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A B S T R A C T

Since the patient is not quarantined during the conclusion of the Polymerase Chain Reaction
(PCR) test used in the diagnosis of COVID-19, the disease continues to spread. In this study, it
was aimed to reduce the duration and amount of transmission of the disease by shortening the
diagnosis time of COVID-19 patients with the use of Computed Tomography (CT). In addition,
it is aimed to provide a decision support system to radiologists in the diagnosis of COVID-19. In
this study, deep features were extracted with deep learning models such as ResNet-50, ResNet-
101, AlexNet, Vgg-16, Vgg-19, GoogLeNet, SqueezeNet, Xception on 1345 CT images obtained
from the radiography database of Siirt Education and Research Hospital. These deep features
are given to classification methods such as Support Vector Machine (SVM), k Nearest Neighbor
(kNN), Random Forest (RF), Decision Trees (DT), Naive Bayes (NB), and their performance is
evaluated with test images. Accuracy value, F1-score and ROC curve were considered as success
criteria. According to the data obtained as a result of the application, the best performance
was obtained with ResNet-50 and SVM method. The accuracy was 96.296%, the F1-score was
95.868%, and the AUC value was 0.9821. The deep learning model and classification method
examined in this study and found to be high performance can be used as an auxiliary decision
support system by preventing unnecessary tests for COVID-19 disease.

. Introduction

The COVID-19 pandemic has halted the economy around the world and has caused congestion in healthcare institutions,
specially intensive care units (Firouzi et al., 2021; Fleuren et al., 2021; Garcia et al., 2021). It requires staying in intensive care in the
ater stages of the COVID-19 disease (Fleuren et al., 2021). It is tried to reach the diagnosis of COVID-19 by performing Polymerase
hain Reaction (PCR) test and rapid antigen test, by taking computed tomography (CT) image or X-ray image. CT images are created
y combining X-ray images taken from multiple angles of the determined area of the patient’s body. The PCR test result used to
iagnose COVID-19 may be negative, especially in the early stage of the disease or when the viral load is low. Taking CT images
rom the patient at this stage plays an important role in the diagnosis of COVID-19 (Kang, Li, & Zhou, 2020). Fang et al. (2020)
ndicated may lead to negative PCR test result due to the immature development of nucleic acid detection technology, differences in
etection rate from different manufacturers and inappropriate clinical sampling. Fang et al. (2020) found the sensitivity of the PCR
est to be 71% in the early detection of COVID-19, and 98% of the sensitivity of the detection of COVID-19 by taking CT images.
T imaging is more preferred than X-ray imaging in the diagnosis of COVID-19. Because in the early stages of COVID-19 disease,
he ground glass image in the lung may not be seen in X-ray images. The sensitivity of X-ray imaging is lower than that of CT
maging (Islam, Karray, Alhajj, & Zeng, 2021).
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Table 1
Summary table: COVID-19 detection studies using X-ray images.

Study Method Number of images Data source Performance

Ucar and Korkmaz (2020) Bayes-SqueezeNet 1203 Normal
1591 Pneumonia
45 COVID-19

Open source 98.26 Accuracy

Panwar, Gupta, Siddiqui, Morales-Menendez, and
Singh (2020)

nCOVNet 142 Normal
142 COVID-19

Open source 88% Accuracy

Oh, Park, and Ye (2020) Patch-based CNN 8851 Normal
6012 Pneumonia
180 COVID-19

Open source 88.9% Accuracy

Mahmud, Rahman, and Fattah (2020) CovXNet 1583 Normal
2780 Bacterial pneumonia
1493 Viral pneumonia
305 COVID-19

Open source 90.2% Accuracy

Panahi, Rafiei, and Rezaee (2021) FCOD 505 Normal
435 COVID-19

Open source 96% Accuracy

This pandemic poses a challenge for healthcare workers around the world. It takes time to evaluate the test results of many
atients. The need for solutions that can provide clinical support for the treatment of COVID-19 patients has increased (Romeo &
rontoni, 2022). Image analysis on medical images with decision support systems can provide accurate and rapid diagnosis of disease
o cope with a large number of patient demands. For example, it may take up to 10 min for radiologists to manually evaluate CT
mages of a patient, while image analysis with decision support systems requires only a few seconds. COVID-19 was spreading very
ast (Fleuren, Tonutti et al., 2021); Although it causes serious organ dysfunction such as pneumonia, kidney failure, sometimes it
esults in death. Therefore, early diagnosis of COVID-19 cases is necessary. Since the patient is not quarantined during the conclusion
f the PCR test used in the diagnosis of COVID-19, the disease continues to spread.

. Research objective

In this research, we created hybrid models by integrating deep learning models, which is a popular branch of machine learning,
nd traditional machine learning methods. Among the models created, a new high-performance COVID-19 detection system was
eveloped with the hybrid model of ResNet-50 and SVM. In our proposed hybrid model framework, there are 2 modules including
eature extraction with deep learning method and classification with traditional machine learning method.

We evaluated the proposed hybrid model on a new dataset of lung CT images obtained from a hospital setting and labeled by a
adiologist. As shown in the experimental results, the proposed hybrid model (ResNet-50+SVM) achieved higher accuracy than the

classical ResNet-50 method.
The main purpose of this article is to reduce the duration and amount of transmission of the disease by shortening the diagnosis

time by taking CT images from patients who were admitted to the hospital due to the suspicion of COVID-19. In addition, it is aimed
to provide a decision support system to radiologists in the detection of COVID-19.

3. Related works

In this section literature summary is discussed based on deep learning-based support systems for COVID-19 detection. The works
in the literature were analyzed one by one based on the research methodologies and experimental results. These works are grouped
according to the types of medical images used, such as CT and X-ray.

3.1. COVID-19 detection using X-ray images

A summary of studies using X-ray images in the literature is given in Table 1. Ucar and Korkmaz (2020) proposed a Bayes-
SqueezeNet based COVIDiagnosis-Net for the diagnosis of COVID-19 on X-ray images. Dataset consisted of 45 COVID-19 cases,
1203 normal and 1591 non-COVID-19 pneumonia cases images. Dataset consists of a combination of three open-source datasets.
According to the results obtained, the proposed model has an accuracy rate of 98.26% and an F1-score value of 98.25%.

Panwar et al. (2020) presented a deep learning neural network-based nCOVnet to detect COVID-19 patients on X-ray images.
In the dataset, 142 X-ray images were selected as COVID-19 positive and 142 X-ray images obtained from the Kaggle dataset were
selected as COVID-19 negative. 30% of this data set was used as test data. The proposed model detected COVID-19 positive images
with an accuracy rate of 97%, while the overall accuracy was recorded as 88%.

Oh et al. (2020) proposed a patch-based CNN with few trainable parameters. The dataset includes X-ray images of 180 COVID-19,
6012 pneumonia and 8851 normal cases. The proposed model has an accuracy rate of 88.9% in the experiment.

Mahmud et al. (2020) used X-ray images as a data set for the detection of COVID-19 and other pneumonia cases. A deep learning
2

model named CovXNet has been proposed. The data set consists of 305 COVID-19, 2780 bacterial pneumonia, 1493 viral pneumonia
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Table 2
Summary table: COVID-19 detection studies using CT images.

