by TGFβ and pirfenidone (Figure 2 C).  175 

We next asked whether the LogiMML model could provide new mechanistic insights into how 176 

F-actin is regulated by pirfenidone. First, we used the LogiMML model’s ridge regression 177 

coefficients to predict the modules that most influence F-actin. ‘PI3K’ and ‘Smad3’ modules 178 

were predicted to be the top positive regulators of F-actin, while the ‘P38_Calcium’ module was 179 

predicted as the top negative regulator (Figure 2 E). These predictions for fibroblasts are 180 

consistent with previous studies with other cell types showing that members of the ‘Smad3’ 181 

Figure 1: High-content microscopy screen for drugs that module fibroblast activation. A) Expression 

of fibroblast activation markers procollagen I, F-actin, and αSMA in human cardiac fibroblasts upon 

treatment of 13 drugs at 3 doses, under environmental contexts of TGFβ, IL1β, or both. Fold change 

values show ‘drug vs. no drug’ Integrated Intensities for each protein. Panels B and C show 

quantification and representative images of the effects of pirfenidone, a non-specific inhibitor of 

TGFβ expression, which consistently regulates fibrotic protein expression. Panels D and E show 

quantification and representative images of the effects of fasudil, a Rho-kinase inhibitor, which 

differentially regulates fibrotic protein expression. *p≤0.05 ANOVA with Tukey’s post-hoc. 
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and ‘P38_Calcium’ signaling modules regulate F-actin filament assembly in endothelial cells and 182 
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that members of the ‘PI3K’ signaling module promote actin filament remodeling during 183 

migration in embryonic fibroblasts 32–34. To identify which individual signaling nodes within 184 

these three modules most regulate F-actin, we performed a virtual knockdown screen of the 185 

LogiMML model for regulators of F-actin in a ‘TGFβ+pirfenidone’ signaling context (Figure 2 E). 186 

Summarizing these analyses, the LogiMML model predicts that pirfenidone regulation of F-actin 187 

is positively regulated by p38, Akt, and CBP, while negatively regulated by ROS and NOX (Figure 188 

2 F). 189 

 190 

Drugs and pathways controlling fibroblast morphology and texture  191 

Given the differential regulation of fibrosis marker protein expression, we asked whether other 192 

aspects of fibroblast phenotype may also be differentially regulated by drugs and cytokines. 193 

Qualitatively, we observed morphological changes in cell shape, stress fiber formation, 194 

intracellular protein distribution, and cell area (e.g. for pirfenidone treatment see Figure 1 E). 195 

To measure these characteristics of fibroblast phenotype, we developed a custom CellProfiler 196 

image analysis pipeline quantifying 137 total single-cell cell features22,35. Integrated intensities 197 

for the three fibrotic marker proteins, procollagen I, F-actin, and αSMA clustered relatively 198 

close to each other across the feature space (Figure 3 A). As expected, expression of these 199 

marker proteins and similar features were high under TGFβ and TGFβ-like treatments, and low 200 

under negative control and IL1β conditions. While the central rows of the heatmap contain 201 

many features with similar treatment responses, the features at the top and bottom regions of 202 

the heatmap show high heterogeneity in response to drugs.  203 

To gain a comprehensive understanding of fibroblast phenotypic responses to drugs and 204 

cytokines, we applied principal component analysis (PCA) dimensionality reduction to the data 205 

(Figure 3 B-C). To mitigate feature redundancy and improve PCA performance, we first reduced 206 

the feature set from 137 total features to 18 representative features. These features were 207 

Figure 2: LogiMML logic-based mechanistic machine learning approach guides model revision and 

predicts network mechanisms underlying pirfenidone suppression of F-actin. A) Original fibroblast 

network model predicts no change in F-actin upon TGFβ or pirfenidone treatment. Experimental data 

shows pirfenidone significantly reverses the increase of F-actin by TGFβ (data previously shown in 

figure 1 D). B) Schematic of the LogiMML approach for integrating logic-based network modeling with 

machine learning to predict network mechanisms for cell phenotypes. The average activity within 

each network module is mapped to predict fibroblast phenotypic features via a Ridge regression 

layer. C) The Coupled LogiMML model predicts TGFβ and pirfenidone effects on F-actin that 

qualitatively match experimental data shown in panel A. D) LogiMML ridge regression coefficients 

