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Pneumonia is an infamous life-threatening lung bacterial or viral infection. The latest viral infection endangering the lives of many
people worldwide is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19. This paper is
aimed at detecting and differentiating viral pneumonia and COVID-19 disease using digital X-ray images. The current practices
include tedious conventional processes that solely rely on the radiologist or medical consultant’s technical expertise that are
limited, time-consuming, inefficient, and outdated. The implementation is easily prone to human errors of being misdiagnosed.
The development of deep learning and technology improvement allows medical scientists and researchers to venture into various
neural networks and algorithms to develop applications, tools, and instruments that can further support medical radiologists. This
paper presents an overview of deep learning techniques made in the chest radiography on COVID-19 and pneumonia cases.

1. Introduction

Pneumonia is life-threatening and one of the top diseases,
which causes most deaths worldwide. It was projected that
1.4 million children die of pneumonia every year, in which
18% of the total children who died are below five years of
age. In December 2019, at the epicentre in Wuhan, China, a
novel coronavirus, severe acute respiratory syndrome–
coronavirus-2 (SARS-CoV-2), causing COVID-19, emerged
and is now a worldwide pandemic. As of 29th September
2020, COVID-19 has been confirmed in 215 countries and
territories, involving 33,558,131 cases with 1,006,471 deaths
globally, which is a 3% mortality rate [1]. Most reported
infections were in the USA, Brazil, India, Russia, South
Africa, Mexico, Peru, Colombia, Chile, Spain, and many
others [1]. Countries have declared emergencies and national

lockdown while cases have been reported to increase at an
alarming rate [2].

Pneumonia is the inflammation of the alveoli inside the
lungs [3]. The inflammation will build up fluid and pus that
subsequently causes breathing difficulties. The patient will
show symptoms such as shortness of breath, cough, fever,
chest pains, chills, or fatigue. Antibiotics and antiviral drugs
can treat bacterial and viral pneumonia. COVID-19 was orig-
inally called novel coronavirus-infected pneumonia (NCIP)
[3]. The symptoms are similar to other variations of viral
pneumonia and more [4] of which include rapid heartbeat,
breathlessness, rapid breathing—also known as acute respi-
ratory distress syndrome (ARDS), dizziness, and heavy
perspiration [3]. COVID-19 damages the cells and tissues
that line the air sacs in the lungs [3]. The damaged cells
and tissues can disintegrate and clot the lungs causing
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difficulties in breathing [3]. Nevertheless, an immediate diag-
nosis of COVID-19 and the consequent application of
medication and treatment can significantly aid and prevent
the deterioration of the patient’s condition, which eventually
can lead to death [5].

Hence, it is a challenge to diagnose a patient with COVID-
19 viamedical imaging. Deep learningmodels mimic human-
level accuracy and precision in analysing and segmenting a
medical image without human error [6]. However, deep
learning cannot substitute medical professionals like physi-
cians, clinicians, and radiologists in medical diagnosis [6],
but it can assist medical experts in the field in executing and
processing time-consuming works, such as determining chest
radiographs for the signs of pneumonia and distinguishing
the types of pneumonia and its severity [6].

2. Background of COVID-19

Coronaviruses are single-stranded ribonucleic acid (RNA)
viruses, with the size of the virus approximately 26 to 32 kilo-
bases. In late December 2019, a new (novel) coronavirus was
identified in China, causing severe respiratory disease,
including pneumonia. US Department of Health and Human
Services/Centers for Disease Control and Prevention (CDC)
reported that Chinese authorities declared an outbreak
caused by a novel coronavirus, SARS-CoV-2 [7]. The corona-
virus can cause mild to severe respiratory illness, known as
Coronavirus Disease 2019 (COVID-19). The outbreak began
in Wuhan, Hubei Province, China, and has spread to many
countries worldwide—including Malaysia. World Health
Organisation (WHO) declared COVID-19 a pandemic on
11 March 2020. CDC also stated the coronavirus could be
spread mainly through close contact from person to person,
face to face, and physically near each other within 6 feet [8].

The SARS-CoV-2 spreads more efficiently than influenza
but not as efficiently as measles, one of the most contagious
viruses. The respiratory ailment spreads throughout droplets
of air. The infection is transmitted primarily via close contact
and infects through respiratory droplets distributed in the air
when a person coughs or sneezes. When a person contami-
nated with SARS-CoV-2 coughs, sneezes, sings, talks, or
breathes, he or she produces respiratory droplets which range
in size from large droplets visible to the human eye to smaller
droplets. The tiny droplets can also form particles as they dry
very quickly in the airstream [8]. Breathing difficulty is an
indication of plausible pneumonia and requires prompt clin-
ical deliberation and care. Research indicates that people
suffering from COVID-19 often show hyperthermia and
breathing problems [9]. Currently, there are no antibodies
or definitive treatment for COVID-19 patients available to
the public. The US Food and Drug Administration (FDA)
had no authorised or approved vaccine to prevent COVID-
19 [8] until 12 December 2020, when the Pfizer-BioNTech
coronavirus vaccine, which offers up to 95% protection
against COVID-19, has been authorised as safe, effective,
and only for emergency use [10]. However, the World Health
Organisation (WHO) encouraged the facilitation of vaccines
by public persuasion instead of making the injections
mandatory [11].

Early diagnosis of COVID-19 is critical to prevent human
transmission of the virus to maintain a healthy population.
Reverse transcription-polymerase chain reaction (RT-PCR)
test is used to detect COVID-19 disease. It shows high
specificity but is inconsistent with sensitivity in sensing the
existence of the disease [12]. It demonstrates a certain
proportion of false-negative results. However, when the
pathological load is high during the symptomatic phase, the
test is more accurate. The (RT-PCR) test kits are also limited
in some geographical regions, especially third-world coun-
tries [13]. The turnaround time is 24 hours in major cities
and is even longer in rural regions [9]. There is an urgency to
explore other possibilities to distinguish the ailment and enable
immediate referrals for the SARS-CoV-2-infected patient [9].
The chest X-ray plays a crucial role and is the first imaging
technique to diagnose COVID-19 [14]. The virus presents on
the Chest X-ray as ground-glass opacities, with peripheral,
bilateral, and primary basal distribution [12]. These presenta-
tions seem comparable to those resulting from non-SARS-
CoV-2-related viral, bacterial, fungal pneumonia [9, 12].