Study Method Number of images Data source Performance

Wu et al. (2020) COVNet 1325 Normal
1735 Pneumonia
1296 COVID-19

Multiple hospital environment 90% sensitivity

Zheng et al. (2020) DeCOVNet 630 Multiple hospital environment 90.7% sensitivity

Singh et al. (2020) MODE-CNN 75 Normal
75 COVID-19

Open source database 90.7% sensitivity

Pham (2020) DenseNet-201 397 Normal
349 COVID-19

Open source database 96.2% accuracy

Wu, Chen, Zhong, Wang,
and Shi (2021)

COVIDAL 342 Normal
316 Pneumonia
304 COVID-19

Open source database 86.6% accuracy

Rohila, Gupta, Kaul, and
Sharma (2021)

ReCOV-11 1110 MosMedData 94.9% accuracy

Wang et al. (2021) Modified Inception V3 1065 Multiple hospital environment 85.2% accuracy

Li, Yang, Liang, and Wu
(2021)

CheXNet 397 Normal
349 COVID-19

Open source database 87% accuracy

Shui-Hua et al. (2022) DRAPNet 306 Normal
281 Pneumonia
284 COVID-19
293 SPT

Multiple hospital environment 95.49% F1-Score

Wang, Zhang and Zhang
(2021)

DSSAE 306 Normal
281 Pneumonia
284 COVID-19
293 SPT

Multiple hospital environment 92.32% F1-Score

and 1583 normal images. An accuracy rate of 97.4% was determined for the detection of COVID-19 images, and an accuracy rate
of 90.2% for the general classification.

Panahi et al. (2021) proposed an inception architecture based Fast COVID-19 Detector for rapid detection of COVID-19 on X-ray
mages. The dataset consists of 940 open source X-ray images containing COVID-19 and normal cases. 80% of this data set is reserved
or training and 20% for testing. The accuracy rate in detecting COVID-19 was 96%.

.2. COVID-19 detection using CT images

A summary of studies using CT images in the literature is given in Table 2. Singh, Kumar, Kaur, et al. (2020) proposed a CNN for
etect COVID-19 patients. The dataset consists of 75 COVID-19 positive and 75 COVID-19 negative CT images. Experiments were
onducted using different variations while separating the data set. The best variation in the proposed model was found to be 90%
or training and 10% for testing. The proposed model achieved 90.72% specificity, 90.7% sensitivity, 93.25% accuracy and 89.96%
1 score.

Wu et al. (2020) offered a model called COVNet based on the ResNet50 deep learning technique to reach the diagnosis of COVID-
9. The data set consisting of CT images includes 4536 images, 1296 of which are COVID-19, 1735 are pneumonia and 1325 are
ormal. 90% of the dataset is reserved for training and 10% for testing. According to the experimental results, the proposed model
chieved 90% sensitivity, 96% specificity and 96% AUC.

Zheng et al. (2020) proposed a 3D deep CNN type model (DeCoVNet) for the detection of COVID-19. The dataset consists of
30 CT images collected from the hospital environment. 80% of the data set is reserved for training and 20% for testing. In the
xperiments, 90.1% accuracy, 90.7% sensitivity, 91.1% specificity, 95.9% AUC value were obtained.

Wu et al. (2021) offered deep learning based COVID-AL. The dataset consists of CT images collected from the China Thorax CT
mage Review Consortium (CC-CCII). In this data set, 304 COVID-19, 316 pneumonia and 342 normal case images were used. An
ccuracy rate of 86.6% was founded.

Pham (2020) proposed DenseNet-201 transfer learning model for COVID-19 detection. The performance of the model was
valuated on 746 CT images obtained from the open source dataset. The dataset contains 349 COVID-19 images and 397 normal
mages. Data augmentation was not applied. An accuracy value of 96.2% was obtained in the experimental results.

Wang, Kang et al. (2021) presented by changing the architecture of InceptionV3, which is the transfer-learning model for COVID-
9 detection. The performance of the model was evaluated on 1065 CT images. In the experimental results, an accuracy value of
5.2% was obtained.

Li et al. (2021) proposed a pre-trained CheXNet model for COVID-19 detection. The performance of the model was evaluated
n 746 CT images obtained from the open source dataset. The dataset contains 349 COVID-19 images and 397 normal images. In
he experimental results, an accuracy value of 87% was obtained.
3
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Fig. 1. Block diagram.

Shui-Hua et al. (2022) proposed a new deep rank-based mean pooling network (DRAPNet) model, based on the rank-based mean
pooling module (NRAPM) and inspired by the VGG network, using CT images for COVID-19 detection. The performance of the model
was evaluated on a multi-hospital dataset containing 1164 CT images. The dataset contains 284 COVID-19, 281 pneumonia, 293
pulmonary tuberculosis and 306 normal images. According to the test results, the proposed model reached an F1-score value of
95.49.

Rohila et al. (2021) proposed a model called ReCOV-101 for detection of COVID-19. The model is a DCNN model using ResNet-
101. Preprocessing such as segmentation has been applied on full chest CT scans. In the experimental results, the accuracy value of
94.9% was reached.

Wang, Zhang et al. (2021) proposed a deep-stack sparse auto encoder (DSSAE) model for COVID-19 detection. Features are
obtained using two-dimensional fractional Fourier entropy. The performance of the model was evaluated on a multi-hospital dataset
containing 1164 CT images. The dataset includes 284 COVID-19, 281 pneumonia, 293 s pulmonary tuberculosis(SPT) and 306
normal images. According to the experimental results, the proposed model achieved an F1-score value of 92.32. In addition, using
fusion of CT and X-ray images were obtained by Zhang, Zhang, Zhang, and Wang (2021). They proposed a multi-input deep
convolutional attention network (MIDCAN) model for COVID-19 detection. The performance of the model was evaluated on a multi-
hospital dataset containing mixed CT and X-ray images. The dataset contains 42 COVID-19 and 44 normal images. According to the
experimental results, the proposed model achieved an accuracy value of 98.02%.

In the detection of COVID-19 disease, experts prefer CT imaging more than X-ray imaging. Because in the early stages of COVID-
19 disease, the ground glass image in the lung may not be seen in X-ray images. The sensitivity of X-ray imaging is lower than
that of CT imaging (Islam et al., 2021). Therefore, CT images were used in this study. In the studies in the literature, deep learning
models have been used alone. In this study, performance was increased by using deep learning models and classification methods
together. Also the run times of the methods used in most of the studies in the literature are not mentioned.

4. Material and method

The block diagram of this study is shown in Fig. 1. Patients who come to Siirt Research and Training Hospital with the suspicion
of COVID-19 between May 2020 and June 2020 are accepted as participants. Deep features are extracted from different deep learning
models (ResNet-50, ResNet-101, AlexNet, Vgg-16, Vgg-19, GoogLeNet, SqueezeNet and Xception) by using the images reserved for
training from the dataset. By using these deep features in various classification methods (SVM, kNN, RF, DT and NB), it is tried to
find the deep learning model and classification method pair with the highest performance. In this study, the fully connected layer
of all deep learning models is replaced with a new fully connected layer whose output number is equal to the number of classes in
the new dataset. In the classification process, it was done with various traditional machine learning methods instead of softmax.

