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A B S T R A C T

Purpose. Statistical models for predicting hematologic toxicity were evaluated based on UGT1A1 polymorphisms
and baseline serum bilirubin.
Methods. Blood DNA samples were collected from 113 patients with untreated metastatic colorectal cancer receiv-
ing irinotecan (FOLFIRI, n = 36; mIFL, n = 41; CapeIRI, n = 36). The primary endpoint was absolute neutrophil
count nadir during first treatment cycle. Linear regression models, with increased R2 implying important additional
predictive power, sequentially added age, sex, baseline bilirubin level, and UGT1A1 genotype.
Results. All models demonstrated low R2, suggesting unaccounted variables. UGT1A1 genotype added ~8–9%
during cycle 1 and from ~7% [mIFL regimen] to 26% [CapeIRI regimen] after cycle 1. Correlation between
genotype and overall ANC nadir without regard to treatment was low (R = -0.201, P = 0.035). Patients with
genotype 7/7 may have increased risk for severe neutropenia, but data are insufficient to characterize this. Contri-
bution of baseline bilirubin level was negligible.
Conclusions. Ability of UGT1A1 or baseline bilirubin to predict neutropenia is low and depends on regimen.
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Introduction

C hemotherapy in conjunction with selected
targeted agents has largely been responsible

for steady improvements in patient survival [1],
and, in patients with metastatic disease, treatment
with combinations of the most active cytotoxic
agents yields median overall survival in excess
of 20 months [2–8]. The attainment of palliative
benefit may be thwarted, however, by the unwel-
come development of treatment-emergent toxicity
associated with chemotherapy, which may require
dose modification, interruption of therapy, or
treatment discontinuation.

Techniques to prospectively identify indivi-
duals who may be at risk for development of
treatment-related toxicity include clinical risk
scores, assays for biologic substances with pos-
sible predictive value, and, increasingly, pharma-
cogenetic testing for specific polymorphisms that
inform host interactions with drugs [9–13]. The
toxicity of chemotherapy, as well as its efficacy,
may in part be due to heritable genetic factors
modulating drug activation, metabolism, clear-
ance, and excretion that play a role in cellular and
tissue responses to treatment. Predictive genetic
markers could therefore be useful in selecting
patients most likely to benefit from therapy or
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to determine optimal patient-specific treatment
regimens.

The marked interpatient variability in toxicity
reported in patients with metastatic colorectal
cancer (mCRC) receiving combination therapy
with irinotecan, leucovorin, and 5-fluorouracil in-
fusion (FOLFIRI) has been attributed to differ-
ences in levels of SN-38, the active metabolite of
irinotecan [14]. The complex metabolism of irino-
tecan (Figure 1) includes inactivation of SN-38 by
glucuronidation, a sequence of events mediated
by the enzyme uridine diphosphate glucuronosyl-
transferase (UGT) 1A1 [15,16]. UGT1A1 also
catalyzes the glucuronidation of bilirubin; reduced
expression of UGT has been associated with dis-
orders of bilirubin homeostasis [17–19]. Of great
interest is a polymorphism in the promoter region
of the UGT1A1 gene where a variable number of
repeating TA units is observed in the general
population. A 6-repeat allele is the most com-
monly identified (wild type) form; a 7-repeat allele
(designated UGT1A1*28) is associated with dra-
matically reduced expression of the inactivating
enzyme and thus with prolonged persistence of
active SN-38. The impaired ability to inactivate
SN-38 in some individuals may lead to an
increased risk of irinotecan-related toxicity, spe-
cifically, neutropenia [20–24].

Since UGT1A1 plays a central role in the
chemical modification of both bilirubin and the
active metabolite of irinotecan, it has been sug-

gested that pretreatment serum bilirubin levels in
cancer patients reflect underlying UGT1A1 poly-
morphisms and thus serum bilirubin may sub-
stitute for UGT1A1 genotyping to risk-stratify
patients for the occurrence of irinotecan-related
toxicity (e.g., severe neutropenia) [21]. In this
study, we assessed the contribution of baseline
bilirubin level to statistical models for predicting
neutropenia based on age, gender, and UGT1A1
genotype among patients receiving first-line
irinotecan-based chemotherapy for mCRC.