show predicted relative influence of network modules on F-actin. E) LogiMML node knockdown 

sensitivity analysis in the context of TGFβ+pirfenidone. Nodes from most influential modules are 

sequentially knocked down, predicting change in F-actin upon knockdown. F) Schematic of the 

network mechanisms predicted for the actions of pirfenidone on F-actin, derived from sensitivity 

analysis in panel E. 
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selected by clustering a correlation matrix of the feature set into 15 clusters, selecting one 208 

feature from each cluster (Figure S1, Figure S2) as key representatives of that cluster’s 209 

information. The three integrated intensity features for procollagen I, F-actin, and αSMA were 210 

also retained.  211 

Negative control treatments had a negative score on the first principal component (PC1), while 212 

cells treated with TGFβ showed a high positive score on PC1, indicating that the first principal 213 

component correlates with an axis of classical fibroblast activation (Figure 3 B, Figure S3 A). This 214 

was further supported by the PCA loading values for integrated procollagen I, F-actin, and 215 

αSMA (Figure 3 C, Figure S3 B). These three features are expected to be relatively high in 216 

activated myofibroblasts and indeed have strong positive loadings on PC1. On the PCA scores, 217 
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any of the ‘TGFβ + Drug’ groups deviated from the control-TGFβ axis defined on PC1, implying 218 
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that drugs induce phenotypic changes distinct from a simple reversal of TGFβ’s effects. To 219 

further investigate drug-induced changes in phenotype, we analyzed the PCA scores and 220 

loadings to infer links between drugs and the features they regulate. Notably, the Src inhibitor 221 

WH-4-023 (WH) showed directionality on the scores plot similar to that of Actin Long Angular 222 

Second Moment (Actin Long ASM, a measure for F-actin uniformity) on the loadings plot. Actin 223 

stress fibers, composed of multiple F-actin filaments along with other proteins, contribute to 224 

pathological fibrosis and myofibroblast differentiation36–38. This feature and treatment pair 225 

showed a negative value on PC1 and a positive value on PC2 relative to the TGFβ and control 226 

groups, respectively. The similar directionality of WH and Actin Long ASM suggests that Src 227 

inhibition may modulate F-actin uniformity.  228 

Based on the initial inference from the PCA, we revisited the images from the high-content 229 

microscopy experiment. Fibroblasts treated with TGFβ exhibited discrete F-actin stress fibers, 230 

and stress fibers were qualitatively reduced when WH-4-023 (WH) was added (Figure 4 A). 231 

Quantitative analysis of F-actin uniformity (inversely correlated with stress fibers) using Actin 232 

Long Angular Second Moment (ASM) further supported that TGFβ increased and Src inhibitor 233 

WH reduced F-actin uniformity (Figure 4 B). 234 

To predict the signaling pathways that specifically regulate F-actin stress fibers, we again 235 

applied the LogiMML coupled modeling approach, but this time training the ridge regression 236 

layer of the model on experimental measurements of Actin Long ASM. The LogiMML model 237 

regression coefficients predicted that the ‘Mechanical’ module was the top positive regulator of 238 

Actin Long ASM and that the ‘PI3K’ module was the top negative regulator of Actin Long ASM 239 

(Figure 4 C). To identify which individual signaling nodes within these two modules most 240 

regulate Actin Long ASM, we performed a virtual knockdown screen of the LogiMML network 241 

model for regulators of Actin Long ASM in the context of ‘TGFβ+WH-4-023’ and predicted that 242 

Rho, MKK4, and Akt are proximal regulators of Actin Long ASM and actin stress fiber formation 243 

(Figure 4 D-E).  244 

Figure 3: Survey of single-cell fibroblast phenotypic features in response to 13 drugs at 3 doses and 

4 environmental contexts. A) 137 single-cell fibroblast features that quantify protein intensity, 

protein localization, cell morphology, and fiber texture. This heatmap was organized on treatment 

and feature axes by agglomerative hierarchical clustering. B) Principal component scores of 

experimental data reduced to a set of 18 representative fibroblast features. C) Principal component 

loadings the reduced of PCA scores and loadings define a primary axis of fibroblast activation with 

correlated protein expression of procollagen, αSMA, and F-actin that is modulated by many drugs. 