In the input layer of the deep learning model, images are adapted to the model. In the convolution layer, feature maps are
created with the convolution filters of the model. In the first convolution layer, the edges of the input are calculated. The edges
show the high-frequency regions of the input. After these calculations, the padding method is applied because the output size will be
different from the input size. Thus, the output and input sizes are synchronized. Deep features are extracted from the fc layer of the
model. Learning takes place by using the deep features and class labels of the training data in different classification methods. Then,
the deep features of the images left for testing from the dataset are extracted with deep learning models. The estimation process is
performed by using the extracted deep features in the trained classification methods. Finally, by comparing the class labels of the
test data with the predicted class labels, deep learning models and classification methods are evaluated with performance metrics
such as accuracy, sensitivity, specificity, F1 score, runtime and AUC.
4
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Table 3
Details of dataset.

COVID-19 positive COVID-19 negative

Training set 485 590
Test set 122 148
Total 607 738

4.1. Data set

Ataturk University Non-Invasive Clinical Research Ethics Committee approval was obtained for the data set used in this study.
ith this approval, COVID-19 positive and COVID-19 negative CT data from patients who applied to Siirt Education and Research
ospital COVID-19 Diseases polyclinics between May 2020 and June 2020 were obtained through the automation system and a
ata set was created. CT images were taken from adults over 18 years of age. Data set was obtained from 1275 patients in total.
3% of patients who are positive for COVID-19 consist of male patients. One hundred of these patients are intensive care patients,
nd CT images were taken again from the same patient on one day, seven days and 14 days, depending on the length of stay for
ach patient. 72% of intensive care patients consist of patients over 54 years of age. A data set was created using a total of 1345
T images. While 738 of them were negative for COVID-19, 607 of them were positive for COVID-19. In the study, 270 (20%) of
he CT images in the data set were used for testing. Details of the dataset are given in Table 3.

.2. Deep learning models

.2.1. AlexNet
Maximum pooling(max pool) is performed on 3 × 3 pixel windows. For maximum pooling, the stride is set to [2 2], padding is

set to [0 0 0 0]. The activation function (RELU) is applied after each convolutional layer (conv layer) and to the output of the fully
connected layer (fc layer). The first conv layer contains convolution filters with 96 cores of 11 × 11 size. In the first conv layer, the
stride for the filter is set to [4 4] and padding is set to [0 0 0 0]. Normalization and pooling operations are applied to the outputs
of the first and second conv layers. No pooling or normalization is applied between the third, fourth, and fifth conv layers. The
second conv layer contains convolution filters with 256 cores of 5 × 5 size. In the second conv layer, the stride for the filter is set
to [1 1] and padding is set to [2 2 2 2]. The third conv layer contains convolution filters with 384 cores of 3 × 3 size. In the third
conv layer, stride for the filter is set to [1 1] and padding is set to [1 1 1 1]. The fourth conv layer has convolution filters with 384
cores of 3 × 3 size. In the fourth conv layer, the stride for the filter is set to [1 1] and padding is set to [1 1 1 1]. The fifth conv
layer has convolution filters with 256 cores of 3 × 3 size. In the fifth conv layer, the stride for the filter is set to [1 1] and padding
is set to [1 1 1 1]. The first two fc layers each contain 4096 channels and the last fc layer contains 1000 channels.

4.2.2. ResNet
The image input size of the model is 224 × 224. Maximum pooling is performed on 3 × 3 pixel windows. For maximum pooling,

the stride is set to [2 2], padding is set to [1 1 1 1]. The 7 × 7 average pooling is done after the fifth conv layer. RELU is implemented
after each conv layer. The first conv layer contains convolution filters with 64 cores of 7 × 7 size. In the first conv layer, the stride
for filters is set to [2 2] and padding is set to [3 3 3 3]. The second conv layer takes the output of RELU and pooling operations
after the first conv layer as input. It includes convolution filters with 64 cores of 1 × 1 and 3 × 3 sizes and 256 cores of 1 × 1
ize. In the second conv layer, the stride for filters is set to [1 1], padding is set to [0 0 0 0] for 1 × 1 filters and ‘same’ for 3 × 3

filters. The third conv layer takes the output of RELU and normalization operations after the second conv layer as input. It includes
convolution filters with 128 cores of 1 × 1 and 3 × 3 sizes and 512 cores of 1 × 1 size. In the third conv layer, the stride for filters
is set to [1 1], padding is set to [0 0 0 0] for 1 × 1 filters and ‘same’ for 3 × 3 filters. The fourth conv layer takes the output of the
RELU and normalization operations after the third conv layer as input. It includes convolution filters with 256 cores of 1 × 1 and
3 × 3 sizes and 1024 cores of 1 × 1 size. In the fourth conv layer, the stride for filters is set to [1 1], padding is set to [0 0 0 0] for
1 × 1 filters and ‘same’ for 3 × 3 filters. The fifth conv layer takes the output of the RELU and normalization operations after the
fourth conv layer as input. It includes convolution filters with 512 cores of 1 × 1 and 3 × 3 sizes and 2048 cores of 1 × 1 size. In
the fifth conv layer, the stride for filters is set to [1 1], padding is set to [0 0 0 0] for 1 × 1 filters and ‘same’ for 3 × 3 filters.

4.2.3. Vgg
Vgg takes 224 × 224 image input. There are five max pool filters placed between conv layers for size reduction. Maximum

pooling is performed on 2 × 2 pixel windows. For max pool, the stride is set to [2 2], padding is set to [0 0 0 0]. In the dropout
layer, the outputs are reduced by 50% (drop value 0.5).

The last layer is the softmax layer. The stride for filters in conv layers is set to [1 1] and padding is set to [1 1 1 1]. The first
conv layer contains convolutional filters with 64 cores of 3 × 3 size. The second conv layer takes the output of RELU and pooling
operations after the first conv layer as input. Includes convolution filters with 128 core of 3 × 3 size. The third conv layer takes
the output of RELU and pooling operations after the second conv layer as input. It includes convolution filters with 256 cores of
3 × 3 size. The fourth conv layer takes the output of RELU and pooling operations after the third conv layer as input. It includes
5

convolution filters with 512 core of 3 × 3 size. The fifth conv layer takes the output of RELU and pooling operations after the fourth
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conv layer as input. Includes convolution filters with 512 core of 3 × 3 size. After the fifth conv layer, the final pooling takes place.
Its output is given to the fc layer. RELU and dropout operations are applied between fc layers. The second conv layer takes the
output of RELU and pooling operations after the first conv layer as input. This layer contains convolution filters with 128 cores of
3 × 3 size. The third conv layer takes the output of RELU and pooling operations after the second conv layer as input. This layer
contains convolution filters with 256 cores of 3 × 3 size. The fourth conv layer takes the output of RELU and pooling operations
after the third conv layer as input. This layer contains convolutional filters with 512 cores of 3 × 3 size. The fifth conv layer takes
the output of RELU and pooling operations after the fourth conv layer as input. This layer contains convolutional filters with 512
cores of 3 × 3 size. After the fifth conv layer, the final pooling takes place. Its output is given to the fc layer. RELU and dropout
operations are applied between fc layers.

4.2.4. GoogLeNet
The most obvious difference from the GoogLeNet deep learning model from other models is the Inception module. The basic

logic of the Inception module is to reasonably reduce the size where the computational requirements would increase too much. Size
reduction is performed with filter elements of different sizes such as 1 × 1, 3 × 3, 5 × 5 in this module.

