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Abstract: Point clouds from light detecting and ranging (LiDAR) sensors represent increasingly
important information for environmental object detection and classification of automated and
intelligent vehicles. Objects in the driving environment can be classified as either dynamic or static
depending on their movement characteristics. A LiDAR point cloud is also segmented into dynamic
and static points based on the motion properties of the measured objects. The segmented motion
information of a point cloud can be useful for various functions in automated and intelligent vehicles.
This paper presents a fast motion segmentation algorithm that segments a LiDAR point cloud into
dynamic and static points in real-time. The segmentation algorithm classifies the motion of the latest
point cloud based on the LiDAR’s laser beam characteristics and the geometrical relationship between
consecutive LiDAR point clouds. To accurately and reliably estimate the motion state of each LiDAR
point considering the measurement uncertainty, both probability theory and evidence theory are
employed in the segmentation algorithm. The probabilistic and evidential algorithm segments the
point cloud into three classes: dynamic, static, and unknown. Points are placed in the unknown class
when LiDAR point cloud is not sufficient for motion segmentation. The point motion segmentation
algorithm was evaluated quantitatively and qualitatively through experimental comparisons with
previous motion segmentation methods.

Keywords: LiDAR; laser beam model; point motion classification; Dempster-Sharfer theory;
intelligent vehicle

1. Introduction

LiDAR systems are rapidly becoming an integral part of automated and intelligent vehicles for
environmental awareness. The price of LiDAR sensors is reducing, and automakers are increasingly
installing LiDAR in production vehicles for advanced intelligent functions [1,2]. LiDAR measures the
distance and direction of the surrounding environment by emitting laser pulses in certain directions
and measuring the time-of-flight (ToF) of each laser pulse reflected by the environment. The directions
and distances can be converted to a digital 3D representation called a point cloud to express the spatial
information of the surrounding environment. Because LiDAR uses light waves, the measured point
cloud can represent spatial information very accurately. In addition, LiDAR point clouds can be fused
with data from other sensors, such as radars, and cameras, to gain more meaningful information about
the vehicle’s environment.

All objects in the driving environment are classified as dynamic or static according to the moving
conditions. Therefore, the LiDAR point cloud from detected objects can also be classified as dynamic
or static point-wise depending on the motion state of the object. Such point-wise classification of point
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cloud states can be used for safety and convenience functions in automated and intelligent vehicles.
For instance, points classified as static are measured from the surfaces of static objects, such as curbs,
poles, buildings, and parked vehicles. Such a static point cloud can be applied to various automated
and intelligent driving functions, such as mapping, localization, and collision avoidance systems [3–5].
Points classified as dynamic are detected from objects that have speeds above a certain level, such as
nearby moving vehicles, motorcycles, and pedestrians. These points can be used for object tracking or
motion prediction, which are necessary functions for automated and intelligent vehicles for tasks such
as autonomous emergency braking (AEB), lane keeping, traffic jam assistance, and adaptive cruise
control (ACC) systems.

As shown in the previous examples, the information of the point cloud state is classified according
to the motion is useful for automated and intelligent vehicles. This paper proposes an algorithm to
rapidly segment the motion states of a point cloud detected by LiDAR in real-time. The overall process
of the proposed algorithm is shown in Figure 1. The rapid motion segmentation algorithm has inputs
of LiDAR’s 3D point cloud and the 3D pose (position and direction) of the LiDAR sensor. The sensor
pose can be estimated from an inertial measurement unit (IMU) or the vehicle’s on-board motion
sensors (such as wheel speed sensors or steering angle sensor). Then, point motion segmentation is
performed by applying the laser beam characteristics to the pose correlation between consecutive
LiDAR point clouds. A combination of probability theory and evidence theory is applied to accurately
and reliably update the motion state of points. The algorithm performs point-wise segmentation of
the point cloud into three states: dynamic, static, and unknown. dynamic information is detected from
an object moving above a certain speed, and static information is detected from a stationary object.
If there are insufficient consecutive LiDAR point clouds for motion classification, some points are
classified as unknown. The performance of the proposed algorithm was evaluated quantitatively and
qualitatively through comparison with existing methods.