Off-axis, the Src inhibitor WH-4-023 modulated the cell texture feature Actin Long Angular Second 

Moment, which motivated further study. 
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 246 

PI3K signaling stimulates F-actin stress fiber formation and collagen expression 247 

After deriving a putative signaling schematic for Actin Long ASM using the LogiMML model, we 248 

aimed to experimentally validate the prediction that inhibition of PI3K/Akt would suppress 249 

stress fiber formation and thereby increase Actin Long ASM (Figure 4 E). In previous studies 250 

using PI3K inhibitors, PI3K was shown to regulate fibroblast contractility, fibroblast-to-251 

myofibroblast transition, and TGFβ-induced αSMA and collagen production39,40. Given these 252 

previously implicated roles for PI3K in myofibroblast activation and fibrosis, we investigated if 253 

PI3K regulates F-actin stress fiber formation in cardiac fibroblasts. We treated human cardiac 254 

fibroblasts with either a negative control condition or a 20 µM dose of the PI3K inhibitor 255 

LY294002 (LY). Treatment with LY significantly increased Actin Long ASM, but notably, it had no 256 

significant effect on the total assembly of F-actin in each cell, measured by integrated F-actin 257 

intensity  (Figure 4 F-G). This selective effect of PI3K inhibition on stress fiber formation, while 258 

having no significant effect on total F-actin, suggests that F-actin assembly and stress fiber 259 

formation are differentially regulated processes. PI3K inhibition also significantly reduced 260 

integrated procollagen I intensity, demonstrating a role for PI3K signaling in cardiac fibroblast 261 

collagen production (Figure 4G).  262 

Discussion 263 

Cardiac fibroblasts are central regulators and promising therapeutic targets following cardiac 264 

injury. To identify how clinically relevant drugs regulate diverse aspects of fibroblast 265 

phenotype, we performed high-content screening of 13 drugs in 4 environmental contexts. We 266 

expanded our high-content microscopy feature set to 137 single-cell features, measuring 267 

fibrotic marker protein intensity, intracellular protein distribution, fiber texture, and cell 268 

morphology. After reducing the feature space and dimensionality of our experimental data, we 269 

found that many aspects of fibroblast phenotype are uniquely induced by drug and cytokine 270 

treatments. Notably, when administered with TGFβ, the drugs WH-4-023, defactinib, fasudil, 271 

and pirfenidone induced phenotypes that deviated from the PCA axis corresponding to classical 272 

Figure 4: Logic-based mechanistic machine learning predicts the PI3K module to mediate how Src 

inhibitor suppresses stress fibers, validated by subsequent experiments. A) Images of human 

cardiac fibroblasts treated with baseline control stimulus, TGFβ, or TGFβ + WH-4-023. B) 

Quantification of Actin Long Angular Second Moment (ASM), a measure of F-actin uniformity and 

reduced stress fibers based on images in panel A. C) Regression coefficients from the LogiMML 

mechanistic machine learning model that predicts network modules that regulate actin long ASM. D) 

Knockdown sensitivity analysis predicting individual proteins that regulate actin long ASM in the 

TGFβ+WH-4-023 signaling context. E) Signaling schematic for WH-4-023 effect on actin long ASM, 

derived from sensitivity analysis in panel D. F) Human cardiac fibroblasts treated with PI3K inhibitor 

LY294002 or baseline control stimulus, measuring F-actin and procollagen expression. G) 

Quantification of long actin Angular Second Moment (measure of F-actin uniformity), F-actin 

integrated intensity, and Procollagen I integrated intensity. *p≤0.05 ANOVA with Tukey’s post-hoc in 

panel B, and *p≤0.05 Student’s T-test in panel G. 
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TGFβ response. The differences between these phenotypes can be partially explained by 273 

differential drug regulation of features capturing procollagen I and αSMA expression, and F-274 

actin assembly and stress fiber formation. To predict how drugs regulate cell signaling and 275 

influence phenotype, we developed the logic-based mechanistic machine learning (LogiMML) 276 

approach which coupled the logic-based fibroblast network model with a ridge regression 277 

model trained on the high-content drug screen. Using this expanded LogiMML model, we 278 

predicted regulatory mechanisms for pirfenidone and Src inhibitor WH-4-023 on F-actin. We 279 