Patients and Methods

Study Design
This study was conducted as a companion study to
two clinical trials evaluating irinotecan in combi-
nation with other agents in patients with mCRC.
These trials included a phase III, multicenter,
randomized investigation of the efficacy and safety
of three irinotecan regimens (FOLFIRI, mIFL,
and CapeIRI) in chemotherapy-naïve patients
(BICC-C) [25] and a two-arm phase II study of
irinotecan and 5-FU/LV administered with or
without thalidomide [26]. All patients from whom
samples were obtained for pharmacogenetic analy-
sis signed a separate informed consent for partici-
pation in the companion study. The final protocol,
any amendments, and informed consent documen-
tation were reviewed and approved by the institu-
tional review boards and/or Independent Ethics
Committees at each of the centers participating in
the study.

Participants in the BICC-C trial (N = 430) were
randomly assigned to receive irinotecan 180 mg/
m2, LV 400 mg/m2, 5-FU bolus 400 mg/m2, and
infusional 5-FU 2,400 mg/m2 over 46 hours every
2 weeks (FOLFIRI); irinotecan 125 mg/m2, LV
20 mg/m2, and bolus 5-FU 500 mg/m2 weekly for
2 weeks followed by a week of no chemotherapy
(modified [m]IFL); or irinotecan 250 mg/m2 on
day 1 and capecitabine 1,000 mg/m2 orally twice
daily for 14 days, every 3 weeks (CapeIRI).
Patients underwent an additional randomization
to concurrent celecoxib (400 mg orally twice daily)
or placebo. Patients in the phase II study were
randomly assigned to receive mIFL (as per the
regimen in BICC-C) (N = 40) with or without tha-
lidomide in a 3-week cycle. Only patients who did
not receive thalidomide were included in this
analysis. Of 113 samples analyzed, 107 were from
the BICC-C trial and 6 were from the phase II
trial.

Figure 1 Major pathways of irinotecan metabolism and
disposition. A reaction catalyzed by carboxylesterase-2
yields SN-38, the active metabolite. Glucuronidation of
SN-38 to SN-38G is catalyzed by the enzyme UGT1A1.
Several UGT1A1 polymorphisms exist, coding for a spec-
trum of enzyme expression and varying ability to metabo-
lize SN-38. This figure was published in Semin Oncol, 32,
Tan BR, McLeod HL, Pharmacogenetic influences on treat-
ment response and toxicity in colorectal cancer, 113–9,
Copyright Elsevier (2005).
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Study participants provided separate written
informed consent for genetic testing, in addition
to consent obtained at entry into treatment pro-
tocols. Participation in this study was voluntary
and had no bearing on participation in treatment
protocols.

Testing of Clinical Specimens
Blood was obtained (~20 mL) from each patient
for DNA extraction. All DNA extraction and
genotyping was performed at a central laboratory.
Identification of the UGT1A1 promoter and deter-
mination of the number of TA repeats was per-
formed using a high-throughput genotyping assay
as described in detail elsewhere [27]. The pro-
moter sequence with TA repeats is referred to as
TA indel (insertion/deletion). Only individuals
with genotypes 6/6, 6/7, and 7/7 were included in
this analysis. Blood samples for bilirubin measure-
ment were collected at participating sites during
clinic visits as specified by trial protocols. Serum
bilirubin and hematologic indices were assessed
using standard laboratory methods.

Statistical Methods
The analysis data set consisted of all patients with
an evaluable DNA sample who received at least
one dose of irinotecan. The primary outcome
measurement was nadir in absolute neutrophil
count (ANC) and most severe neutropenia grade
during the first treatment cycle for each regimen
(mIFL, FOLFIRI, and CapeIRI), with grade 3
neutropenia defined as ANC nadir below 1,000;
grade 4, as ANC nadir below 500. Secondary
safety endpoints were ANC nadir and most severe
neutropenia grade after the first treatment cycle
and during the entire treatment period. Covariates
were UGT1A1 genotype, baseline bilirubin level
(continuous variable), age (continuous variable),
and gender. Statistical analysis modeled the rela-
tive contributions of covariates on ANC nadir
associated with a specific treatment. Due to the
relatively small number of patients analyzed for
each treatment, and the resulting wide confidence
intervals, it was difficult to demonstrate sufficient
homogeneity of the effects across treatments to
allow for a pooled analysis. Therefore, a pooled
analysis is not presented.