GoogLeNet’s image input size is 224 𝑥 224. An alternative parallel max pool path is added at each stage. A total of five pooling
rocesses are applied. Maximum pooling is performed on 3 × 3 pixel windows. For max pool operations, the stride is set to [2 2],
adding is set to [0 1 0 1]. The first conv layer contains convolution filters with 64 cores of 7 × 7 size. In the first conv layer, the

stride is set to [2 2] for the filters and the padding is set to [3 3 3 3]. The second conv layer takes the output of RELU, maximum
pooling and normalization operations after the first conv layer as input. It includes convolution filters with 64 cores of size 1 × 1
and 192 cores of size 3 × 3. In the second conv layer, the stride is set to [1 1] for 1 × 1 filters, padding is set to [0 0 0 0] and the
stride is set to [1 1] for 3 × 3 filters, padding is set to [1 1 1 1]. After the second conv layer, RELU takes the output of max pool and
normalization operations as input to the inception module. After the second conv layer comes 9 inception modules. In Inception
modules, the stride is set to [1 1], padding is set to [0 0 0 0] for 1 × 1 filters, [1 1 1 1] for 3 × 3 filters, and [2 2 2 2] for 5 × 5
ilters. Maximum pooling is applied to the output of the second inception module and the output of the seventh inception module.
he fc layer takes the output of 7 × 7 average pooling and dropout (0.4 drop value) operations after the last inception module as

nput.

.2.5. SqueezeNet
Its different side from other deep learning models is fire modules. This module consists of an expansion layer consisting of a

ixture of 1 × 1 and 3 × 3 convolution filters and a compression conv layer with only 1 × 1 convolution filters (Iandola et al.,
016). The image input size of the network is 227 × 227 (Bhole & Kumar, 2020).

The SqueezeNet architecture starts with the independent conv layer. Then, the maximum pooling process takes place in the size
f 3 × 3. For maximum pooling, the stride is set to [2 2], padding is set to [1 1 1 1]. Next comes 8 fire modules and conv layers. Two
ore max pool operations occur between fire modules. The stride is set to [2 2] for max pool between fire modules and padding is

et to [0 1 0 1]. Finally, it ends with the average pooling process. In the dropout layer, the outputs are reduced by 50% (0.5 drop
alue).

The first conv layer contains convolution filters with 64 cores of 3 × 3 size. For filters in the first conv layer, the stride [2 2] is
et to padding is set to [0 0 0 0]. The stride is set to [1 1] for filters in fire modules, padding is set to [0 0 0 0] for filters of 1 × 1
ize and [1 1 1 1] for filters of 3 × 3 size. The second conv layer takes the output of the dropout process after 8 fire modules as
nput. It contains convolution filters with 1000 cores of 1 × 1 size. In the second conv layer, the stride is set to [1 1] for the filters,
adding is set to [0 0 0 0]. The average pooling layer takes the output of the RELU operation after the second conv layer as input.

.2.6. Xception
The image input size of the network is 229 𝑥 229 (Chollet, 2017). The model includes 14 block conv layers. Maximum pooling is

erformed on 3 × 3 pixel windows. For maximum pooling operations, stride is set to [2 2], padding is set to ‘same’. The first block
onv layer contains convolution filters with 32 cores of 3 × 3 size and 64 cores of 3 × 3 size. In the first block conv layer, the stride
s set to [2 2] for 32-core filters, the stride is set to [1 1] for 64-core filters, and padding is set to [0 0 0 0]. The second block conv
ayer takes the output of the RELU and normalization operations after the first conv layer as input. It includes convolution filters
ith 64-core of 3 × 3 size and 128-core of 1 × 1, 3 × 3 sizes. In the second block conv layer, stride is set to [1 1] for 3 × 3 filters,
adding is set as ‘same’, stride is set as [1 1] for 1 × 1 filters, padding is set as [0 0 0 0]. The third block conv layer takes the output
f RELU, normalization and pooling operations after the second block conv layer as input. It includes convolution filters with 128
ores of 3 × 3 size and 256 cores of 1 × 1, 3 × 3 sizes. In the third block conv layer, the stride is set to [1 1] for 3 × 3 filters,
adding is set as ‘same’, stride is set to [1 1] for filters of 1 × 1 size, padding is set as [0 0 0 0]. The fourth block conv layer takes
he output of RELU, normalization and pooling operations after the third block conv layer as input. It includes convolution filters
ith 256 cores of 3 × 3 size and 728 cores of 1 × 1, 3 × 3 sizes. In the fourth block conv layer, stride is set to [1 1] for 3 × 3 sized

ilters, padding is set as ‘same’, stride is set to [1 1] for 1 × 1 sized filters, padding is set to [0 0 0 0]. The fifth block conv layer
akes the output of RELU, normalization and pooling operations after the fourth block conv layer as input. It includes convolution
ilters with 728 cores of 1 × 1 and 3 × 3 sizes. In the fifth block conv layer, stride is set to [1 1] for 3 × 3 size filters, padding is
et as ‘same’, for 1 × 1 size filters stride is set as [1 1], padding is set as [0 0 0 0]. The sixth block conv layer takes the output of
ELU and normalization operations after the fifth block conv layer as input. It includes convolution filters with 728 cores of 1 × 1
6
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1
n

1] for filters of 1 × 1 size, padding is set as [0 0 0 0]. Until the thirteenth block conv layer, the other block conv layers perform
the same operations and contain convolution filters of the same size. The thirteenth block conv layer takes as input the RELU and
normalization operations after the twelfth block conv layer. It includes convolution filters with 728 cores of 3 × 3 size and 1024
cores of 1 × 1, 3 × 3 sizes. In the thirteenth block conv layer, the stride is set to [1 1] for 3 × 3 filters, padding is set as ‘same’, for
× 1 size filters, stride is set to [1 1], padding is set as [0 0 0 0]. The fourteenth block conv layer takes the output of the RELU,

ormalization and pooling operations after the thirteenth block conv layer as input. It includes 1536 cores of 1 × 1, 3 × 3 sizes and
convolution filters with 2048 cores of 1 × 1 size. In the fourteenth block conv layer, stride is set to [1 1] for 3 × 3 filters, padding
is set as ‘same’, stride is set as [1 1] for 1 × 1 size filters, padding is set as [0 0 0 0].

4.3. Classification methods

4.3.1. k nearest neighbor classification method
According to the k Nearest Neighbor (kNN) algorithm, the number of neighbor’s k is determined. The number of neighbors is

not fixed. The choice of the best k varies according to the data. In binary classifications, it is better to choose k as an odd number
to avoid binding decisions. In the data set in our study, the k value was tested for all values from 1 to 10 and the best result was
determined as ‘‘k = 5’’. The distance function is calculated between the samples in the training set and the test data. The Euclidean
method is used to calculate the distance function (Hu, Huang, Ke, & Tsai, 2016). The distance function is given in Eq. (1). Then the
obtained distances are sorted in ascending order and the first k samples are selected. The most common class among these examples
is considered to be the class of test data.

𝑑(𝑗, 𝑖) =

√

√

√

√

𝑛
∑

𝑘=1
(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2 (1)

4.3.2. Support vector machines
Support Vector Machines (SVM) are the separation and classification of points on the plane by a line or hyperplane. While

creating the SVM decision surface, it tries to maximize the distance between the two classes. Between these planes, there is only
one hyperplane with a maximum boundary. The points that constrain the boundary width are called support vectors. The support
vector algorithm tries to minimize the training error by classifying with the separating hyperplane with the largest boundary width.
It aims to find a linear discriminating function with the largest margin that separates the classes from each other. For non-linearly
separable samples, the samples can be separated linearly into another higher-dimensional. A decision boundary is created with the
training data set and the test data is classified according to this boundary (Zhou, 2021).