predicted that pirfenidone regulates F-actin assembly via the ‘P38_Calcium’, ‘Smad3’, and ‘PI3K’ 280 

signaling modules, with Akt, p38, and CBP predicted to be positive drivers of F-actin assembly 281 

within these modules. We also predicted that WH-4-023 regulates F-actin stress fiber formation 282 

via the ‘PI3k’ and ‘Mechanical’ signaling modules. As predicted by the LogiMML model, we 283 

experimentally validated that PI3K inhibition reduces F-actin stress fiber formation in human 284 

cardiac fibroblasts. These studies validate the ability of the LogiMML approach to predict 285 

signaling mechanisms from a phenotypic screen.  286 

Differential regulation of fibroblast phenotype by drugs and the development of targeted 287 

antifibrotic therapies 288 

Drugs that specifically target fibroblast signaling may provide directed control over the fibrotic 289 

response. A major challenge in therapeutic development for fibrosis is that many drugs capable 290 

of reducing fibrosis target non-specific regulatory pathways outside of the fibrotic response. For 291 

example, the ALK5 inhibitor galunisertib targets the TGFβ receptor and shows promising 292 

therapeutic reduction of fibrosis across organs41–43. While TGFβ receptor inhibition can reduce 293 

fibrosis, recent efforts in target discovery have successfully identified new approaches to 294 

mitigate fibrosis that are more fibroblast specific. For example, it was shown that activating 295 

fibroblast-specific TLR4 in mice can drive the development of skin and lung fibrosis and that 296 

TLR4 inhibition reduces αSMA expression and collagen production in fibroblasts 44. Another 297 

study showed that fibroblast-specific knockout of STAT3 ameliorates skin fibrosis, and that 298 

pharmacological inhibition of STAT3 successfully reduces myofibroblast activation, collagen 299 

accumulation, and dermal thickening in experimental fibrosis in mice45. Future work can 300 

advance our understanding of how candidate drugs regulate specific components of the fibrotic 301 

response in fibroblasts and provide targeted control of fibrosis. 302 

Features of cardiac fibroblast phenotype 303 

Following the reduction of the original set of 137 single-cell features from our high content 304 

image analysis, we identified a set of 18 phenotypic features of fibroblasts that exhibit high 305 

heterogeneity in response to drug treatments (Figure S 2, Table S 2). Notably, many of the 306 

features measuring fiber texture for αSMA and F-actin show different response patterns 307 

compared to features measuring overall expression level for those respective proteins (i.e. 308 

aSMA integrated intensity versus aSMA long correlation). This distribution of features indicates 309 

that the expression and organization of aSMA and F-actin are independently regulated by 310 

candidate drugs. The processes of αSMA protein expression and fiber assembly have different 311 
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degrees of contribution to pathological fibrosis. For example, a recent study showed that 312 

fibroblasts can compensate for the loss of Acta2 transcription and form stress fibers using 313 

similar proteins, implying that stress fiber formation is more important than αSMA production 314 

for the fibrotic response46. Incorporating an expanded set of measurements in future fibrosis 315 

studies may provide greater resolution of the fibrotic phenotype in response to therapies and 316 

help evaluate changes in pathologically relevant features beyond protein expression.  317 

Contributions of the LogiMML mechanistic machine learning approach 318 

Mechanistic logic-based differential equation models have enabled systematic prediction of 319 

drug action, yet these models are limited by the availability of priori knowledge 13,47–49. An 320 

alternative is machine learning, although ‘black-box’ ML approaches like artificial neural 321 

networks predict input-output relationships without mechanistic insight. In contrast, two recent 322 

studies combined mechanistic modeling with machine learning models like regression and 323 

visible neural networks to predict antibiotic stress on metabolism and drug synergies for 324 

cancer29,50. These ‘white-box’ approaches provide greater transparency of the intermediate 325 

layers between input and output51.  326 

Building on such advances for logic-based biological networks, our LogiMML mechanistic 327 

machine learning approach combines the flexible trainability of a machine learning model with 328 

the robust experimentally-determined internal network structure of a mechanistic model. In 329 

this study, we used the LogiMML model to predict signaling mechanisms that mediate how 330 

drugs regulate F-actin assembly and stress fiber formation in cardiac fibroblasts. However, this 331 

is just one of many possible applications for this modeling framework. The LogiMML approach 332 