Furthermore, researchers found it problematic to differ-
entiate viral pneumonia from other forms of bacterial and
fungal pathogens [15]. Both chest X-ray and CT scan are
not encouraged to be used as the primary diagnostic tool to
screen/confirm and evaluate respiratory damage in
COVID-19 because of the high risk and rapid increase in
disease transmission [9, 13]. CT scans are discovered to be
less explicit than RT-PCR but highly sensitive in sensing
COVID-19 and can act as a fundamental role in disease
analysis/treatment [13]. Nevertheless, the American College
of Radiology has endorsed CT scans’ practice as a primary-
line assessment [16]. There are further concerns in using
CT scans as a first-line test for the augmented risk of trans-
mission, access, and cost, contributing to the recommenda-
tion [9]. As the pandemic became calamitous, radiological
imaging is considered compulsory where portable chest X-
rays are a useful and practical alternative [12]. However,
the images’ valuation placed a severe responsibility for radio-
logical know-how, which is frequently lacking in regions with
limited resources. Therefore, automated decision-making
tools could be essential to appease some of this problem
and to quantify and identify disease development [9].

2.1. Background on Deep Learning (DL). Artificial intelli-
gence (AI) is a computer science branch that allows machines
to execute human intelligence tasks. With the evolution of AI
and Internet-of-Things, medical equipment has rapidly
changed, which provides many possibilities in medical radi-
ology. Machine learning (ML) techniques can achieve the
objective of AI. It is the subset of AI to allow computer
systems with the learning ability and implement tasks with
the data automatically without manual programming. Deep
learning (DL) is a subset of machine learning related to
methods simulating the neurons of the human brain [17,
18]. The implementation of ML is to apply DL as an essential
subject with its technology in classification, recognition, and
identification of images or videos. The algorithm instructs
the information to process patterns impersonating the
human neural system. DL is currently an essential subject

2 Computational and Mathematical Methods in Medicine



with its technology in classification, recognition, and identifi-
cation of images or videos. DL functions on algorithms for
cognitive method simulation and data mining developing
concepts [19]. DL maps input data consisting of hidden deep
layers required to be labelled and analyzed concealed pat-
terns within the complex data [20]. Between ML and DL,
DL can automatically classify features and provide accurate
results with high-end GPU help whereas ML requires a wider
range of data to be preprocessed as the features need to be
extracted manually. ML integrates various computational
models and algorithms to mimic the human neural system
whereas the DL-based network is more profound and is
created with many hidden layers compared to conventional
ANN. DL algorithms do not require many feature classifica-
tions and acquire directly from the data to display their
higher problem-solving aptitudes. DL can interpret data
and extract a wide range of dimensional features, notwith-
standing if the features are visible or invisible to the naked
human eye. This diminishes manual data preprocessing such
as segmentation. DL can handle complex data representa-
tions andmimic trained physicians by identifying and detect-
ing the features to make clinical decisions. DL architectures
are applied in medical X-ray detection and various areas such
as image processing and computer vision in medicine [17].
DL progresses in the medical sector to comprehend higher
results, expand disease possibility, and execute valid real-
time medical image [21, 22] in disease recognition systems
[23]. Table 1 shows the neural network’s significant contribu-
tions to deep learning [23, 24].

Figure 1 below shows the mind map of the types of
machine learning and deep learning techniques created [25].

Convolutional neural network (CNN) most often apply
to image processing problems where a computer identifies
the object in an image. CNN can also be used in natural
language processing projects as well. CNN modelling is
adequate for processing and classifying images. A regular
neural network has three layers: an input layer, a hidden
layer, and an output layer. The input layer has different
forms, whereas the hidden layer performs calculations on
these inputs. The output layer delivers the outcome of the
calculations and extractions. Each of the layers contains
neurons and has its weight connected to the neurons in the
previous layer. Hence, the data that is provided in the net-
work does not produce assumptions via the output layer.
However, the regular neural network cannot be applied if
the data consists of images or languages. This is where convo-
lutional neural network (CNN) comes in. CNN treats data as
spatial data. Unlike regular neural network, the CNN
neurons are not connected to every layer from the input
layers to the hidden layers, and finally, the output layers only
choose the neurons closest to it with the same weight. CNN
upholds the spatial aspect of the dataset, which means that
it undergoes a filtering process that simplifies complex
images to better-processed images that are understood. The
CNN is made up of many layers, consisting of several indi-
vidual layers known as the convolutional layer, the pooling
layer, and a fully connected layer. Inside, the layer of the
CNN also consists of the rectified linear unit layer (ReLU).
The ReLU layer activates the function to ensure nonlinearity

as the data progresses through each layer in the network.
Without ReLU, the data that is provided at the input layer
would lose the dimensionality that is required in the network.
The fully connected layer performs classification on the data-
sets. The CNN works by placing a filter over an array of
image pixels and creating a convolved feature map. The anal-
ogy is like looking at an image through a window allowing
specific features within the image to be seen. This is also
known as the typical 2D convolutional neural network. The
pooling layer reduces the sample size of the particular feature
map, which speeds up the process by reducing the parame-
ters the network needs. The output is the pool featured
map, consisting of two execution methods, i.e., max pooling
and average pooling. Max pooling takes the maximum input
of a particular convolved feature, whereas the average pool-
ing takes the convolved feature’s average. The next step is
feature extractions, whereby the network creates a picture
of the image data based on its mathematical rules. The
images’ classification requires the network to move into the
fully connected layer by flattening and simplifying the
images. A complex set of neural network connections can
only process linear data. If the data is unlabelled, unsuper-
vised learning methods can be applied by using autoencoders
to compile the data in a low dimension space performing
calculations, then, additional layers are reconstructed to
upsample the existing data.

CNN is the reason DL is so well known, but it has limita-
tions and fundamental drawbacks. The max-pooling or
successive convolutional layers lose valuable information.
CNN needs a large amount of data to work, and it loses infor-
mation in the pooling area, which in turn reduces spatial
resolution, resulting their outputs to be invariant to small
changes in the inputs. Currently, the issue is addressed by
building complex architectures around CNNs to recover the
lost information.

Generative adversarial network (GAN) trains two
networks which comprise the artificial data samples that
resemble data in the training set and the discriminative net-
work that distinguishes the artificial and the original model:
in simple means, GAN has a generator data, and the other

Table 1: Significant contributions of the neural network to deep
learning [23, 24].

Milestone/contribution Year

McCulloch-Pitts neuron 1943

Perceptron 1958

Backpropagation 1974

Neocognition 1980

Boltzmann machine 1985

Restricted Boltzmann machine 1986

Recurrent neural networks 1986

Autoencoders 1987

LeNet 1990

LSTM 1997

Deep belief networks 2006

Deep Boltzmann machine 2009
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is the discriminative data. The generator data is the counter-
feiter that consistently produces artificial data, and the
discriminator will try to expose the counterfeiter. Each time
the discriminator manages to identify the image as a counter-
feit, the generator will keep improving it until it is as accurate
as possible.