This research has three main contributions: (1) reflecting the laser characteristics of LiDAR,
(2) applying a combination of probabilistic and evidential approaches to update the motion state
of points, and (3) online motion updated for real-time applications. This paper focuses on the
characteristics of lasers, such as multi-echo, beam divergence, and horizontal and vertical resolution, so
that it can segment the motion of points more accurately than existing algorithms, such as occupancy
grid mapping. In addition, when updating the state information, a combination of probabilistic and
evidential modeling is applied to more accurately reflect the actual LiDAR characteristics to update
motion in a point-wise manner. Because all the proposed updating processes are real-time, they are
suitable for real-time application in automated and intelligent vehicle systems.
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Figure 1. System architecture of the rapid point motion segmentation algorithm.

2. Previous Studies

With the development of autonomous vehicles, LiDAR is being more widely used, and many
studies of LiDAR are accordingly being conducted. However, there have not been many studies
that classify the point-wise motion of LiDAR measurements themselves in real-time. In the field of
autonomous and intelligent vehicle systems, studies related to the proposed algorithm aim to generate
static environment maps or remove nonstatic points based on tracking results.
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An occupancy grid map is a typical method for generating a static environment map using LiDAR
measurements. The occupancy grid map divides the environment around the vehicle into a 2D grid
or 3D voxel cells with uniform size. The occupancy level of each cell can be updated through the
laser’s ray tracing. The occupancy level of a grid (or voxel) cell passing by the laser becomes lower
because the physical space of the cell is likely to be free. Conversely, the levels of cells located on the
reflecting surface become higher. Based on these principles, static objects are classified as occupied
when the occupancy level exceeds a certain threshold. Contrarily, for a moving object, the occupancy
level of the cell is not constantly accumulated, so it is not classified as occupied. The numerical value of
each cell’s occupancy level is updated based on probability theory [6] or belief theory [7]. Static maps
in large-scale traffic environment are constructed using LiDAR sensors with probabilistic and belief
approaches [8–10]. Moras et al. presented an occupancy grid framework that generates a global static
map and classifies local moving objects simultaneously [11–13]. Classification of traffic objects (such as
vehicles, pedestrians, road curbs, and poles) is used to classify the motion of a point cloud [14–16].

The advantages of occupancy grid-based static point cloud classification are that its
implementation is relatively straightforward and its performance is stable because it has been studied
for a long time in various applications. However, occupancy grid mapping has several disadvantages
for use in real-time automated and intelligent vehicle applications. Large memory is required because
the driving environment must be represented by a grid or voxel cells. Also, the ray tracing method takes
a long time to update all cells related to all LiDAR beams. In addition, because space is represented by
discrete cells, a discretization error occurs when the resolution is coarse.

Research on the detection and tracking of moving objects using LiDAR has been conducted to
recognize the driving environment of automated and intelligent vehicles [17,18]. Object detection
algorithms detect surrounding objects by clustering the point cloud and generate a bounding box
for the each detected object. Tracking algorithms generate tracks for detected objects to estimate
their position, direction, velocity, and acceleration. Using the tracking results, we can classify the
motion of a point cloud into dynamic and static states. Points in a track bounding box above a certain
speed are classified as dynamic, and the remaining points are classified as static. This tracking-based
point motion classification is straightforward, and the tracking results can be reused. However, it has
some limitations. The point cloud clustering groups the detected points on the same object in the
object detection step. Although many clustering methods have been studied, it is difficult to obtain
accurate results using point cloud information alone. Incorrect clustering causes incorrect point motion
classification. In addition, because the tracking has an initialization time to generate new track, it
struggles to satisfy real-time motion classification. Furthermore, because it is difficult for tracking to
accurately estimate the speed of slow objects, the point motion of objects is likely to be misclassified
near the threshold speed.

The point motion classification algorithm presented in this paper has many advantages over
previously proposed ones. First, the proposed method directly segments the point cloud into dynamic
and static states using the laser beam model. Therefore, there is no chance of misclassification due
to discretization error in the occupancy grid method and erroneous clustering of the tracking-based
method. In addition, the proposed method does not require a large amount of memory like the
occupied grid approach because it simply buffers recent point clouds. Finally, the proposed method
is able to satisfy the real-time requirements of point motion classification because it does not need to
update all of the gird cells to initialize a new track.