is designed to work across multiple mechanistic modeling formalisms and types of experimental 333 

data, coupling the mechanistic model and data to predict mechanisms for the phenotype of 334 

interest. The flexible nature of LogiMML presents promising future applications to elucidate cell 335 

signaling that regulates diverse cellular phenotypes.    336 

Src kinase as a therapeutic target for fibrosis 337 

Of the 13 drugs used in this study, the Src inhibitor WH-4-023 (WH) was one of three drugs that 338 

showed a strong reversal in TGFβ-induced F-actin, αSMA, and procollagen I expression. WH was 339 

also effective at reversing the formation of F-actin stress fibers in response to TGFβ. Src 340 

inhibitors dasatinib, ponatinib, and saracatinib have all been used in clinical trials across 341 

different types of cancer52–56. In cancer, Src has been shown to promote proliferation and 342 

metastasis through many signaling targets including FAK, Akt, Ras, and PI3K57–61.  343 

Given that Src signaling affects many central regulatory pathways, recent studies have tested 344 

the potential for Src inhibition as a therapy for fibrotic disease. In a renal fibrosis study, blocking 345 

Src kinase using PP1 was shown to inhibit TGFβ-induced expression of collagen I, αSMA, and 346 

fibronectin62. In that study, Src inhibition was also shown the reduce the development of renal 347 

fibrosis in obstructed kidneys in vivo in mice, indicating Src inhibition as a potential renal 348 

fibrosis and chronic kidney disease therapy. Another study focusing on lung fibrosis showed 349 
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that TGFβ induces Src kinase activity in lung fibroblasts and that Src is required for 350 

myofibroblast contraction63. Further, inhibition of Src kinase in vivo with AZD0530 reduced scar 351 

area and αSMA expression in mice with bleomycin-induced lung fibrosis63.  352 

In this study, we applied the LogiMML network to investigate how Src contributes to F-actin 353 

stress fiber formation induced by TGFβ. We predicted that PI3K signaling contributes to 354 

profibrotic Src signaling in cardiac fibrosis. This proposed mechanism is supported by previous 355 

studies, showing that PI3K regulates fibroblast contractility and myofibroblast activation in skin 356 

fibroblasts, and TGFβ-induced αSMA and collagen production in lung fibroblasts39,40. To validate 357 

this proposed profibrotic role for PI3K, we show that PI3K inhibition reduced procollagen I 358 

production and F-actin stress fiber organization in HCFs. While previous work has shown that 359 

mechanical stretch, Rho-kinase, and myosin light chain kinase (MLCK) positively regulate the 360 

organization of F-actin filaments into stress fibers, the role of PI3K’s regulation of F-actin stress 361 

fiber formation has not been thoroughly explored64,65. Here, we show that treatment with PI3K 362 

inhibitor LY294002 (LY) significantly reduces stress fiber formation without affecting the total 363 

amount of assembled F-actin, implying PI3K specifically enhances stress fiber formation in 364 

cardiac fibroblasts. Future studies should explore if Src kinase inhibitors mitigate cardiac fibrosis 365 

in vivo, and to what degree PI3K kinase contributes to the regulation of cardiac fibrosis by Src. 366 

Limitations and future directions 367 

The main limitation of this study is that our modeling and experimental approaches address cell 368 

signaling in cardiac fibroblasts in vitro, but do not address how fibroblasts respond to drugs in 369 

an in vivo signaling environment. Our experimental data also captures some key fibrotic 370 

proteins, but does not measure other fibrotic outputs of interest, like EDA fibronectin, and does 371 

not capture a comprehensive signaling profile of the fibroblast. Despite these limitations, the 372 

LogiMML framework was sufficient to predict a validated role for PI3K in promoting stress fiber 373 

formation. Experimentally, future work could include proteomics or RNA-seq analysis of 374 

fibroblasts to measure how drugs differentially regulate intracellular molecular profiles. Future 375 

modeling work could include simulated conditions for in vivo or in vitro co-culture conditions to 376 

incorporate the signaling influence of other cell types. Given the flexibility of the LogiMML 377 

modeling approach, these simulated data could be feasibly paired with respective experimental 378 

data to make predictions for fibroblast signaling under new conditions. 379 

Conclusions 380 

In this study, we showed that drugs differentially regulate cardiac fibroblast phenotype and 381 