Capsule networks is an artificial neural network that is
significantly new. It is a network that applies local capsules
in an artificial neural network that consists of complicated
internal computations on the inputs and encapsulates these
computations’ results into a small vector of highly informa-
tive outputs. CapsNet architecture reached state-of-the-art
performance on MNIST and had better performance than
CNNs on MultiMNIST [26].

3. Radiology Perspective of Coronavirus Disease
2019 (COVID-19)

In December 2019, a lower respiratory tract feverish illness of
unfamiliar derivation was informed in a cluster of patients in
Wuhan City, Hubei Province, China. Coronavirus disease
2019 (COVID-19) is accountable for this epidemic to date.
Other corresponding pulmonic conditions have been docu-
mented as being triggered by other strains of the coronavirus
family. The most notable instances are the severe acute respi-
ratory syndrome (SARS) and the Middle East respiratory
syndrome (MERS). The SARS epidemic was under control
with no human contaminations reported since 2003 whereas
minor MERS occurrences continue to be stated. Hence,
imaging is an essential analytical procedure tool observing
disease development and coronavirus-related pulmonary
syndrome [27]. Imaging structures in critical and chronic
phases of SARS and MERS are inconsistent and inexplicit
[28]. The first accounts of imaging discoveries of COVID-
19 have also been described as inconclusive [29–31].
Researchers are conducting various studies to distinguish
further and identify the imaging features of this new corona-
virus syndrome, but the information is still inadequate.

The incident of COVID-19 intensified beyond human
beings comprehension; more clusters and incidences are
reported daily by the several ten thousand in some parts of
the world. The disorder’s etiologic and medical structures
are comparable to SARS and MERS; the knowledge and apti-

tude from those pulmonary syndromes can support handling
the sharp increase of COVID-19 eruption. This review
segment will allow us to be familiar with the radiologist and
imaging spectrum of coronavirus syndromes and discuss
the reported imaging features of COVID-19.

SARS was discovered in 2003 as the first epidemic of the
new era in Guangdong Province, China, which its clinical
discovery presented as novel viral pneumonia. The clinical
disease-infested 8,422 individuals demanded 916 lives before
it was confined, and no occurrence has been reported ever
since [32]. MERS was revealed in Saudi Arabia, where a
patient’s sputum consisted of the novel coronavirus in 2012
[32]. The disease has infected 2,492 individuals worldwide,
and 858 human lives were lost, as the latest discovery was
reported in December 2019 [32].

There are various imaging features of SARS and MERS
that share similarity to one another, but some differences
are shown in Table 2. The analysis of COVID-19 is hypothe-
sised on the foundation of indications of pneumonia (e.g.,
dry cough, lethargy, myalgia, malaise, and dyspnea similar
to symptoms of SARS and MERS) as well as past travelling
activities to China or acquaintance with a COVID-19 patient.
The development of the diseases and their severity rely on
chest imaging to acquire valuation, discovery, and identifica-
tion. A portable chest X-ray (CXR) is used as the first-line
modality for COVID-19 patients instead of CT scans, as CT
scans are applied in specific situations. Portable chest X-ray
(CXR) has the benefit of discarding patients’ need to travel
from one location to another and diminish the use of
personal protective equipment (PPE). The arrangement is
to avoid nonessential imaging and transportations to the
radiology department. Czawlytco et al. discovered that chest
X-ray is insensitive in the early detection of COVID-19 with
a sensitivity of only 59% [33]. Chest X-ray is not recom-
mended for patients with flu/influenza-like symptoms. It is
also not recommended to be used on confirmed COVID-19
patients with mild symptoms. Therefore, chest X-ray is desig-
nated for COVID-19 patients with acute respiratory status or
COVID-19 patients with mild symptoms but has high-risk
factors for developing severe disease. Chest radiography
and tomography cannot be used as first-line screening or
diagnosis in COVID-19, even with a normal chest X-ray
and CT images, the possibility of COVID-19 cannot be ruled
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Figure 1: Mindmap of machine learning (ML) algorithm created by Robert Herman from mind meister [25].
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out as a patient might be asymptomatic, and the lung condi-
tion maintains to be expected. However, information of
COVID-19 patients initially declared hostile on the virus
using the real-time reverse transcriptase-polymerase chain
reaction (RT-PCR) was discovered to have COVID-19 via
early CT findings [32]. In the meantime, initial findings in
imaging may show normal conditions of the lungs. Hence,
standard chest imaging does not rule out the possibility of
being infected with SARS-CoV-2 [32].

3.1. Artificial Intelligence on Chest X-Ray (CXR) and CT
Scans. With the struggle against the SARS-CoV-2 rapid

infection, active screening and immediate medical response
for the infected patients are desperately needed. RT-PCR is
a common screening application which is manual, time-con-
suming, intricate, and arduous with only a 63% positivity rate
[34, 35]. Research regarding early identification of COVID-
19 by using CXR and other imaging modalities is still in
development. The Guardian reported information shared
by a respiratory physician that SARS-CoV-2 pneumonia is
different from common viral pneumonia cases [36]. How-
ever, the images of several viral cases of pneumonia are com-
parable with other infectious and inflammatory lung diseases
[34]. The COVID-19 symptoms being similar to other viral

Table 2: Comparison of clinical and radiological features of COVID-19, SARS, and MERS [32].

Feature COVID-19 SARS MERS

Clinical sign or symptom

Fever or chills Yes Yes Yes

Dyspnea Yes Yes Yes

Malaise Yes Yes Yes

Myalgia Yes Yes Yes

Headache Yes Yes Yes

Cough Dry Dry Dry or productive

Diarrhoea Uncommon Yes Yes

Nausea or vomiting Uncommon Yes Yes

Sore throat Uncommon Yes Yes

Arthralgia Yes Uncommon

Imaging finding

Acute phase

Initial imaging

Normal 15–20% of patients 15–20% of patients 17% of patients

Abnormalities

Common

Peripheral multifocal airspace
opacities (GGO, consolidation,
or both) on chest radiography

and CT.

Peripheral multifocal airspace opacities
(GGO, consolidation, or both) on chest

radiography and CT.

Peripheral multifocal airspace
opacities (GGO, consolidation, or
both) on chest radiography and

CT.