4.3.3. Decision trees
The representation of the information presented in the Decision Trees (DT) can be easily understood. DT not only shows decisions

but also contains explanations of decisions. DT starts at the root of the tree to guess the class label of an instance. Root Node: It
represents the entire population. They were further divided into two or more homogeneous clusters. Initially, the entire training set is
considered the root. Root property values are compared with the properties of the sample. That is, to follow the branch corresponding
to this value and jump to the next node. Samples are distributed recursively based on property values. While the features are placed
in the tree, determining them as root or internal nodes is done using some statistical approaches. These approaches are; entropy
is a measure of randomness (Charbuty & Abdulazeez, 2021). When the probability is 0 or 1, the result is certain. Since there is no
randomness, the entropy value is zero. The entropy calculation for a single feature is calculated as in Eq. (2).

𝐸(𝑆) =
𝑐
∑

𝑖=1
𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 (2)

S is the current sample, c is the number of classes, and pi is the probability that the sample belongs to class i. The entropy
calculation for multiple features is calculated as in Eq. (3). 𝑇 is the current feature and X is the selected feature.

𝐸(𝑇 ,𝑋) =
∑

𝑐𝜖𝑋
𝑃 (𝑐)𝐸(𝑐) (3)

Information gain is a measure of how well a particular feature discriminates against target classifications (Yuvaraj et al., 2021).
Information gain and entropy are inversely proportional. The information gain is calculated based on the given feature values, the
difference between the entropy before the split and the average entropy after the data set to split. Information gain is calculated as
in Eq. (4).

𝐼𝐺(𝑇 ,𝑋) = 𝐸(𝑇 ) − 𝐸(𝑇 ,𝑋) (4)

These approaches calculate values for each feature. Values are sorted and features are placed in the tree in order. In other words,
7

the feature with the highest information gain and the lowest entropy is placed at the root.
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4.3.4. Random forest
Random Forest (RF) methods, one classifier instead of multiple generating many classifiers and then from their predictions

earning that classifies new data with the votes received are algorithms. The RF method is considered as collective learning. In
ther words, more accurate results are obtained because it finds the average by using the results of more than one decision tree.
hen performing Random Forests based on classification data, the Gini index is usually calculated. GINI index measures class

omogeneity. It is used to decide how the nodes in the Decision Tree branch are knotted. The Gini index formula is given in Eq. (5).
ere, i represents the probability that the sample belongs to the class, and c represents the number of classes (Yang, Liu, Liu, & Li,
021).

𝐺𝑖𝑛𝑖 = 1 −
𝑐
∑

𝑖=1
(𝑝𝑖)2 (5)

4.3.5. Naive Bayes
The Naive Bayes (NB) method considers all the features to be equally important and independent from each other. It is based

on Bayes’ Theorem. In the NB method, 𝑋 =
{

𝑥1, 𝑥2, ..𝑥𝑚
}

. X is an example from a test data set with m features. Let 𝐶1, 𝐶2,. . . , 𝐶𝑛
be possible class values (Jahanbani Fard, 2015). In Eq. (6), the probabilities of the features according to the classes are calculated.

𝑃 (𝑋 ∣ 𝐶𝑖) =
𝑛
∏

𝑘=1
𝑃 (𝑥𝑘 ∣ 𝐶𝑖) (6)

In Eq. (7), the probability of each class is calculated to find out which class the data sample belongs to. The class with the highest
esult is designated as the class of the data sample.

𝑃 (𝐶𝑖 ∣ 𝑋) =
𝑃 (𝑋 ∣ 𝐶𝑖)𝑃 (𝐶𝑖)

𝑃 (𝑋)
(7)

5. Experimental results

Recently, deep learning and traditional machine learning have become very popular in many disease diagnostic applications
using medical images. Deep learning models have been developed for the diagnosis of COVID-19 using both CT and X-ray
images (Ardakani, Kanafi, Acharya, Khadem, & Mohammadi, 2020; Oh et al., 2020; Singh et al., 2020; Ucar & Korkmaz, 2020;
Wu et al., 2020). Traditional machine learning methods are being used actively for COVID-19 detection, prognosis and epidemic
prediction and has contributed to greatly reduce the severity of the epidemic (Islam et al., 2021). In this study, the most commonly
used classification methods in the context of disease diagnosis via medical images and eight pre-trained deep learning models were
used to distinguish COVID-19 positive cases from the COVID-19 negative group. The study was carried out on MATLAB R2021a on
a computer with Intel(R) Core (TM) i7-8550U CPU @ 1,80 GHz.16 GB RAM. 20% of the data set was used for testing.

Performance Metrics were calculated by creating a confusion matrix. Accuracy, sensitivity, specificity, precision and F1-score
are calculated using equations 8, 9, 10, 11, 12 (Bozkurt, 2021).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(8)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(10)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(11)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(12)

TP: The image is estimated to be COVID-19, and this image is indeed COVID-19. TN: The image is estimated to be normal and
his image is normal. FP: The image is estimated to be COVID-19, but this image is normal. FN: The image is estimated to be normal,
ut this image is COVID-19 (Afify & Zanaty, 2021).

The ROC curve is plotted by comparing the false positive rate (1-Specificity) with the correct positive rate (Sensitivity) at certain
hreshold settings. The area covered by the ROC curve gives the AUC value. It tells how much the model can distinguish between
lasses.
8
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Table 4
Experimental results of ResNet-101.

Accuracy (%) Sensitivity (%) Specificity (%) F1L-score (%) Precision (%)

NB 82.963 83.607 82.432 81.6 79.688
SVM 90.37 86.066 93.919 88.983 92.105
kNN 84.815 83.607 85.811 83.266 82.927
DT 76.296 70.492 81.081 75.439 72.882
RF 91.185 90.164 93.243 90.909 91.667

Fig. 2. ROC-curve of ResNet-101.

Table 5
Experimental results of ResNet-50.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 83.333 84.426 82.432 82.072 79.845
SVM 96.296 95.082 97.297 95.868 96.667
kNN 90.741 83.607 96.622 89.083 95.327
DT 75.185 80.328 70.946 74.525 69.504
RF 93.704 91.803 95.27 92.946 94.118

5.1. Experimental results of ResNet-101

The deep features obtained with the ResNet-101 deep learning model were used in classification methods such as SVM, kNN, RF,
DT and NB, and the results were compared. The results of the classification methods are reported in detail in Table 4. Accordingly,
by looking at the specificity value, it is clear that SVM and RF methods are more successful than other methods in detecting negative
images of COVID-19. In addition, since the specificity value is higher than the sensitivity value in all classification methods except
NB, it can be said that negative image detection is more successful than positive image detection.

Fig. 2 shows the ResNet-101 ROC curve. As seen in the figure, the AUC value was 0.8975 in the NB method, 0.776 in the
DT method, 0.8471 in the kNN method, 0.9432 in the SVM method and 0.9538 in the RF method. In the figure, it is seen that
the classification method that best distinguishes the two classes is the RF method. Looking at the F1-score, accuracy value and
ROC-curve, the Random Forest method obtained the highest values in all three success criteria.