3. System Architecture

The objective of the proposed point motion segmentation algorithm is to classify the latest LiDAR
point, zn,m

t , into motion states, motionn,m
t , in real-time. The notation of the LiDAR point and motion

states are zindex,order
time and motionindex,order

time , respectively. The n describes the index of the laser beam
from 1 to N. The m represents the order of multi-echo for the laser beam and usually has a value of
2 or less. The t represents the time for the LiDAR scan measurement. The “motion state” has three
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possible values: motion = {dynamic, static, unknown}. The dynamic state indicates the points detected
as moving objects, and the static state represents points detected as stationary objects. The unknown
state means that there is not sufficient evidence to classify the motion state as dynamic or static.

The basic principle of the proposed algorithm is to classify the motion state of the current point
cloud by applying the laser characteristic model to the registration relationship between the previously
measured point cloud and the current point cloud. The inputs of the proposed algorithm are the current
point cloud, Zt = {z1,m

t , z2,m
t , · · · , zN,m

t }; the previously buffered point clouds, Zt−1, · · · , Zt−W+1, Zt−W ;
and the sensor pose, xt, xt−1, · · · , xt−W+1, xt−W , for each point cloud. W denotes the time window
size of the previous data buffer to be used for motion classification of the current point cloud.
There are several methods for obtaining the sensor pose xt, · · · , xt−W , such as inertial measurement
unit (IMU) dead reckoning, scan matching, a high-definition (HD) map-based localization, and
simultaneous localization and mapping (SLAM). To avoid loss of generality, we assume that the
sensor’s pose and its uncertainty are provided. The output of the algorithm is the motion state
Motiont = {motion1,m

t , motion2,m
t , · · · , motionN,m

t } of Zt = {z1,m
t , z2,m

t , · · · , zN,m
t }.

The point motion segmentation algorithm consists of two steps: (1) probabilistic modeling of point
motion and (2) evidential point motion classification. In the first step, the probability of Motion(t−k)→t,
which is a motion classification of Zt against Zt−k, is updated. Figure 2 illustrates the concept of
the probability update of Motion(t−k)→t based on a geometrical relationship between (Zt, xt) and
(Zt−k, xt−k). The likelihood field of the motion can be updated using (Zt−k, xt−k) and the characteristics
of the laser (such as beam divergence and multi-echo). The Dynamic probability for zm,1

t and zm+3,1
t

will be higher when they are located in the path of the laser (green region) for the previous point
cloud Zt−k, and the Static probability for zm+2,1

t will be higher if it is located near the previous point
(red region).
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Figure 2. Probability update of Motion(t−k)→t. The motion probability of the point cloud Zt can be
updated based on the geometric relationship for the previous point cloud Zt−k.

In the second step, the probabilities of each motion classification
Motion(t−1)→t, · · · , Motion(t−W)→t are integrated to estimate the final motion classification
Motiont, as shown in Figure 3. However, the probability of Motion(t−k)→t cannot be updated by
previous points if the current points are not in the likelihood field of the previous points. In this case,
it should be classified as unknown. However, because unknown cannot be expressed clearly using
probability theory, evidence theory, which can handle the unknown state explicitly, is employed. The
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probabilities of Motion(t−1)→t, · · · , Motion(t−W)→t are converted into mass (degree of belief) with
consideration of LiDAR and sensor pose uncertainty and then integrated into a mass of Motiont using
Dempster’s combination rule. The motion states Motiont = {motion1,m

t , motion2,m
t , · · · , motionN,m

t } of
each point Zt = {z1,m

t , z2,m
t , · · · , zN,m

t } are determined using the integrated mass of Motiont.

𝒁𝒕−𝑾
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𝒙𝒕−𝒌

𝒙𝒕−𝟏

𝒙𝒕

𝑴𝒐𝒕𝒊𝒐𝒏(𝒕−𝒌)→𝒕

𝑴𝒐𝒕𝒊𝒐𝒏(𝒕−𝟏)→𝒕

𝑴𝒐𝒕𝒊𝒐𝒏𝒕

Figure 3. Motion probabilities p(Motion(t−1)→t), · · · , p(Motion(t−W)→t) are integrated into the latest
motion probability p(Motiont).