Rare Pneumothorax Pneumothorax Pneumothorax

Not seen Cavitation or lymphadenopathy Cavitation or lymphadenopathy Cavitation or lymphadenopathy

Appearance
Bilateral, multifocal, basal
airspace; normal chest

radiography findings (15%)

Bilateral, multifocal basal airspace on
chest radiography or CT (80%); isolated

unilateral (20%)

Unilateral, focal (50%); multifocal
(40%); diffuse (10%)

Follow-up
imaging appearance

Persistent or progressive airspace
opacities

Unilateral, focal (25%); progressive (most
common, can be unilateral and

multifocal or bilateral with multifocal
consolidation)

Extension into upper lobes or
perihilar areas, pleural effusion

(33%), interlobular septal
thickening (26%)

Indications of
poor prognosis

Consolidation (vs. GGO)
Bilateral (like ARDS), for or more lung
zones, progressive involvement after 12 d

Greater involvement of the lungs,
pleural effusion, pneumothorax

Chronic phase
Unknown, but pleural effusion
and interlobar septal thickening

have not yet been reported

Transient reticular
opacities

Yes Yes

Air trapping Common (usually persistent)

Fibrosis More than one-third of patients Rare One-third of patients

Note: SARS: severe acute respiratory syndrome; MERS: Middle East respiratory syndrome; COVID-19: coronavirus disease 2019; GGO: ground-glass opacity;
ARDS: acute respiratory distress syndrome [32].
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pneumonia can result in wrong diagnosis and prognosis in
many hospitals, especially in the emergency department
which is overloaded and understaff [34].

Today, many biomedical problems and complications
such as brain tumour detection, lung disease detection, breast
cancer detection, and other oncological emergencies are
using artificial intelligence (AI) solutions [34]. Convolutional
neural network (CNN), a deep learning technique, has been
advantageous in revealing image features that are not obvious
in the original image [34]. The accuracy of the deep learning
algorithm relies on imaging quality, and CNN can improve
imaging quality in low-light images from a high-speed video
endoscopy, discover pulmonary nodules through CT images,
identify paediatric pneumonia from CXR images, and
automatically labelling of polyps in a colonoscopy and cysto-
scopic image analysis from videos [34]. Hence, only con-
firmed positive COVID-19 patients’ images were selected.
Wang et al. (2017) have shown to accumulate datasets that
allow significant developments in medical imaging tools to
progress in the prediction of various pneumonia and the out-
come towards the infected patient [37, 38]. Rajpurkar et al.
(2017) and Cohen et al. (2019) works on both organised
models to foresee various pneumonia [37, 39, 40]. Deep
learning models and algorithms are tools that can be devel-
oped for triage cases during the shortage of physical tests,
particularly RT-PCR [37, 41, 42]. The American College
Radiology (ACR) only recommended portable CXR in an
ambulant care facility when required and strongly discourage
CT to apply and inform decisions on a suspected COVID-19
patient and whether or not to conduct RT-PCR test, admit
the patient, provide other treatment, and dissuade the patient
from being quarantines or others [33]. However, deep learn-
ing models and algorithms should predict patient outcomes
and permitting the physician to immediately facilitate care
and management [37, 43]. COVID-19 can be considered in
extraordinary extreme situations, where physicians could be
faced with decisions to select which patient to assign for
which healthcare resources based on the severity level [43].
The tools would serve to monitor the development of
SARS-CoV-2 positive patients’ ailment evolution [37].

3.2. Approached Techniques and Convolutional Neural
Network Architecture. Deep learning (DL) is a subsection of
machine learning, and a convolutional neural network is a
type of deep learning commonly applied in the computer
vision domain. Examples of CNN architectures are LeNet,
AlexNet, GoogLeNet, Visual Geometry Group (VGG) Net,
ResNet, and others [44]. The goal is to apply deep learning
neural network architectures to create practical applications
to improve diagnosis and prognosis performance [44].

Deep CNN was created with LeNet designed to recognise
handwritten digits. However, LeNet has limitations, and
thus, its successor AlexNet was the first deep CNN that
accomplished outstanding results for the organisation and
recognition tasks on the image. Due to hardware limitations
in early 2000, deep CNN architectures’ learning capacity was
restricted to small sample size images. AlexNet was made
applicable to all types of images—its depth was extended
from LeNet’s five layers to eight layers: five convolutional

layers, two fully connected hidden layers, and one fully
connected output layer generalised for different image reso-
lutions. However, it caused overfitting issues. The overfitting
issue was fixed with the dropout algorithm, which arbitrarily
eliminated some transformational units during the training
process. DenseNet is a modern CNN architecture that
requires fewer visual object recognition parameters. It is the
product of the previous layer that combines with the output
of a future layer. The objective of DenseNet is to recognise
visual objects by densely connecting all the layers. ResNet is
known as the residual net, which divides a layer into two
branches, where one branch does nothing to the signal, and
the other processes ResNet adds the previous layer with the
future layers. Usually, a deep neural network tends to
randomly overfit and sometimes produce more preliminary
results than a network with a few layers.

CNN is based on biological processes of the visual cortex
of the human and the animal brain. CNN consists of multiple
layers where a higher layer is connected to a lower layer to
study abstract features of the images by considering the
spatial relationships between the receptive fields. This allows
CNN to recognise patterns and identify images within the
layers of images. Various CNN models apply different layers,
number of neurons, and receptive fields in the respective
layers and algorithm [44]. Integrating transfer learning into
the technique modifies the CNN models applied to pretrain
many radiology image datasets to diagnose COVID-19 prob-
lems [44]. This technique bypasses the hassle to train all the
images from scratch everytime new cases or images are iden-
tified. However, this method is not valid with the amount of
radiology images dataset available for the public.

Based on the studies in Table 3, several studies use deep
learning for COVID-19 diagnosis using radiology images.

Table 3 includes some research conducted with deep
learning models using two types of medical images, i.e.,
chest-X-ray (CXR) and CT images. Based on the table, the
majority of the researchers used CXR images because of their
availability. The CXR requires low memory space and high
results performance which reassure researchers to apply
these images into the respective deep learning models. There
are a total of 52 researches using various deep learning
methods to achieve results. Out of the 52 journals mentioned
above, 34 of the studies used CXR images, 17 studies used CT
images, and 4 of the studies used CT and CXR images. More
CXR images from COVID-19 patients found in the public
databases encouraged researchers to study deep learning
utilising these images. Journals from the medical field often
mentioned that CT images show higher accuracy perfor-
mance, but these accuracies were debunked because it was
not explicitly shown in the deep learning-based CAD sys-
tems. The nature of the CT images that produce many
cross-sections just for one patient result in high memory
usage for the facility to handle. In general, CT images were
previously deemed more accurate than CXR images because
the CT images’ cross-section images are individually labelled.
Hence, studies that utilised the combination of CT and CXR
images show promising results. However, studies with 3D
data have lower performance than 2D data, mainly because
there are primarily 2D data available for the public to use.
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Table 3: Summary of deep learning methods and CNN architectures for COVID-19 using radiology images. CT images are computer
tomography images, and CXR images are chest X-ray images.