5.2. Experimental results of ResNet-50

The deep features obtained with the ResNet-50 deep learning model were used in classification methods such as SVM, kNN, RF,
DT and NB, and the results were examined. In Table 5, the results of the classification methods are given in detail. Accordingly,
by looking at the specificity value, it is seen that SVM, RF and kNN methods are more successful in detecting negative images of
COVID-19 than other methods. Since the SVM method showed very high success in detecting both negative and positive images,
it achieved higher accuracy than all classification methods. Contrary to other methods, the sensitivity value of the NB and DT
methods was higher than the specificity value. In other words, in these methods, COVID-19 positive images were detected better
than negative images.
9
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Fig. 3. ROC-curve of ResNet-50.

Table 6
Experimental results of AlexNet.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 78.519 79.508 77.703 76.984 74.615
SVM 89.63 85.246 93.243 88.136 91.228
kNN 85.185 82.787 87.162 83.471 84.167
DT 74.074 81.967 67.568 74.074 67.568
RF 91.481 87.705 94.595 90.295 93.043

Fig. 3 shows the ResNet-50 ROC-curve. As seen in Fig. 3, the AUC value was 0.8677 in the NB method, 0.7624 in the DT method,
0.9011 in the kNN method, 0.9821 in the SVM method, and 0.9656 in the RF method. In the figure, it is seen that the classification
method that best distinguishes the two classes is the SVM method. Looking at the F1-score, accuracy value and ROC curve, the SVM
method showed the highest values in all three success criteria.

5.3. Experimental results of AlexNet

The deep features obtained with the AlexNet deep learning model were used in classification methods such as SVM, kNN, RF, DT
and NB, and the results were compared with each other. The results of the classification methods are reported in detail in Table 6.
Accordingly, by looking at the specificity value, it is clear that SVM and RF methods are more successful than other methods in
detecting negative images of COVID-19.

Fig. 4 shows the AlexNet ROC-curve. As seen in Fig. 4, the AUC value was 0.8348 in the NB method, 0.7558 in the DT method,
0.8497 in the kNN method, 0.9384 in the SVM method, and 0.9492 in the RF method. In the figure, it is seen that the classification
method that best distinguishes the two classes is the RF method. Looking at the F1-score, accuracy and ROC curve, the RF method
showed the highest values in all three success criteria.

5.4. Experimental results of Vgg-19

The deep features obtained with the Vgg-19 deep learning model were used in classification methods such as SVM, kNN, RF,
DT and NB, and the results were compared. The results of the classification methods are recorded in detail in Table 7. Accordingly,
looking at the specificity value, it is seen that NB and RF methods are more successful in detecting negative images of COVID-19 than
other methods. Considering the sensitivity value, SVM and RF methods obtained the most successful results in detecting positive
images. Since the RF method achieved the highest results in both sensitivity and specificity, the accuracy value of the RF method
was higher than the other methods. In addition, since the specificity value is higher than the sensitivity value in other classification
methods except for SVM, it can be said that negative image detection is more successful than positive image detection.

Fig. 5 shows the AlexNet ROC-curve. As seen in Fig. 5, the AUC value was 0.9156 in the NB method, 0.7321 in the DT method,
0.8027 in the kNN method, 0.9119 in the SVM method, and 0.9362 in the RF method. In the figure, it is seen that the classification
method that best distinguishes the two classes is the RF method. Looking at the F1-score, accuracy and ROC curve, the RF method
showed the highest values in all three success criteria.
10
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Fig. 4. ROC-curve of AlexNet.

Fig. 5. ROC-curve of Vgg-19.

Table 7
Experimental results of Vgg-19.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 85.926 81.967 89.189 84.034 86.207
SVM 85.926 88.525 83.784 85.039 81.818
kNN 80.741 75.41 85.135 77.966 80.702
DT 72.222 67.213 76.351 68.619 70.085
RF 87.778 86.066 89.189 86.42 86.777

5.5. Experimental results of Vgg-16

The results obtained by using deep features obtained by Vgg-16 deep learning model in classification methods such as SVM, kNN,
RF, DT and NB were examined. The results of the classification methods are reported in detail in Table 8. Accordingly, by looking at
the specificity and sensitivity value, it is clear that the SVM method is more successful than other methods in both detecting negative
images of COVID-19 and detecting positive images. In addition, it can be said that negative image detection is more successful than
positive image detection because the specificity value is higher than the sensitivity value in all classification methods.
11
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Table 8
Experimental results of Vgg-16.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 84.815 79.508 89.189 82.553 85.841
SVM 91.111 88.525 93.243 90 91.525
kNN 83.33 73.77 91.216 79.999 87.379
DT 77.037 74.459 79.054 74.59 74.59
RF 88.519 85.246 91.216 88.889 87.029

Fig. 6. ROC-curve of Vgg-16.

Table 9
Experimental results of GoogLeNet.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 61.852 77.869 48.649 64.847 55.556
SVM 81.111 81.148 81.081 79.518 77.953
kNN 79.63 72.951 85.135 76.395 80.18
DT 71.852 72.131 71.622 69.841 67.692
RF 84.074 80.328 87.162 82.009 83.761

Fig. 6 shows the Vgg-16 ROC curve. As seen in Fig. 6, the AUC value was found to be 0.9288 in the NB method, 0.7871 in the
DT method, 0.8249 in the kNN method, 0.9512 in the SVM method, and 0.9359 in the RF method. In the figure, it is seen that the
classification method that best distinguishes the two classes is the SVM method. Looking at the F1-score, accuracy value and ROC
curve, the SVM method showed the highest values in all three success criteria.

5.6. Experimental results of GoogLeNet

The deep features obtained with the GoogLeNet deep learning model were used in classification methods such as SVM, kNN, RF,
DT and NB, and the results were compared. In Table 9, the results of the classification methods are given in detail. Accordingly, by
looking at the specificity value, it is clear that kNN and RF methods are more successful than other methods in detecting negative
images of COVID-19. The sensitivity value of the NB and DT methods was higher than the specificity value. In other words, in these
methods, COVID-19 positive images were detected better than negative images.

Fig. 7 shows the GoogLeNet ROC curve. As seen in Fig. 7, the AUC value was 0.5994 in the NB method, 0.728 in the DT method,
0.7904 in the kNN method, 0.8405 in the SVM method, and 0.898 in the RF method. In the figure, it is seen that the classification
method that best distinguishes the two classes is the RF method. Looking at the F1-score, accuracy and ROC curve, the RF method
showed the highest values in all three success criteria.

5.7. Experimental results of SqueezeNet

The deep features obtained with the SqueezeNet deep learning model were used in classification methods such as SVM, kNN, RF,
DT and NB, and the results were examined. The results of the classification methods are reported in detail in Table 10. Accordingly,
12
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Fig. 7. ROC-curve of GoogLeNet.