4. Probabilistic Modeling of LiDAR Point Motion

4.1. Characteristics of LiDAR Point Cloud

LiDAR uses rotating laser beams to measure the distances and angles from surrounding objects.
A laser pulse is emitted at a specific angle, and the distance to the object for that angle can be
measured using the time-of-flight (ToF) principle, as demonstrated in Figure 4. ToF represents the
difference between the time the laser pulse is emitted from the diode and the time it returns to the
object. The distance is calculated by multiplying this time by the speed of the laser light. Using the
horizontal–vertical emitted angles and the measured distances, 3D information of surrounding objects
can be reconstructed in the form of point data.

Transmitted

Received

(a)

(b)

Figure 4. Light detection and ranging (LiDAR) measurement characteristics: (a) Time-of-flight (ToF)
and (b) laser beam divergence and multi-echo.
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The actual LiDAR’s laser is not emitted in a straight line, as shown in the Figure 4a. The laser
has a characteristic of “beam divergence”, which increases the beam’s cross section over the distance.
Because of this characteristic, the farther away from the laser source an object is, the wider the area
objects can be detected in. In addition, beam divergence enables multi-echoing of the emitted laser
pulse, as shown in Figure 4b, and the multi-echo allows simultaneous measurement of distances to
various objects. Another important characteristic of LiDAR is the uncertainty of the distance and
angular measurement. Despite the use of lasers, the distance measurement is not infinitely accurate.
The distance measurement accuracy is proportional to the measuring capability of the time the laser
pulse takes to return. Conversely, the angular accuracy (vertical and horizontal) is discretely accurate
because LiDAR is able to control and configure the emission angle. Many previous studies that used
LiDAR measurements did not properly account for the above-mentioned characteristics of LiDAR
(i.e., beam divergence and distance uncertainty); they treated LiDAR measurements as points with no
volume and constant 3D Gaussian uncertainty. To classify LiDAR point motion with high accuracy
and reliability, the proposed algorithm accurately reflects these characteristics of LiDAR.

The LiDAR point cloud measurement Zt = {z1,m
t , z2,m

t , · · · , zN,m
t }must be representable in both

spherical and Cartesian coordinates for processing by the point motion segmentation algorithm. The
measurement can be represented in spherical coordinates as Zrθφ,t = {z1,m

rθφ,t, · · · , zi,m
rθφ,t, · · · , zN,m

rθφ,t}.
The point zi,m

rθφ,t is represented as zi,m
rθφ,t = {ri,1

t , · · · , ri,m
t , θi

t, φi
t}, where r is distance to a point

with a second echo, θ is the vertical (polar) angle of the point, φ is the horizontal (azimuthal)
angle of the point, and m is the number of echos. The Cartesian coordinate representation is
Zxyz,t = {z1,m

xyz,t, · · · , zi,m
xyz,t, · · · , zN,m

xyz,t}, where zi,m
xyz,t = {x

i,m
t , yi,m

t , zi,m
t }.

4.2. Probabilistic Modeling for LiDAR Point Motion

The point motion segmentation classifies the latest N LiDAR points z1,m
t , z2,m

t , · · · , zN,m
t into

the motion states motion1,m
t , motion2,m

t , · · · , motionN,m
t , respectively, in real-time, where motion

consists of three states {dynamic, static, unknown}. The motion state of the latest point
cloud is segmented based on the registration relationship for the previously buffered point
cloud. In other words, the latest point cloud Zt = {z1,m

t , z2,m
t , · · · , zN,m

t } is segmented
into Motiont = {motion1,m

t , motion2,m
t , · · · , motionN,m

t } based on the W-buffered point clouds
Zt−1, · · · , Zt−W+1, Zt−W and the sensor pose xt, xt−1, · · · , xt−W+1, xt−W of each point cloud. The sensor
pose xt, · · · , xt−W can be obtained using several methods, such as an IMU dead reckoning, scan
matching, HD map-based localization, and SLAM. However, the proposed algorithm assumes that the
sensor’s pose information and its uncertainty is abstracted regardless of the type of pose estimation
method.