Allele and genotypic frequencies were calcu-
lated and tested for association using chi-square
tests. Linear regression was used to assess the rela-
tive predictive power of the covariates for ANC
nadir. Models were generated that adjusted for age
and gender (model 1); age, gender, and baseline

bilirubin level (model 2); age, gender, and geno-
type (model 3); and all 4 covariates (model 4).
Partial correlation coefficients (R2) were used
to partition variability in the primary outcome
measure into relative components attributable to
each covariate. The R2 for a model reflects the
proportion of variation in response that is ex-
plained by factors included in the model. When
comparing models, the difference in R2 provides
the additional proportion of response variation
that is explained by adding factors to the model; a
substantial increase in R2 implies that the added
factor contributes predictive power. Confidence
intervals for the R2 values associated with each
model were calculated with a resampling bootstrap
method; if the lower limit exceeded 0 in conjunc-
tion with a substantial increase in R2, the addi-
tional factors in the model were considered to
carry statistically significant predictive power.

Results

Patient Characteristics, UGT1A1 Genotypes, and
Treatment Tolerance
Blood DNA was available for 113 patients, repre-
senting 107 of 430 patients from the BICC-C
study and 6 of 40 patients from the phase II study
of mIFL with or without thalidomide. Of these
113 patients, 36 received FOLFIRI, 41 received
mIFL, and 36 received CapeIRI. Frequencies of
UGT1A1 genotypes were approximately 44% for
6/6, 44% for 6/7, and 10% for 7/7 in the entire
population (Table 1). TA indel genotypes 5/7, 5/8,
and 7/8 each appeared in 1 patient. These patients
were not included in the analysis. Sex, age, and
performance status were comparable across treat-
ment groups (Table 2). Median treatment expo-
sures were 28.1 weeks (range, 2.1–105.9 weeks),
30.1 weeks (range, 1.1–95.1 weeks), and 18.1
weeks (range, 3.1–77.1 weeks) in FOLFIRI, mIFL,
and CapeIRI groups, respectively.

Table 1 UGT1A1 genotype of evaluable population

UGT1A1 genotype

FOLFIRI
(N = 36)
n (%)

mIFL
(N = 41)
n (%)

CapeIRI
(N = 36)
n (%)

TA indel
6/6 19 (52.8) 13 (31.7) 17 (47.2)
6/7 14 (38.9) 24 (58.5) 12 (33.3)
7/7 2 (5.6) 4 (9.8) 5 (13.9)
Other* 1 (2.8) 0 2 (5.6)

*Other represents a 5/7 patient in the FOLFIRI arm and a 6/8 and a 7/8 patient
in the CapeIRI arm. These patients were not included in the model.
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Grade 4 neutropenia was experienced by
patients across all treatment arms over the length
of the study (2/36 patients administered FOLFIRI,
5/41 patients administered mIFL, and 4/36
patients receiving CapeIRI). First-cycle grade 4
neutropenia was experienced by one patient
receiving FOLFIRI, four receiving mIFL, and
three receiving CapeIRI. The most severe neutro-
penia grade during cycle 1, after cycle 1, and over
all cycles is summarized by UGT1A1 TA indel
genotype and chemotherapy arm (Table 3).

Relationship of UGT1A1 Genotype to Baseline
Bilirubin Level and Toxicity
Figure 2 shows baseline bilirubin levels and
UGT1A1 TA indel genotype by treatment group,
baseline bilirubin and ANC nadir by treatment
group, and ANC nadir by UGT1A1 TA indel
genotype and treatment group. Pretreatment
bilirubin levels and ANC nadir did not correlate
with genotype. Grade 4 toxicity occurred infre-
quently but was recorded among patients in all
treatment groups, across all genotypes, and in
all instances at normal levels of total bilirubin.
Neutropenia grades 1–4 was found in every treat-
ment group, and all grades occurred in patients
with levels of total bilirubin in the normal range;
high-grade hematologic toxicity most commonly
occurred in patients with bilirubin levels of
1.0 mg/dL or less. The correlation between base-
line bilirubin and overall ANC nadir without
regard to treatment was low (R = -0.055); the
correlation between genotype (number of copies
of the 7 allele) and overall ANC nadir without
regard to treatment was also low (R = -0.201,
P = 0.035).