Table 10
Experimental results of SqueezeNet.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 80 67.213 90.541 75.229 85.417
SVM 89.63 87.705 91.216 88.43 89.167
kNN 78.889 63.934 91.216 73.239 85.714
DT 71.185 65.574 77.027 67.797 70.175
RF 88.889 80.328 95.946 86.726 94.231

Table 11
Experimental results of Xception.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%)

NB 83.704 83.607 83.784 82.258 80.952
SVM 89.63 86.885 91.892 88.333 89.831
kNN 87.037 85.246 88.514 85.597 85.95
DT 76.296 77.049 75.676 74.603 72.308
RF 88.889 91.803 86.486 88.189 84.848

it is clear that RF, SVM and kNN methods are successful in detecting negative images of COVID-19 by looking at the specificity
value. Considering the sensitivity value, it was seen that the SVM method was more successful in detecting COVID-19 positive images
than other methods. In addition, negative image detection was more successful than positive image detection in all classification
methods.

Fig. 8 shows the SqueezeNet ROC curve. As seen in Fig. 8, the AUC value was 0.897 in the NB method, 0.7198 in the DT method,
0.7758 in the kNN method, 0.9415 in the SVM method, and 0.9516 in the RF method. In the figure, it is seen that the classification
method that best distinguishes the two classes is the RF method. Looking at the F1-score and accuracy value, the SVM method
showed the highest values, while the ROC curve showed the highest value in the RF method.

5.8. Experimental results of Xception

The deep features obtained with the Xception deep learning model were used in classification methods such as SVM, kNN, RF, DT
and NB, and the results were compared. The results of the classification methods are reported in detail in Table 11. Accordingly, by
looking at the specificity value, it is clear that the SVM method is more successful than other methods in detecting negative images of
COVID-19. Considering the sensitivity value, it is seen that the RF method is more successful in detecting COVID-19 positive images
than other methods. In addition, since the specificity value is higher than the sensitivity value in other classification methods except
for DT and RF methods, it can be said that negative image detection is more successful than positive image detection.

The Xception ROC curve is given in Fig. 9. As seen in Fig. 9, the AUC value was 0.8946 in the NB method, 0.8001 in the DT
method, 0.8688 in the kNN method, 0.9425 in the SVM method, and 0.9396 in the RF method. In the figure, it is seen that the
classification method that best distinguishes the two classes is the SVM method. Looking at the F1-score, accuracy value and ROC
curve, the SVM method showed the highest values in all three success criteria.
13
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Fig. 8. ROC-curve of SqueezeNet.

Fig. 9. ROC-curve of Xception.

In general, as seen in Table 12, the highest performance was obtained with the ResNet-50 and SVM methods. The accuracy
value is 96.296%, the F1-score value is 95.858, and the AUC value is 0.9821. Looking at the runtime (RT), it is seen that ResNet-50
works faster than the other four models (ResNet-101, Xception, Vgg19 and Vgg-16). The lowest performance was obtained with
GoogLeNet and NB method. The accuracy value was 61.852%, the F1-score value was 64.847, the AUC value was 0.5994, and the
run time was 81.303 s Looking at the RT value in Table 12, the accuracy value of the fastest (22.58 s) AlexNet and kNN method
is 85.249%. The slowest running (528.84 s) Vgg-19 and the accuracy value of the RF method is 87.778%. It is clear that AlexNet
and SqueezeNet models are faster than other models. However, the accuracy values of SqueezeNet and GoogLeNet models are not
high. The Vgg-19 is both slow and the accuracy value is lower than other models. In this case, it can be said that the best choice
is ResNet-50. It can be said that the run time is reduced due to the small number of layers of the models and the 1 × 1 size filters.
1 × 1 filtering reduces size at depth. The pooling layer increases the number of channels while reducing the height and width of the
input, that is, the depth is increased. As the depth increases, the run time increases. Except for the GoogLeNet model, the lowest
performance was obtained with the DT method in other models.

As the number of epochs increases, the performance of the model increases significantly. Training can be terminated at these
points, as performance will increase in very small units after a certain epoch. In this study, the training was terminated at the
6th epoch, as the success would increase very little after the 6th epoch in our trials. Hyper parameters were selected by trial and
error method. By iteratively changing the hyperparameters one after the other, the success of the model was observed and the most
suitable hyper parameter group was tried to be selected for the model. Fig. 10 shows the training and testing process of the ResNet-50
14
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Table 12
Experimental results.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%) AUC RT (s)

ALEXNET NB 78.519 79.508 77.703 76.984 79.508 0.8348 22.672
SVM 89.63 85.246 93.243 88.136 85.246 0.9384 49.124
kNN 85.185 82.787 87.162 83.471 82.787 0.8497 22.582
DT 74.074 81.967 67.568 74.074 81.967 0.7558 23.181
RF 91.481 87.705 94.595 90.295 87.705 0.9492 71.914

RESNET50 NB 83.333 84.426 82.432 82.072 84.426 0.8677 138.44
SVM 96.296 95.082 97.297 95.868 95.082 0.9821 159.39
kNN 90.741 83.607 96.622 89.083 83.607 0.9011 122.76
DT 75.185 80.328 70.946 74.525 80.328 0.7624 133.78
RF 93.704 91.803 95.27 92.946 91.803 0.9656 145.85

RESNET101 NB 82.963 83.607 82.432 81.6 83.607 0.8975 229.34
SVM 90.37 86.066 93.919 88.983 86.066 0.9432 260.63
kNN 84.815 83.607 85.811 83.266 83.607 0.8471 220.09
DT 76.296 70.492 81.081 75.439 70.492 0.776 220.51
RF 91.185 90.164 93.243 90.909 90.164 0.9538 247.92

VGG16 NB 84.815 79.508 89.189 82.553 79.508 0.9288 362.52
SVM 91.111 88.525 93.243 90 88.525 0.9512 414.68
kNN 83.33 73.77 91.216 79.999 73.77 0.8249 419.68
DT 77.037 74.459 79.054 74.59 74.459 0.7871 380.75
RF 88.519 85.246 91.216 88.889 85.246 0.9359 387.55

VGG19 NB 85.926 81.967 89.189 84.034 81.967 0.9156 429.28
SVM 85.926 88.525 83.784 85.039 88.525 0.9119 518.31
kNN 80.741 75.41 85.135 77.966 75.41 0.8027 482.86
DT 72.222 67.213 76.351 68.619 67.213 0.7321 451.48
RF 87.778 86.066 89.189 86.42 86.066 0.9362 528.84

SQUEEZENET NB 80 67.213 90.541 75.229 67.213 0.897 41.049
SVM 89.63 87.705 91.216 88.43 87.705 0.9415 56.241
kNN 78.889 63.934 91.216 73.239 63.934 0.7758 56.330
DT 71.185 65.574 77.027 67.797 65.574 0.7198 42.535
RF 88.889 80.328 95.946 86.726 80.328 0.9516 51.164

XCEPTION NB 83.704 83.607 83.784 82.258 83.607 0.8946 339.08
SVM 89.63 86.885 91.892 88.333 86.885 0.9425 416.96
kNN 87.037 85.246 88.514 85.597 85.246 0.8688 337.14
DT 76.296 77.049 75.676 74.603 77.049 0.8001 356.01
RF 88.889 91.803 86.486 88.189 91.803 0.9396 373.29

GOOGLENET NB 61.852 77.869 48.649 64.847 77.869 0.5994 81.303
SVM 81.111 81.148 81.081 79.518 81.148 0.8405 86.217
kNN 79.63 72.951 85.135 76.395 72.951 0.7904 83.822
DT 71.852 72.131 71.622 69.841 72.131 0.728 232.09
RF 84.074 80.328 87.162 82.009 80.328 0.898 98.620

Table 13
Classification experimental results with ResNet-50.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) Precision (%) RT (s)

92.59 94.262 91.216 91.999 89.844 7458

model. As can be seen in the figure, training was conducted for a maximum of 6 epochs. An epoch is a complete training cycle on
the entire training dataset. The fc layer, softmax layer and output layer are changed and transferred to the new classification task.
In these layers, the learning rate is set to 20 and learning is accelerated in the last layers. The initial learning rate in the transfer
layers was determined as 0.0001. Thus, learning is slowed down in these layers. The verification frequency is set to 10 iterations.