Probabilistic motion modeling of the point cloud Zt can be estimated using the LiDAR sensor
pose xt of Zt and the previously detected LiDAR point cloud Zt−k and its sensor pose xt−k, as
shown in Figure 2. The probabilistic motion model of Zt to xt, Zt−k, and xt−k can be described as
p(Motion(t−k)→t). The probability p(Motion(t−k)→t) can be represented by a conditional probability
for the given conditions, the past and present point cloud pairs (Zt, Zt−k), and their sensor pose
(xt, xt−k), as represented in Equation (1).

p(Motion(t−k)→t) = p(Motiont|Zt, Zt−k, xt, xt−k) (1)

Motiont is composed of each independent point motion {motion1,m
t , motion2,m

t , · · · , motionN,m
t },

so p(Motion(t−k)→t) can be represented by the set of conditional probabilities of each point, as
described by

p(Motion(t−k)→t) = {p(motion1,m
t |Zt, Zt−k, xt, xt−k), . . . , p(motionN,m

t |Zt, Zt−k, xt, xt−k)}. (2)
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motioni,m
t consists of two states {dynamic, static}, and the sum of p(dynamic) and p(static) is

always one.
The conditional probability of one point motion can be reorganized by the Bayes rule, as

represented by Equation (3).

p(motioni,m
t |z

i,m
t , Zt−k, xt, xt−k) =

p(zi,m
t |motioni,m

t , Zt−k, xt, xt−k)p(motioni,m
t |Zt−k, xt, xt−k)

p(zi,m
t |Zt−k, xt, xt−k)

(3)

p(zi,m
t |motioni,m

t , Zt−k, xt, xt−k) is the likelihood of the LiDAR point measurement for the given
motion state. p(motioni,m

t |Zt−k, xt, xt−k) is the predicted probability density function. The motion
for given Zt−k, xt, and xt−k can be represented by a uniform distribution, so p(motioni,m

t =

{static or dynamic}|Zt−k, xt, xt−k) is 0.5. p(zi,m
t |Zt−k, xt, xt−k) can be a normalization factor by

applying marginalization, as described by Equation (4).

p(motioni,m
t |z

i,m
t , Zt−k, xt, xt−k) = ∑

motion
p(zi,m

t |motioni,m
t , Zt−k, xt, xt−k)p(motioni,m

t |Zt−k, xt, xt−k) (4)

By summarizing the above equations, the posterior probability of one point motion can be represented
by the following equation,

p(motioni,m
t |z

i,m
t , Zt−k, xt, xt−k) = η p(zi,m

t |motioni,m
t , Zt−k, xt, xt−k) (5)

where η is the normalization factor p(motioni,m
t |z

i,m
t , Zt−k, xt, xt−k) of Equation (4). Equation (5) is the

conditional probability of one LiDAR point motion being expressed by the likelihood of the given point
motion. Therefore, the motion probability estimation problem is converted to a likelihood estimation
problem for LiDAR point cloud.

Z

X
World coordinate Y
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𝒙𝒕−𝒌

Figure 5. Likelihood field for the point zi,m
t is constructed by previous point zj,l

rθφ,t−k with consideration
of the beam divergence.

4.3. Likelihood of LiDAR Point Measurement

We know that the point cloud motion probability p(Motion(t−k)→t) can be obtained from

the likelihood of the point cloud p(zi,m
t |motioni,m

t , Zt−k, xt, xt−k), as described by Equation (5). The
likelihood p(zi,m

t |motioni,m
t , Zt−k, xt, xt−k) represents a statistical state when motioni,m

t is determined as
static or dynamic for given Zt−k, xt, and xt−k. The likelihood field of one point zi,m

t can be represented
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intuitively, as shown in Figure 5. The likelihood field of the LiDAR point zi,m
t , measured at sensor

pose xt at time t, is represented by points zj,l
t−k in point cloud Zt−k measured at pose xt−k at the

previous time t− k. The intensity of the green color indicates the likelihood of the point zi,m
t in the