When patients were examined according to
specific chemotherapy regimen, occurrences of

Table 2 Demographic characteristics of evaluable
population

FOLFIRI
(N = 36)

mIFL
(N = 41)

CapeIRI
(N = 36)

Sex, n (%)
Male 23 (63.9) 18 (43.9) 18 (50)
Female 13 (36.1) 23 (56.1) 18 (50)

Age (years)
Mean (SD) 57.3 (10.4) 61.1 (9.8) 62.0 (12.4)
Median (min–max) 56 (37–75) 61 (41–78) 62 (26–85)

EGOG PS, n (%)
0 19 (52.8) 22 (53.7) 21 (58.3)
1 16 (44.4) 19 (46.3) 15 (41.7)
2 1 (2.8) 0 0

SD = standard deviation; EGOG PS = Eastern Cooperative Oncology Group
performance status.
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grade 3 or 4 neutropenia were noted in small
numbers of patients in all treatment groups, most
commonly among patients receiving mIFL,
among whom it was relatively evenly distributed
across 6/6, 6/7, and 7/7 genotypes (Table 3).
There was evidence of a trend indicating that
patients with the 7/7 genotype have an increased
risk for grade 4 neutropenia, but there were insuf-
ficient data to characterize this risk by regimen,
and the heterogeneity between regimens does not

justify pooling of the data for further analysis.
The observed trend is similar to the association
between grade 4 neutropenia and the 7/7 geno-
type observed by others [14,21,28,29]. One
patient receiving FOLFIRI experienced first-
cycle grade 3 and two had first-cycle grade 4 neu-
tropenia. Patients receiving mIFL accounted for
the most episodes of grade 3 or 4 neutropenia
(3 and 4 patients, respectively). Among patients
receiving CapeIRI, two had grade 3 and three had

(A)

(B)

(C)

Figure 2 Baseline bilirubin levels and UGT1A1 indel genotype. A, baseline bilirubin and absolute neutrophil count (ANC)
nadir. B, ANC nadir by UGT1A1 indel genotype. C, treatment group in patients receiving irinotecan.
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grade 4 neutropenia. There was no apparent rela-
tionship between baseline bilirubin levels and log
(ANC) during first-cycle treatment or at any sub-
sequent point during the study.

All prediction models based on UGT1A1 TA
indel genotypes had low R2 values (Table 4), indi-
cating that the percentage of total variation in
ANC nadir attributable to these factors was inad-
equate to account for the observed effects and
suggesting, therefore, the presence of additional,
unidentified explanatory variables. Calculated
values for the additional R2 for adding genotype
to the full model were small, ranging from 3.4%
(95% confidence interval [CI], 0.0–15.4%) to
26.0% (95% CI, 6.0–51.6%).

Age and gender, the major demographic vari-
ables, were poorly predictive of first-cycle ANC
nadir for all chemotherapy regimens, especially
FOLFIRI and mIFL (R2 = 1.9% [95% CI, 0.0–
3.6%] and 5.0% [95% CI, 0.0–9.8%], respectively)
in comparison with CapeIRI (R2 = 24.4% [95%
CI, 5.5%–36.9%]). Addition of UGT1A1 geno-
type to the age and gender model increased the
predictive value for first-cycle ANC nadir by a
comparable small amount across all treatment
groups (7.9–8.2%) as well as in the combined data
set (7.4%), but these slight increases were associ-
ated with wide confidence intervals (Table 4,
demog and reduced genotype models).

Baseline bilirubin was largely devoid of power
to predict first-cycle ANC nadir in any model,
with or without UGT1A1 genotype. Adding base-
line bilirubin alone to the demographic model
increased the predictive R2 value negligibly for all
treatment regimens (0–0.1%) and had no predic-
tive utility in the pooled data set (0%) (Table 4,
models 1 and 3).