No. Papers Data Types of images
AI methods to establish

the algorithm
CNN architecture

Results for detecting
COVID

1 [44, 45]

Total images: 4,356,
COVID-19 images:
1,296, pneumonia
images: 1,735,

nonpneumonia images:
1,325

CT 3D deep learning ResNet-50 and COVNet
Area under the curve

(AUC): 0.96

2 [44, 46]

Total images: 618,
COVID-19 images: 219,
influenza-A (H1N1,
H3N2, H5N1, H7N9,

and others), images: 224,
normal healthy lungs

images: 175

CT
3D CNN model for

segmentation
Location-attention

network and ResNet-18
Accuracy of 86.7%,
average time: 30 s

3 [44, 47]

(PA) posterior-anterior
images: 5,941, normal
images: 1,583, bacterial
pneumonia images:

2,786, non-COVID-19
viral pneumonia images:

1,804, COVID-19
images: 68

CXR
Drop weights based
Bayesian CNNs

Bayesian ResNet50V2 Accuracy of 89.92%

4 [44, 48]
COVID-19 images: 453,
training images: 217

CT
Inception migration-

learning model

Internal validation:
accuracy: 82.9%,
specificity: 80.5%,

sensitivity: 84%; External
testing dataset: accuracy:
73.1%, specificity: 67%,

sensitivity: 74%

5 [44, 48]

Total images: 1,065,
COVID-19 images: 325;

viral pneumonia
images: 740

CT
Modified inception

transfer-learning model

Accuracy: 79.30%,
specificity: 0.83,
sensitive: 0.67

6 [44, 49]

Total patients: 133,
severe/critical patients:
54, nonsevere/critical

patients: 79

CT
Multilayer perception
and long short term
memory (LSTM)

Area under the curve
(AUC): 0.954

7 [44, 50]

Total images: 4,266,
COVID-19 images:
2,529, CAP images:
1,338, influenza A/B
images: 135, standard
images: 258, total

patients: 3,177, COVID-
19 patients: 1,502,

influenza A/B patients:
83, CAP patients: 1,334,
healthy subjects: 258

CT 2D deep learning CNN ResNet 152

Accuracy: 94.98%, AUC
97.71%, sensitivity:
90.19%, specificity:

95.76%, the average time
is taken to read: 2.73 s

8 [44, 51]

Total 1,136 cases from 5
hospitals, COVID-19
images: 723, non-

COVID-19 images: 413

CT
3D deep learning

method
UNet ++ & ResNet-50

Specificity: 0.922,
sensitive: 0.974

9
[44, 52]

,
COVID-19 patients: 50,
ordinary people: 50,

CXR 5 pretrained CNN
ResNet-50, ResNet101,
ResNet52, InceptionV3,
and inception-ResNetV2

ResNet-50: accuracy:
98.0%
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Table 3: Continued.

No. Papers Data Types of images
AI methods to establish

the algorithm
CNN architecture

Results for detecting
COVID

10 [44, 53]
Total images:13,975, total

patients:13,870
CXR Deep learning CNN COVID-net Accuracy: 92.4%

11 [44, 54] Total patients: 157 CT CNN ResNet-50
Area under the curve

(AUC): 0.996

12 [34, 44]

Normal images: 1,341,
viral pneumonia images:

1,345, COVID-19
images: 190

CXR CNN
AlexNet, ResNet-18,

DenseNet-201,
SqueezeNet

Accuracy: 98.3%

13 [44, 55]
Total COVID-19 images:
531, CXR images: 170,

CT images: 361
CT and CXR

CNN with transfer
learning

Pretrained AlexNet
Accuracy: CXR images:
98.3%, CT image: 94.1%

14 [6]

Total images: 5,232,
normal images: 1,346,
bacterial pneumonia
images: 2,538, viral

pneumonia images: 1,345

CXR
Deep learning

framework using
transfer learning

Pretrained on ImageNet,
trained using AlexNet,
ResNet18, inception V3,

DenseNet121,
GoogLeNet, and
ensemble model

Ensemble model:
accuracy: 96.4%, recall:
99.62% (unseen data)

15 [5]

Total images: 5,247,
bacterial pneumonia
images: 2,561, viral

pneumonia images 1,345,
normal images: 1,341

CXR
Pretrained deep CNN
and used for transfer

learning

AlexNet, ResNet18,
DenseNet201, and

SqueezeNet

DenseNet201 accuracy:
normal and pneumonia:
98%, normal images,
bacterial, and viral
pneumonia: 93.3%,
bacterial and viral
pneumonia: 95%

16 [17]

Total images: 306,
COVID-19 images: 69,
normal images: 79,
bacterial pneumonia
images: 79, viral

pneumonia images: 79.
The dataset number

increases to 8,100 images
after using the GAN

network.

CXR

Deep transfer learning:
using GAN network to
generate more images to
help detect the virus.
Three deep transfer

models.

AlexNet, GoogLeNet,
Restnet18 with

performance measures in
different scenario and

classes

GoogLeNet accuracy:
80.56%

17 [56]

Dataset was collected
from medRix and
bioRxiv; COVID-19
images: 349, total
patients: 216

CT
Multitask learning and

self-supervised
DenseNet-169, ResNet-

50
F1 score: 0.90, AUC: 0.98,

accuracy: 0.89

18 [36]

Total images: 2,200,
COVID-19 images: 800,

viral pneumonia
images: 600

CT
Machine learning
technique using
Microsoft Azure

ResNet
High accuracy: 91%,

overall accuracy: 87.6%

19 [57]
Total images: 15,495,
normal images: 12,544,
COVID-19 image: 2,951

CXR CNN model
UNet, UNet++, DLA,

DenseNet-121, CheXNet;
inception-v3, ResNet-50

F1 score: 85.81%,
sensitivity: 98.37%,
specificity: 99.16%

20 [58]
Diverse datasets from a

different source
CT

Deep fully convolutional
networks (FCN)

UNet, ResDense FCN
DSC: 0.780, sensitivity:
0.822, specificity: 0.951

21 [59]

Total images: 954,
COVID-19 images: 308,
normal images: 323,

pneumonia images: 323
images

CXR
Deep learning modules

using stacked
architecture concept

DenseNet; GoogleNet
Sensitivity: 0.91,

specificity: 0.95, F1 score:
0.91, AUC: 0.97
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Table 3: Continued.