green region being in dynamic motion, and the intensity of the red region represents the likelihood of
the point zi,m

t in the red region being in static motion. The likelihood field is represented in the local
spherical coordinates of the previous sensor pose xt−k. The point cloud Zt−k is represented in spherical
coordinates as Zt−k = Zrθφ,t−k = {z1,l

rθφ,t−k, · · · , zj,l
rθφ,t−k, · · · , zJ,l

rθφ,t−k}. The likelihood field for the point

zi,m
t is constructed in a triangular-pyramid form by each previous point zj,l

rθφ,t−k with consideration of
the beam divergence characteristics of the LiDAR laser, as shown in Figure 5.

The 3D likelihood distribution of p(zi,m
t |motioni,m

t , Zt−k, xt, xt−k) can be divided by two 2D
likelihood fields. The first one is a likelihood field for the distance–horizontal angle (r − φ) plane,
p(ri,m

t , φi
t|motioni,m

t , Zt−k, xt, xt−k), and the second is a likelihood field of the distance-vertical angle
(r− θ) plane, p(ri,m

t , θi,m
t |motioni

t, Zt−k, xt, xt−k). Figure 6 shows the 2D likelihood field in the (r− φ)
and (r− θ) planes for the previous measurements zj,1

t−k, zj,2
t−k, zj+1,1

t−k and zj+2,1
t−k . For each horizontal and

vertical angle, the likelihood field is distributed discretely based on the resolution of the horizontal and
vertical laser pulses. Due to the beam divergence of the laser, the likelihood fields gradually disperse.
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Figure 6. 2D likelihood field for the distance (r) and angle (horizontal φ (a) and vertical θ (b)) of the
previous measurements zj,1

t−k, zj,2
t−k, zj+1,1

t−k and zj+2,1
t−k .
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Distance

𝑝 𝑟𝑡
𝑖,𝑚|𝑚𝑜𝑡𝑖𝑜𝑛𝑡

𝑖,𝑚 = 𝑠𝑡𝑎𝑡𝑖𝑐, 𝑧𝑡−𝑘
𝑗,𝑙

= {𝑟𝑡−𝑘
𝑗,1

, 𝑟𝑡−𝑘
𝑗,2

, 𝜙𝑡−𝑘
𝑗

}, 𝑥𝑡−𝑘 , 𝑥𝑡

Distance

𝑝 𝑟𝑡
𝑖,𝑚|𝑚𝑜𝑡𝑖𝑜𝑛𝑡

𝑖,𝑚 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐, 𝑧𝑡−𝑘
𝑗,𝑙

= {𝑟𝑡−𝑘
𝑗,1

, 𝑟𝑡−𝑘
𝑗,2

, 𝜙𝑡−𝑘
𝑗

}, 𝑥𝑡−𝑘, 𝑥𝑡

𝑟𝑡−𝑘
𝑗,2

𝜎

𝑟𝑡−𝑘
𝑗,1

𝜎

(a)

(b)

𝑟𝑡−𝑘
𝑗,1

𝑟𝑡−𝑘
𝑗,2

Figure 7. Likelihood of static (a) and dynamic (b) for one laser beam.

The cross-section of the likelihood field for one laser beam zj,l
t−k in Figure 6a can be represented by

the likelihood value in Figure 7. Through this figure, we can more accurately analyze the distribution
of likelihood for each motion. Figure 7a shows the likelihood p(zi,m

t |motioni,m
t = static, zj,l

t−k, xt, xt−k)

when a measured point zi,m
t is static for given previous measurement zj,l

t−k and given poses xt and xt−k.

Here, the previous measurement zj,l
t−k can be expressed in spherical coordinates as {rj,1

t−k, rj,2
t−k, φ

j
t−k}.