work via distinct mechanisms that can be predicted by logic-based mechanistic machine 382 

learning. By expanding the microscopy feature set in the high content imaging pipeline, we 383 

captured greater resolution of the fibroblast phenotype and measured how phenotypic 384 

features changed in response to drugs. Using our LogiMML modeling approach, we predicted 385 

signaling mechanisms for how pirfenidone and Src inhibitor WH-4-023 affect F-actin protein 386 

assembly and stress fiber formation, respectively. We predicted that PI3K regulates F-actin 387 

stress fiber formation, which we experimentally validated in human cardiac fibroblasts. This 388 
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study presents new features of fibroblast phenotype to be further explored in fibrosis, 389 

identifies specific roles for PI3K in cardiac fibroblast signaling, and demonstrates an adaptable 390 

mechanistic machine learning approach to predict signaling outcomes for fibrosis that can be 391 

expanded to other diseases.    392 

 393 

Methods 394 

In vitro experiments in human cardiac fibroblasts 395 

Primary human ventricular cardiac fibroblasts were purchased from PromoCell (PromoCell C-396 

12375; PromoCell GmbH, Germany). Cells were cultured in DMEM containing 10% FBS and 1% 397 

Pen/Strep, and were kept in an incubator maintained at 5% CO2. Cells were plated in a 96-well 398 

plate at 5,000 cells/well and then grown in 10% FBS for 24 hours, serum starved for 24 hours, 399 

and then treated with the following cytokine conditions for 96 hours: 0% FBS control media, 0% 400 

FBS media with 20ng/mL TGFβ1 (Cell Signaling Technology, 8915LC), and 0% FBS media with 10 401 

ng/mL human IL1β (Cell Signaling Technology, 8900SC), or TGFβ1 and IL1β combined. Cells were 402 

treated with these conditions either alone or with 1 of 13 compounds at 1 of 3 concentrations. 403 

We determined drug concentrations via a literature search, prioritizing concentrations that 404 

yielded significant effects in vitro in fibroblasts or similar cell types. The drugs with their 405 

respective concentrations are as follows: [0.25,1,2] µg/ml of anakinra (Kineret, SOBI Inc.), 406 

[1,5,10] µM valsartan (Sigma-Aldrich, SML0142-10MG), [0.2,1,2] µM BNP (Sigma-Aldrich, 407 

B5900-.5MG), [1,5,10]µM valsartan combos respectively with [0.2,1,2] µM BNP, [10,30,60]mM 408 

glutathione (Sigma-Aldrich, G4251-1G), [1,3,5] µM CW-HM12 (Cayman Chemical Company, 409 

19480), [10,20,50] µM salbutamol (Sigma-Aldrich, S8260-25MG), [5,10,25] µM marimistat 410 

(Sigma-Aldrich, M2699-5Mg), [1,5,10] µM galunisertib (Selleck Chemicals, S2230), [12.5,25,50] 411 

µM fasudil (Sigma-Aldrich, CDS021620-10MG), [10,25,50  ]µM SB203580 (Sigma-Aldrich, S8307-412 

1MG), [1,5,10] mg/mL pirfenidone (Sigma-Aldrich, P2116-10MG), [5,10,20] µM defactinib 413 

(MedChem Express, HY-12289A), [5,10,20] µM WH-4-023 (Sigma-Aldrich, SML1334-5MG), and 414 

20 µM LY294002 (Selleck Chemicals, S1105). Cells were grown in these conditions for 72 hours.  415 

Cells were then fixed in 4% PFA in PBS for 30 minutes, permeabilized and blocked for 1 hour in 416 

a solution containing 3% BSA and 0.2% Triton, and then stained overnight at 4°C with a 1:500 417 

Anti-Collagen I antibody (Abcam, ab34710). After overnight incubation, cells were washed 3x in 418 

PBS and stained with 1:5000 Dapi, 1:1000 Phalloidin CruzFluor 647 Conjugate (Santa Cruz 419 

Biotechnology, sc-363797), 1:250 α-Smooth Muscle Actin antibody (Sigma-Aldrich, C6198), and 420 

1:1000 Goat-anti-Rabbit (ThermoFisher Scientific, A-11034). 421 

Microscopy and single-cell quantification 422 

96-well plates we imaged using the Operetta CLS High-Content Analysis System (Perkin Elmer). 423 