There was a trend toward a model containing
UGT1A1 TA indel genotype, age, sex, and baseline
bilirubin conferring greater R2 values for first-
cycle ANC nadir (range, 9.8 [95% CI, 0.2–20.7%]
to 32.6% [95% CI, 9.4–46.4%]) than predictive
models containing age, sex, and baseline bilirubin
(range, 1.7 [95% CI, 0.1–3.3] to 24.5% [95% CI,
2.5–36.7%]), suggesting that UGT1A1 TA indel
genotype may offer an additional contribution to
the prediction of ANC nadir beyond baseline
bilirubin level. As with other statistical findings,
confidence intervals were wide. This trend was
consistent across all three chemotherapy arms for
first-cycle ANC nadir and was also present in cal-
culations for ANC nadir after cycle 1 and for all
cycles (Table 4). Over all cycles, the contribution
of the TA indel genotype was smallest for the Ta
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FOLFIRI group (3.4%, [95% CI, 0.0–15.4%])
when compared with mIFL (14.6%, [95% CI, 0.4–
37.2%]) and CapeIRI (17.1% [95% CI, 4.8–
49.2%]).

Discussion

Although new chemotherapy regimens have
increased survival benefits in patients with col-
orectal cancer, toxicity leading to dose reduction
and treatment discontinuation remains an obstacle
to the full realization of such benefits. Thus, there
is an incentive to optimize chemotherapy regi-
mens based on the genetic profile of an individual
cancer patient. Screening before chemotherapy to
identify patients at risk of experiencing serious
toxicities may be useful when selecting treatment
regimens, adjusting dosages, or, in some cases,
rejecting ineffective drugs [30].

Several studies have demonstrated that
UGT1A1 polymorphisms are associated with an
increased risk for neutropenia [14,20,21,28,31–
35]. A recent review of data from 10 pharmacoge-
netic studies of irinotecan suggests that risk
for irinotecan-induced hematologic toxicity in
patients positive for UGT1A1 7/7 is a function of
irinotecan dose [29]. The power of models con-
taining UGT1A1 polymorphisms, baseline biliru-
bin, and SN-38 AUC to predict ANC nadir has
been evaluated previously in heavily pretreated
patients receiving doses of irinotecan ranging from
300 to 350 mg/m2 every 3 weeks [20,21,36]. The
objective of the current study was to evaluate the
predictive power of statistical models that include
baseline serum bilirubin level and single nucle-
otide polymorphisms for UGT1A1 to predict
ANC nadir in patients with mCRC receiving
irinotecan in the first-line setting.

There were 113 patients in the evaluable
population treated with one of three different
irinotecan-based first-line therapies. Although this
population was small, the numbers were sufficient
for exploratory analyses within the broad confi-
dence intervals. Among all patients combined,
UGT1A1 genotype significantly predicted the
rate of grade 4 neutropenia. Moreover, for each
irinotecan-based chemotherapy regimen, there
was a trend suggesting that UGT1A1 genotype
contributes modestly to the prediction of ANC
nadir during irinotecan treatment. This effect was
similar across all treatment groups, although con-
fidence intervals for the relationship were wide.
The additional utility of adding UGT1A1 geno-
type based on the TA indel was ~8–9% during the

first treatment cycle for all regimens, ranged from
7–26% after the first treatment cycle, and was
between 3% and 17% across all cycles. These find-
ings suggest a modest role, at best, for pharmaco-
genomic profiling in irinotecan-based therapy.

Also, in the current study, baseline bilirubin
levels were not correlated with ANC nadir, and
the addition of baseline bilirubin to the predictive
model incorporating age, sex, and UGT1A1 geno-
type failed to improve the explanatory power of
the model for ANC nadir. These results suggest
that there is no clinically useful relationship
between bilirubin level and irinotecan hemato-
logic toxicity in chemotherapy-naïve adults
with mCRC treated with standard irinotecan-
containing first-line regimens. This is in contrast
to an evaluation of 86 patients in which pretreat-
ment bilirubin level was strongly associated with
the development of severe neutropenia [20,21,36].
In these studies, a majority of patients had been
pretreated with other regimens, which may have
affected their ability to metabolize SN-38, while in
our investigation, all patients were chemotherapy-
naïve. Patients in the other reports received high-
dose irinotecan monotherapy (300–350 mg/m2

every 3 weeks), whereas the present study evalu-
ated combination therapies utilizing lower doses of
irinotecan, including FOLFIRI, which has become
a standard front-line treatment. However, both
studies confirm that UGT1A1 testing has low sen-
sitivity to predict severe neutropenia, as indicated
by low R2 [21,36]. This lack of predictive power
limits the use of UGT1A1 genotyping in providing
treatment guidance prior to initiating therapy.