The region where the previous LiDAR point was detected is likely to be static. LiDAR is measured
using ToF, so the uncertainty of the measured distance, ri,m

t , depends on the accuracy of the ToF
sensor. Considering this uncertainty, the likelihood of static motion can be expressed as a Gaussian
distribution, as described by Figure 7a and Equation (6).

p(ri,m
t |motioni,m

t = static, zj,l
t−k, xt, xt−k) =

1
σ
√

2π
e−(r−ri,m

t )2/2σ2
(6)

σ is the standard deviation of the distance measurement, which are different depending on the LiDAR.
Figure 7b shows the likelihood p(zi,m

t |motioni,m
t = dynamic, zj,l

t−k, xt, xt−k) when a measured point zi,m
t

is dynamic for given zj,l
t−k, xt, and xt−k. The region where the previous LiDAR beam zj,l

t−k passed is

likely to be free, and the location of the current LiDAR point zi,m
t in the region means that this point

is more likely to be detected from a dynamic object. This characteristic can be represented by the
following equation:

p(ri,m
t |motioni,m

t = dynamic, zj,l
t−k, xt, xt−k) ={

MaxLikelihoodi,m
t−k − p(ri,m

t |motioni,m
t = static, zj,l

t−k, xt, xt−k) r <= rj,max(m)
t−k

0 else
(7)

Here, MaxLikelihoodi,m
t−k denotes the maximum likelihood value for the previous point

measurement zj,l
t−k and can be represented by the following equation:

MaxLikelihoodi,m
t−k = p(rj,l

t−k|motioni,m
t = static, zj,l

t−k, xt, xt−k) (8)

When the point zi,m
t is located in the likelihood field for the given {zj,l

t−k, xt−k, xt}, we can obtain
the likelihood through Equations (6) and (7). Then, the probability of the point motion can be calculated
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through Equation (5). However, if the point zi,m
t is located outside of the likelihood field, we cannot

obtain the likelihood using the above equations. The area outside of the likelihood field must be dealt
with as unknown, but probability theory cannot handle the unknown state explicitly. Therefore, in the
next chapter, we apply evidence theory to deal with the unknown state explicitly.

5. Evidential Point Motion Classification

5.1. Evidential Modeling of LiDAR Point Motion

The process of point-wise probabilistic motion estimation achieved through the likelihood field
was described in the previous section. However, there is a limitation to the probabilistic method if the
point zi,m

t is not located above the likelihood field. We can see this limitation in Figure 8. In Figure 8a,
the measurement z∗t represents a normal case because the point is located inside the likelihood field.
The point motion probability p(motion∗t |z∗t , zi

t−k, xt, xt−k) can be {static, dynamic} = {0.5, 0.5} because
the likelihoods for dynamic and static are the same. However, the probabilities of motion for z#

t in
Figure 8a and z$

t in Figure 8b are not included in the likelihood field close to {0.5, 0.5}, because
both likelihoods for dynamic and static are zero. This means that we cannot distinguish the difference
between z∗t , z#

t , and z$
t in the probabilistic approach. To overcome this limitation, an evidential approach

(Dempster–Shafer theory) is applied to explicitly distinguish the motion of points that are not located
in the likelihood field.

Distance

𝑝 𝑧𝑡
𝑖,𝑚|𝑚𝑜𝑡𝑖𝑜𝑛𝑡

𝑖,𝑚 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐, 𝑧𝑡−𝑘
𝑗

, 𝑥𝑡−𝑘 , 𝑥𝑡

𝑧𝑡−𝑘
𝑗

𝑘𝜎

𝑝 𝑚𝑜𝑡𝑖𝑜𝑛𝑡
∗|𝑧𝑡

∗, 𝑧𝑡−𝑘
𝑖,𝑙 , 𝑥𝑡 , 𝑥𝑡−𝑘 = 0.5, 0.5

𝑧𝑡
∗ 𝑧𝑡

#

𝑝 𝑧𝑡
𝑖,𝑚|𝑚𝑜𝑡𝑖𝑜𝑛𝑡

𝑖,𝑚 = 𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑧𝑡−𝑘
𝑗,𝑙

, 𝑥𝑡−𝑘 , 𝑥𝑡

Distance

𝝓
(or 𝜽)

𝝓𝒕−𝒌
𝒋

(or 𝜽𝒕−𝒌
𝒋

)

𝝓𝒕−𝒌
𝒋+𝟏

(or 𝜽𝒕−𝒌
𝒋+𝟏

)

(a)