All three replicate wells for each condition were imaged and quantified. To quantify αSMA 424 

expression, an automated image analysis pipeline was employed in CellProfiler (Broad 425 

Institute)22. Fibroblast nuclei were identified by the DAPI signal. Next, the collagen-positive 426 
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region corresponding to each nucleus was segmented using the “propagate” algorithm, using 427 

the segmented nucleus as the seed. Next, Fibroblast boundaries were segmented using the 428 

“propagate” algorithm, musing the segmented collagen region as the seed. αSMA signal was 429 

integrated within each cell's boundary. Short, medium, and long texture feature information 430 

was derived using the MeasureTexture module in CellProflier using texture scales of 2, 6, and 431 

10 pixels respectively. Texture feature values were calculated by subtracting the smallest angle 432 

value of a given feature from the largest angle value of that same feature for each cell. F-actin 433 

and procollagen expressions were quantified similarly. 434 

Statistics 435 

Feature values for each well were determined by taking the median value of the feature across 436 

all cells in the center tile of each well. Well median values were used as replicates (n=3). 437 

Significance was determined using an ANOVA with Tukey’s posthoc in comparisons between 438 

more than two groups, and Student’s T-test in comparisons between two groups. Automated 439 

data analysis and statistical calculations were performed using Python 3.8.5 and the 440 

‘statsmodels’ Python module version 0.13.2. 441 

Model Simulations  442 

Drug simulations in the fibroblast network model were performed as previously described using 443 

MATLAB version 2022a12,13,66. Predicted node activity is calculated using logic-based Hill 444 

differential equations. Agonist and antagonist drug relationships were represented by altering 445 

the activation function of the target node, representing either competitive or non-competitive 446 

drug interactions with the respective target. To better represent the cell-to-cell variability 447 

observed in in vitro cell responses to treatments, we employed a previously developed 448 

ensemble modeling approach combining multiple simulations with random normally distributed 449 

parameters66. Ensemble simulations were performed using the MATLAB ‘normrnd’ function 450 

from the ‘Statistics and Machine Learning’ toolbox to randomly sample parameters within a 451 

normal distribution and simulation n of 100. The randomly sampled parameters and means of 452 

the sampling ranges are as follows: baseline ligand inputs (0.25), mechanical input (0.85), drug 453 

dose (0.85), and raised ligand inputs (0.6). The sampling range for each parameter was 454 

calculated by 𝑝𝑎𝑟𝑎𝑚𝑀𝑒𝑎𝑛 ± 𝐶𝑂𝑉 ∗ 𝑝𝑎𝑟𝑎𝑚𝑀𝑒𝑎𝑛 where COV=0.0396. This COV value, used to 455 

scale stochasticity in the model was determined by taking the average coefficient of variation in 456 

F-actin, procollagen I, and αSMA expression in human cardiac fibroblasts treated with TGFβ 457 

from our in vitro experiments.  458 

LogiMML Network-Regression Coupling 459 

The LogiMML mechanistic machine learning model is comprised of a network model layer and a 460 

Ridge regression layer. The independent ‘X’ variables used to train the regression model are 461 

node activity values from the network model predicted under each simulated drug and 462 

environmental condition. To reduce model complexity, network nodes were clustered into 11 463 

signaling modules derived from k-means clustering on a combined sensitivity and influence 464 

analysis on the network model12. The node activity values were averaged within each module, 465 
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and these modules’ mean activity values were fed into the regression layer. The dependent ‘Y’ 466 

variables for this model were experimentally measured values from our high-content imaging 467 

experiments in human cardiac fibroblasts. Sensitivity knockout analysis was performed by 468 

simulating a given drug and cytokine context int network model i.e. ‘TGFβ+pirfenidone’ and 469 

sequentially setting each node ymax value to 0, measuring reduction or increase in the 470 

dependent variable e.g. ‘F-actin Intensity’ upon knockdown. Leave-one-out cross validation 471 

(LOOCV) was performed on the LogiMML model to evaluate performance across variations in 472 

the experimental data set. The means and standard deviations of the LOOCV MSE values were 473 

0.022 and 0.080 for the F-actin Intensity model and 0.083 and 0.142 for the Long Actin ASM 474 

model. 475 
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