Currently, unidentified factors may significantly
add to predictive accuracy for ANC nadir, arguing
against reliance on UGT1A1 genotype alone,
which has little predictive utility.

With the continuing introduction of newer
and more effective agents, combination therapies
introduce the possibility that one drug may influ-
ence the activity of an enzyme involved in the
metabolism of another [37]. Apart from genetic
factors affecting the complex metabolism of irino-
tecan, which involves multiple enzymatic and
transportational processes enacted at various cel-
lular locales and requires participation of the
cytochrome p450 system, efflux pumps, and other
mechanisms [1,38–40], over 29 genes are impli-
cated in the integrated metabolism of 5-FU, a core
component of the FOLFOX and FOLFIRI regi-
mens. Genetic variation in any of these genes can
affect clinical response or toxicities [41,42]. Addi-
tionally, the toxicities experienced in this study
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may have been at least partially a result of simul-
taneous exposure to the multiple drugs comprising
the mIFL, CapeIRI, and FOLFIRI regimens, with
or without the addition of celecoxib or thalido-
mide, rather than to irinotecan as a single com-
ponent of these complex treatment protocols. A
limitation of the current study is that we did not
undertake pharmacokinetic analyses of SN-38
levels either prior to or following exposure to
irinotecan; variations in levels among patients may
have relevance to the likelihood of increased toxi-
city reactions. Diarrhea also was not included as an
endpoint in our study and consequently is not
included in the model.

The utility of pretreatment screening for a
single nucleotide polymorphism prior to the
administration of sophisticated regimens em-
ploying combinations of agents remains to be
determined. Polymorphisms involved in drug
metabolism do not act in isolation [41]; neither is
the presence of a specific, single nucleotide poly-
morphism an unequivocal indicator that an indi-
vidual patient will show an altered response [43].
Variability in drug actions reflect heritable changes
in an individual patient’s metabolism of the drug,
its specific target, and the complex biologic milieu
in which drugs and their target molecules interact
[44]. Focus on single-gene polymorphisms, e.g.,
6/6, 6/7, or 7/7, may be less useful than screening
for interindividual variations in multiple processes
that comprise a pharmacokinetic pathway [37].
Investigations geared toward comprehensive
analysis of numerous metabolic and degradative
genetic components, and delineation of the func-
tional importance of genetic variants across a
range of drug pathway genes, may represent a
more useful approach to integrating pharmacoge-
netic testing in cancer chemotherapy [41,45].

Focusing on comprehensive genetic profiles
rather than on single specific polymorphisms
offers the promise of enormous benefit from che-
motherapy; recently, a genetic signature compris-
ing 14 genes identified in tumors of patients with
mCRC was predictive of response to FOLFIRI
(100% specificity); however, this signature needs
to be validated in an independent cohort of
patients [46]. Technologic and computational
obstacles remain before comprehensive genetic
analysis is fully integrated into clinical care
[44,47,48].

This study demonstrates that the ability of
UGT1A1 to predict neutropenia is, at best,
modest. Adding baseline bilirubin to the model
containing UGT1A1 genotype does not substan-

tially increase explanatory power. Determining the
specific contribution to the development of toxic-
ity of variations of genes involved in drug-
metabolizing processes can be difficult, given
patients’ heterogeneous backgrounds and the
complex physiologic changes that can be caused by
multiple, confounding factors, including comorbid
conditions, organ dysfunction secondary to previ-
ous treatments, tumor behavior, nutritional status,
and effects of concurrent medications [37,49]. It is
not surprising, therefore, that a single polymor-
phism may not contribute sufficient information
for assessment of toxicity risk beyond that sug-
gested by clinical indicators.
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