No. Papers Data Types of images
AI methods to establish

the algorithm
CNN architecture

Results for detecting
COVID

22 [52]

Total images: 7,406,
COVID-19 images: 341,
normal images: 2,800,

viral pneumonia images:
1,493, bacterial

pneumonia images: 2,772

CXR
2D five pretrained CNN

based models

ResNet50, ResNet101,
ResNet152, InceptionV3,
and inception-ResNetV2

COVID-19 and normal:
accuracy: 96.1%,
COVID-19 and

pneumonia accuracy:
99.5%, COVID-19 and
bacterial accuracy: 99.7%

23 [60]

Total images (COVID-
19, pneumonia, and
normal): 1,266,

COVID-19 images: 924

CT
3D pretrained the deep
learning system and

validate it.
DNN

Sensitivity (train):
78.93%, specificity
(train): 89.93%,

sensitivity (val): 80.39%,
specificity (val): 81.16%

24 [61]

Total images (COVID-
19, bacterial, and
normal): 275,

COVID-19 images: 88

CT
2D pretrained ResNet 50

using the feature
pyramid network (FPN)

DRE-net
Sensitivity: 93%,
specificity: 96%,
accuracy: 99%

25 [62]
Total images: 624,

COVID-19 images: 50
CXR 2D GAN+TL

AlexNet, GoogLeNet,
ResNet18, SqueezeNet

Accuracy: 99%

26 [63]

Total images (COVID-
19, bacterial, and

normal): 1,427, COVID-
19 images: 224, bacterial
and viral pneumonia

images: 714

CXR
2D transfer learning

(TL)

VGG19, MobileNet,
Inception, Xception,
Inception ResNet v2.

Sensitivity: 98.66%,
specificity: 96.46%,
accuracy: 94.72%

27 [64]

Total images (COVID-
19, pneumonia, normal):

6,008, COVID-19
images: 184

CXR
2D transfer learning

(TL)
Three ResNet models Accuracy: 93.9%

28 [65]

Total images (COVID-
19, pneumonia, and
normal): 8,850,

COVID-19 images: 498

CXR
2D convolutional
autoencoder (CAE)

AE: COVIDomaly Accuracy: 76.52%

29 [66]

Total images (COVID-
19, pneumonia, and
normal): 2,905,

COVID-19 images: 219

CXR 2D CNN+ k-NN+ SVM Accuracy: 98.70%

30 [67]

Total images (COVID-
19, pneumonia, and
normal): 2,905,

COVID-19 images: 219

CXR

2D using
hyperparameters

Bayesian optimisation
algorithm

ANN+AlexNet

Sensitivity: 89.39%,
specificity: 99.75%,
accuracy: 98.97%, F-

score: 96.72%

31 [68]

Total images (COVID-
19, pneumonia, and

normal): 502,
COVID-19 images: 180

CXR
2D patch-based

convolutional neural
network

ResNet-18
Sensitivity: 76.90%,
specificity: 100.00%

32 [69]

Total images (COVID-
19, pneumonia, and
normal): 2,905,

COVID-19 images: 219

CXR 2D
Ensemble: Resnet50 and

VGG16
Sensitivity: 91.24%,
specificity: 99.82%

33 [70]
Total images (COVID-19

and normal): 2,492,
COVID-19 images: 1,262

CT 2D TL and DenseNet201 Accuracy: 99.82%

34 [71]
COVID-19, pneumonia,
and normal images from

Cohen et al. [37]
CXR 2D Xception

Sensitivity: 97.09%,
specificity: 97.29%,
accuracy: 97.40%
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Table 3: Continued.

No. Papers Data Types of images
AI methods to establish

the algorithm
CNN architecture

Results for detecting
COVID

35 [72]
Total images (COVID-19

and normal): 380,
COVID-19: 180

CXR 2D
5 pretrained models+

SVM
Accuracy: 94.7%

36 [73]

Total images (COVID-
19, pneumonia, normal,
and non-COVID-19):
2,905, COVID-19

images: 219

CXR

2D pretrained models
such as ResNet101,

Xception, InceptionV3,
MobileNet, and NASNet

InstaCovNet-19
Accuracy: 99.08%,
accuracy: 99.53%

37 [74]
Datasets contain

COVID-19, pneumonia
and normal images.

CXR 2D 5 pretrained CNNs Accuracy: 95.00%

38 [75]

Datasets contain
bacterial pneumonia,
non-COVID viral
pneumonia, and

COVID-19 images.

CXR 2D 5 COVID-CAPS
Sensitivity: 90%,
specificity: 95.8%,
accuracy: 95.7%

39 [76]
Total images (COVID-19

and normal): 5,000,
COVID-19 images: 184

CXR 2D 5 TL+ pretrained models
Sensitivity: 100%,
specificity: 98.38%

40 [55]
Total images (COVID-19

and normal): 526,
COVID-19 images: 238

CXR+CT 2D TL+AlexNet model
Sensitivity: 72%,
specificity: 100%,
accuracy: 94.1%

41 [77]
Total images (COVID-19

and normal): 320,
COVID-19 images: 160

CXR+CT
2D Apache spark

framework
TL + inceptionV3 &

ResNet5

Sensitivity: 72%,
specificity: 100%,
accuracy: 99.01%

42 [78]

Total images (COVID-
19, pneumonia, and
normal): 4,575,

COVID-19 images: 1,525

CXR

2D CNN used for deep
feature extraction, and

LSTM is used for
detection using the
extracted feature

LSTM+CNN
Sensitivity: 99.2%,
specificity: 99.9%,
accuracy: 99.4%

43 [79]

Dataset 1 images
(COVID-19, pneumonia,

and normal): 4,448,
COVID-19 images:

2,479, dataset 2 images
(COVID-19, pneumonia,

and normal): 101,
COVID-19 images: 52

CXR 2D 3D inception V1

Dataset 1: accuracy:
99.4%; dataset 2:
sensitivity: 98.08%,
specificity: 91.30%,
accuracy: 93.3%

44 [80]

Total images (COVID-
19, pneumonia, and
normal): 1,343,

COVID-19 images: 446

CXR 2D
Conditional GAN:
LightCovidNet

Accuracy: 97.28%

45 [81]
Total images (COVID-19

and normal): 8,504,
COVID-19 images: 445

CXR 2D TL VGG-16 model
Sensitivity: 98.0%,
specificity: 100.00%,
accuracy: 94.5%

46 [82]
Total images (COVID-19

and normal): 746,
COVID-19 images: 349

CT 2D

TL+ ensemble of 15
pretrained models:

EfficientNets(B0-B5),
NasNetLarge,
NasNetMobile,

InceptionV3, ResNet-50,
SeResnet 50, Xception,

DenseNet121,
ResNext50, and

Inception_resnet_v2

Accuracy: 85.0%

10 Computational and Mathematical Methods in Medicine



The table also shows that deep learning models produced
more stable results with more data.