As can be seen in Table 13, using deep learning models together with classification methods, instead of using only deep learning
odel (ResNet-50), reduces the run time. While classifying with ResNet-50, 7458 s run time is calculated. When ResNet-50 and SVM
ethods classify together, 159.39 s run time is calculated. A deep learning algorithm takes a long time to train because there are so
any parameters. Traditional machine learning takes relatively little time, ranging from a few minutes to several hours. Traditional
achine learning systems can be set up and run quickly, but these systems require structured data. In complex problems, the power

f its results may be limited. Deep learning systems take more time to set up, but using deep learning for complex computations
unstructured data) will strengthen results. Therefore, in this study, it can be said that by creating a hybrid model, extracting features
ith deep learning models and using them in traditional machine learning methods shortens the time and strengthens the results.
esNet-50 alone detected the COVID-19 images with 94.262% accuracy, but when ResNet-50 and SVM method were used together,

t detected the COVID-19 images with 95.082% accuracy.
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Fig. 10. The Training and Testing Process of ResNet-50.

6. Discussion

We combined classification methods (traditional machine learning) and capabilities extracted from deep learning models to
increase the accuracy value in COVID-19 detection. In this review, we obtained deep features for COVID-19 detection using 8
powerful deep learning models on CT images. Comparative analysis was performed using 5 different classification methods for each
deep feature. On evaluating We concluded that using the deep learning model and classification method together provides greater
accuracy in the evaluation. Using deep learning models together with classification methods, instead of using only deep learning
model (ResNet-50), reduces the run time. While classifying with ResNet-50, 7458 s run time is calculated. When ResNet-50 and SVM
methods classify together, 159.39 s run time is calculated. ResNet-50 alone detected the COVID-19 positive images with 94.262%
accuracy, but when ResNet-50 and SVM method were used together, it detected the COVID-19 images with 95.082% accuracy.

Alternatively, using ResNet-50 and SVM together, it achieved 96.296% COVID-19 detection accuracy for the dataset. The purpose
of this study is to reduce the duration and amount of transmission of the disease by shortening the diagnosis time by taking CT
images from patients who were admitted to the hospital due to the suspicion of COVID-19. In addition, it is aimed to provide a
decision support system to radiologists in the detection of COVID-19.

The COVID-19 pandemic is a new disease problem, and there is no definite and sufficient data in the literature on this subject.
All studies except (Wu et al., 2021) study in the literature could not reach the COVID-19 patient image as in this study. The data
set used in this study consists of real images obtained from the hospital environment. In addition, images thought to be positive
for COVID-19 in this study were confirmed by a radiologist. The working times of the methods used in most of the studies in
the literature are not mentioned. In this study, methods were evaluated according to accuracy, sensitivity, specificity, precision,
F1-score, AUC and run time. Compared to the studies in the literature, a broad evaluation was made in this study using various
classification methods together with deep learning models.

The performance evaluation of the proposed model compared to studies using CT images in the literature is given in Table 14.
Since it is more important to accurately detect COVID-19 positive cases, sensitivity values are taken into account in Table 14. The
sensitivity value of the proposed model (95.082%) achieved higher performance than all models based on CT images in the studies
in the literature.

Pham (2020) examined transfer learning (pretrained convolutional neural networks) methods in his study. In our study, various
hybrid models were created by using the deep features obtained from different deep learning methods in different machine learning
methods for the detection of COVID-19. The 1345 CT images in the dataset used were obtained from the hospital environment. It
consists of various CT images (COVID-19 early stage or later stages, different ages and different genders). The performances of the
new hybrid models created were examined. In the results of the experiment, it was seen that more successful results were obtained
by using the hybrid model created by integrating deep learning and machine learning methods, as in our study, instead of using
deep learning models alone as in the Pham (2020) study.
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Table 14
Comparison of the proposed model with studies using CT images.

Study Method Number of images Data source Performance

Wu et al. (2020) COVNet 4356 Multiple hospital environment 90% sensitivity
Zheng et al. (2020) DeCOVNet 630 Multiple hospital environment 90.7% sensitivity
Singh et al. (2020) MODE-CNN 150 Open source database 90.7% sensitivity
Pham (2020) DenseNet-201 746 Open source database 96.2% accuracy
Wu et al. (2021) COVIDAL 962 Open source database 86.6% accuracy
Rohila et al. (2021) ReCOV-11 1110 MosMedData 94.9% accuracy
Wang, Kang et al. (2021) Modified Inception V3 1065 Multiple hospital environment 85.2% accuracy
Li et al. (2021) CheXNet 746 Open source database 87% accuracy

This study ResNet-50 - SVM 1345 Single hospital environment 96.96% accuracy
95.082% sensitivity

The COVID-19 pandemic is a new disease problem, and there is no definite and sufficient data in the literature on this subject.
ll studies except (Wu et al., 2020) study in the literature could not reach the COVID-19 patient image as in this study. The data
et collected consists of real images obtained from the single hospital environment. Images thought to be positive for COVID-19 in
his study were confirmed by a radiologist.

Most of the datasets used were created from open-source databases. The data set in some studies in the literature (Mahmud et al.,
020; Oh et al., 2020; Ucar & Korkmaz, 2020) contains a large number of images, but the number of images of COVID-19 cases is
ow. In addition, some studies (Panwar et al., 2020; Singh et al., 2020) have datasets containing a small number of images. In both
ases, a limited number of data leads to underfitting or overfitting, reducing the performance of deep learning models (Islam et al.,
021; Nayak et al., 2021). In some of the studies in the literature (Mahmud et al., 2020; Oh et al., 2020; Ucar & Korkmaz, 2020)
ata imbalance is observed. Data imbalance also increases bias to a class (Islam et al., 2021). The run times of the methods used in
ost of the studies in the literature are not mentioned.

. Conclusion

Since the patient is not quarantined during the conclusion of the Polymerase Chain Reaction (PCR) test used in the diagnosis of
OVID-19, the disease continues to spread. In this study, it was aimed to reduce the duration and amount of transmission of the
isease by shortening the diagnosis time of COVID-19 patients with the use of Computed Tomography (CT). In addition, it is aimed
o provide a decision support system to radiologists in the diagnosis of COVID-19.

In this study, a new high-performance COVID-19 detection system was developed with the hybrid model created from the
ombination of ResNet-50 and SVM. In our proposed hybrid model framework, there are 2 modules including feature extraction with
eep learning method and classification with traditional machine learning method. The data set used in this study consists of real
mages obtained from a single hospital environment. Images thought to be positive for COVID-19 were confirmed by a radiologist.
ccording to the experimental results, the proposed hybrid model (ResNet-50+SVM) achieved higher accuracy than the classical

ResNet-50 method.
In the future, images from more than one hospital can be collected and better results can be obtained. Different lung diseases

can be added in future studies.
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