3.3. COVID-19 Radiology Data Sources for Potential
Modelling. This section describes the radiology imaging data
source available for researchers to exploit the capabilities of
deep learning techniques using CNN architectures to over-
come COVID-19. The variability of the data requires different
AI methods to study. Radiology images like CXR and CT
images are high-dimensional data requiring CNN-based
models to process the images like LeNet, AlexNet, GoogLeNet,
VGGNet, and ResNet [44]. AlexNet is a category of CNN
designed by Alex Krizhevsky in 2012. It is a popular CNN that
sets the essential milestones to its incomers like network-in
network [89] by Lin et al. [90], VGGNet [91] by Simonyan
et al., and GoogLeNet (Inception v-1) by Szegedy et al.

CNN architecture application requires a large dataset for
training, testing, and validating. Table 4 describes the avail-

able data sources for COVID-19 radiology images, mainly
CXR and CT images.

The data sources depicted in Table 4 are the standard
open-source radiology images available for the public to
access, study, and characterise using CNN architectures.
However, based on the table, there are minimal COVID-19
data to comprehensively utilise AI techniques to conduct an
intensive study. This creates concerns and difficulties when
utilising these techniques in real-world practice with a
limited number of datasets available.

4. Challenges in the Interpretation and
Application of Imaging Features of COVID-
19 and Suggestions to Overcome

In theory, utilising AI is to eliminate fake news that can be
found on the worldwide web and various social media plat-
forms to ensure authenticity, responsible, and dependable

Table 3: Continued.

No. Papers Data Types of images
AI methods to establish

the algorithm
CNN architecture

Results for detecting
COVID

47 [83]
Total images (COVID-19

and normal): 2,482,
COVID-19 images: 1,252

CT 2D AE+ random forest
Specificity: 98.77%,
accuracy: 97.87%

48 [84]
Total images (COVID-19

and normal1): 50,
COVID-19 images: 25

CXR 3D COVIDX-net
Sensitivity: 100.00%,
specificity: 80.00%

49 [85]

Total images
(COVID-19 and
Normal): 800,

COVID-19 images: 400

CXR

2D using modern and
traditional machine
learning methods:

(ANN), (SVM), linear
kernel and (RBF), k
-nearest neighbor

(k-NN), decision tree
(DT), and CN 2 rule
inducer techniques

Deep learning models:
MobileNets V2,

ResNet50, GoogleNet,
DarkNet, and Xception

ResNet50 accuracy:
98.8%

50 [86]

Total images
(COVID-19 and
Normal): 800,

COVID-19 images: 400

CXR

2D CLAHE and
Butterworth bandpass
filter was applied to
enhance the contrast

and eliminate the noise.

The hybrid multimodal
deep learning system

COVID-deep net system.

Sensitivity: 99.9%,
specificity: 100.0%,
accuracy: 99.3%

51 [87]

Datasets from Cohen
et al. [37]. Total images

(COVID-19 and
normal): 800, COVID-19

images: 400

CXR

2D benchmarking and
diagnostic models:
decision matrix that
embedded a mix of 10
evaluation criteria and
12 diagnostic models,

also known as
multicriteria decision
making (MCDM)

TOPSIS is applied for
benchmarking and

ranking purpose, while
entropy is used to

calculate the criteria’s
weights. SVM is selected
as the best diagnosis

model

Coefficient value: 0.9899

52 [88]

Total images
(COVID-19 and
normal): 800,

COVID-19 images: 400

CXR

2D hybrid deep learning
framework, pretrained
deep learning models
incorporating of a
ResNet34, and high-
resolution network

model

COVID-CheXNet
system

Sensitivity: 99.98%,
specificity: 100.0%,
accuracy: 99.99%
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information about the pandemic. However, scientists face
many challenges and limitations shown in Table 5 below to
produce ethical and reliable results for the public.

When implementing a DL model, test and train images
from the same goal are used to distribute data and predict
the medical images into their respective categories. The idea
is impossible to achieve due to limited data availability or
weak labels [9]. Despite many cases happening worldwide,
we have very limited COVID-19 CXR or CT image data pub-
licly available. Therefore, it is difficult to train the DL models
and distinguish the images between COVID-19-related CXR
and CT and non-SARS-CoV-2 viral, bacterial, and other
pathogen-related CXR and CT images. The Radiological
Society of North America (RSNA) [97] and Imaging
COVID-19 AI Initiative in Europe [98] are aimed at provid-
ing easily accessible data to the public. These data allow
various features across categories to enhance interclass vari-
ance, leading to better DL performance. Due to lack of data,
the model will overfit and produce weakly generalised results
[99]. Hence, data augmentation has been proven to be effec-
tive in training discriminative DL models. Examples of data

augmentation techniques are flipping, rotating, colour jitter-
ing, random cropping, elastic distortions, and generative
adversarial network- (GAN-) based synthetic data generation
[100]. Medical images found in ImageNet have different
visual characteristics showing high interclass similarities
[101]. Thus, traditional augmentation methods that perform
simple image alterations are less effective [102]. GAN refers
to the specialised algorithms and cavernous learning systems
towards the compelling predictions and transformation of
data from one to another that produce dynamic data and
images so that better recognition and analysis can be done.
GAN-based DL models are applied to generate data artifi-
cially. Therefore, to overcome the data-scarce situation,
GAN is used to develop effective data augmentation strate-
gies for medical visual recognition.

Based on the journal written by Afshar et al., CNNs that
were applied to identify positive COVID-19 CXR images are
prone to lose spatial information between image instances
and require a large dataset to compensate for the loss.
Capsule networks, a.k.a COVID-CAPS, is an alternative
modelling framework capable of handling small datasets.

Table 4: Available data sources about COVID-19 radiology images for both chest X-ray and CT images.

No. Sources Data type No. of images Image type Types of images Links

1
J. P. Cohen’s

GitHub

Viral pneumonia (SARS,
varicella, influenza) and
COVID-19, bacterial

pneumonia (Streptococcus
spp., Klebsiella spp.,

Escherichia coli, Mycoplasma
spp., Legionella spp., unknown,

Chlamydophilla spp.) and
COVID-19, fungal

(Pneumocystis spp., lipoid)
and COVID-19

Raw images: 910,
annotated images: 210

jpg and
png

CXR
https://github.com/
ieee8023/covid-
chestxray-dataset

2
European
Society of
Radiology

Total cases or images unknown N/A pdf CXR and CT

https://www.eurorad
.org/advanced-
search?search=

COVID

4 Kaggle

Posterior-anterior (PA),
anterior-posterior (AP) lateral
for X-rays and axial or coronal

for CT scans

Normal images: 1,576,
pneumonia ARDS images: 2,
viral pneumonia images: 1,493,
COVID-19 images: 58, SARS
images: 4, bacterial pneumonia

images: 2,772, bacterial
Streptococcus images: 5

png, jpg,
jpeg, and
others

CXR and CT
https://www.kaggle
.com/bachrr/covid-

chest-xray

5 UCSD-AI4H
Total: 349 images
from 216 patients

COVID-19 images: 349, non-
COVID-19 images: 397

jpg and
png

CT
https://github.com/

UCSD-AI4H/
COVID-CT

6 MedSeg

Images were segmented by a
radiologist using 3 labels:

ground-glass (mask value = 1),
consolidation (=2), and pleural

effusion (=3).

Image volumes—9 volumes, a
total of >800 slices, COVID-19
masks 350 annotated slices.
Lung masks > 700 annotated

slices

jpg CT
http://

medicalsegmentation
.com/covid19/

7
COVID-19
Radiography
Database

COVID-19 images: 219,
normal images: 1,341, viral
pneumonia images: 1,345

png CXR

https://www.kaggle
.com/

tawsifurrahman/
covid19-

radiographydatabase
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Capsule network consists of capsules in the convolutional
layers. It has the potential to improve further diagnosis capa-
bilities. Hence, using capsule network to pretrain the images
is expected to improve the accuracy where each capsule in the
convolutional layers represents a specific image instance at a
specific location through several neurons. The routing agree-
ment in the capsule network helps CNN models to identify
spatial relations.

5. Conclusion and Future Works

COVID-19 has disrupted the lives of people worldwide. The
number of casualties related to the disease cannot be
contained and has increased by the thousands daily. AI tech-
nologies have existed to help us live comfortably and have
many successes and contributions in streamlining processes
and procedures. However, the spread of COVID-19 is excep-
tionally lethal as it transmits faster and broader than ever.
The coronavirus is also continuously revolutionising with
new spikes, and protein mutations have been reported in
countries like Malaysia, United Kingdom, South America,
Australia, the Netherlands, and Singapore. The clinical impact

of this discovery and its infectivity or aggressiveness is still
unknown. Whether or not the mutation will affect the devel-
opment of radiography imaging is also still a mystery.

Based on the worldmeter website: https://www
.worldometers.info/coronavirus/, some countries failed to
respond to the disease, some are barely tackling the situation,
and some are handling the situation much more successfully.
Hence, a country that managed to have the situation under
control might experience a spike increase overnight if society
became lenient in taking proper measures.

Although many researchers have published their works,
the number of contributions and AI applications towards
tackling COVID-19 is rudimentary. With the petrifying
number of deaths and infected patients discovered daily
and the virus’s mutation undergoing speedily and unknow-
ingly, we are nowhere near applying AI on radiography
imaging to identify that the patient is infected with SARS-
CoV-2. The development of AI and radiography imaging is
slow due to the limited availability of COVID-19 datasets.
With the number of people affected worldwide, AI methods
require massive data and several computational models and
CNN architectures to learn and acquire knowledge. The

Table 5: Challenges of radiology imaging addresses and AI applications.

No Applications
Type
of data

Challenges AI methods Sources

1

COVID-19 early detection
using radiology images.
Typically CXR and CT

images

CXR
images

Limited availability of annotated medical
images and medical image classification
remains the biggest challenge in medical

diagnosis.

DeTraC deep convolution neural
network

[14]

2
CXR
images

Finding optimal parameters for the SVM
classifier can be seen as a challenge. Finding
optimal parameters for the SVM classifier can
be seen as a challenge. Finding optimal values
for the relief algorithm can be seen as another

limitation of the study

COVIDetectioNet [92]

3
CT

images

Redundant data such as interferential vessels
can be misdiagnosed as pathology. Radiologists
have difficulty differentiating COVID-19 and
other atypical and viral pneumonia diseases,
which are the same in CT imagery and have

similar symptoms.

AlexNet, VGG-16, VGG-19,
SqueezeNet, GoogleNet, MobileNet-

V2, ResNet-18, ResNet-50,
ResNet-101, Xception

[93]

4
CXR
images

Due to the sudden existence and infectious
nature of COVID-19, systematic collection of
the extensive data set for CNN training is
formidable. Biomarkers found in the CXR

images can be misleading.

Patch-based convolutional network [68]

5
CXR
images

The research is dealing with images taken
directly from patients with severe COVID-19
or some form of pneumonia. However, in the
real world, more people are unaffected by
pneumonia. The limited number of data
available provides a limitation to provide

feasible results.

Multiclass classification and
hierarchical classification, using
texture descriptors and also
pretrained CNN model

[94]

6
CXR
images

Insufficient pulmonary diseases data limit us to
conduct verification techniques.

Localise the areas in CXR
symptomatic of the
COVID-19 presence

[95]

7
CT

images
Shortage of radiology image labelled “data” Segmentation deep network (Inf-net) [96]
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current data that most researchers acquired from open-
source websites is insufficient. Even with the best available
data, it is far from perfect; as the data alone cannot explain
the pandemic’s whole situation. Therefore, for future
research and development, in terms of acquiring radiography
imaging data, the best way is to have access to reliable, global,
open data, and research to build an infrastructure that allows
researchers who are experts in the field of radiology, artificial
intelligence, deep learning, and imaging to navigate and
understand this data and its development.

Most of the COVID-19 radiography image datasets are
stored in different formats, standards, sizes, and quality,
which are obstacles for scientists to speed up development
for COVID-19-related AI research. Therefore, in future
development, COVID-19 radiography images should have
standard operating procedures to allow researchers or scien-
tists and anyone who has the passion and are interested to
contribute and utilise the information freely. A future study
on deep learning models identifying and distinguishing the
difference between COVID-19 images and viral pneumonia
is essential. The study would help radiologists and physicians
understand the virus and evaluate future coronaviruses using
CT and CXR images more efficiently and effectively.
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