𝑝 𝑚𝑜𝑡𝑖𝑜𝑛𝑡
$|𝑧𝑡

$, 𝑧𝑡−𝑘
𝑗,𝑙

, 𝑥𝑡 , 𝑥𝑡−𝑘 ≅ 0.5, 0.5𝑧𝑡
$

𝑝 𝑚𝑜𝑡𝑖𝑜𝑛𝑡
#|𝑧𝑡

#, 𝑧𝑡−𝑘
𝑖,𝑙 , 𝑥𝑡 , 𝑥𝑡−𝑘 ≅ 0.5, 0.5

(b)

Figure 8. Problems of probabilistic motion segmentation. The probabilities of motion for z#
t (a) and z$

t
(b) are close to {0.5, 0.5}, because both likelihoods for dynamic and static are zero.

Both probabilistic and evidential approaches are based on the concept of assigning weights to the
hypothesized states of the measurement. However, the evidential approach allows sets of alternatives,
which means new states can be created by combining existing states. The probabilistic approach
deals with the two states {static, dynamic}. In the evidential approach, the two states form a frame
of discernment Ω = {static, dynamic}. Dempster–Shafer theory can manage more states explicitly
(Ω, φ) by extending the frame of discernment Ω to the power set 2Ω = {static, dynamic, Ω, φ}. Ω is the
set Ω = {static, dynamic}, which means that the point motion is static or dynamic. However, because
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the point motion cannot be static and dynamic simultaneously, the state Ω indicates an unknown
state. φ is an empty set, which means that the point motion is not both static and dynamic. However,
because this situation is physically impossible, the state φ indicates a con f lict situation. For each
state of the power set 2Ω = {static, dynamic, unknown, con f lict} in the evidential approach, a mass
function Mass is used to quantify the belief of the hypothesis. The mass functions of Massi,m

t (static)
and Massi,m

t (dynamic) represent the belief of point zi,m
t being static and dynamic, respectively. The mass

function of Massi,m
t (unknown) is the union of the beliefs of static and dynamic, and Massi,m

t (con f lict)
represents the belief that the point is conflicted by different measurements. The sum of mass functions
for the power set must be one based on its definition in the evidential framework.

Based on the evidential approach, we can explicitly handle the points located outside the
likelihood field for the given point zj,l

t−k as an unknown state. The boundary between the inside and
outside is kσ, as shown in Figure 8. k is the tuning factor, which determines the size of the likelihood
boundary, and we used k = 3. The point z∗t is located inside the likelihood field, but z#

t and z$
t are located

outside the likelihood field. The mass of point zi,m
t motion for the given zj,l

t−k, xt, and xt−k is denoted

by massj,l→i,m
(t−k)→t(state) for each state = {static, dynamic, unknown, con f lict}. massj,l→i,m

(t−k)→t(state) can be

calculated based on whether the point zi,m
t is located inside or outside of the likelihood field using the

following equation.

massj,l→i,m
(t−k)→t(static) =

{
λk p(motioni,m

t = static|zi,m
t , zj,l

t−k, xt, xt−k), inside
0, outside

massj,l→i,m
(t−k)→t(dynamic) =

{
λk p(motioni,m

t = dynamic|zi,m
t , zj,l

t−k, xt, xt−k), inside
0, outside

(9)

massj,l→i,m
(t−k)→t(unknown) =

{
1−Massj,l→i,m

(t−k)→t(static)−Massj,l→i,m
(t−k)→t(dynamic), inside

1, outside

massj,l→i,m
(t−k)→t(con f lict) = 0

The mass values of the static and dynamic states are calculated by the motion probability
p(motioni,m

t |z
i,m
t , zj,l

t−k, xt, xt−k) and its confidence, λk. The confidence λk can be determined using
Equation (10).

λk = λregexp(− k
τ
) (10)

λreg describes the confidence of the pose registration between xt and xt−1. This value is determined
by the performance of the registration method, such as IMU, scan matching, and HD mapping. If
the registration is very accurate, the value is close to one; however, if it is not good, it is close to zero.
The confidence λk is also affected by the time difference k. Because the confidence of the probabilistic
model decreases as the time difference k increases, the confidence λk also decreases by exp(−k/τ),
where τ is the time constant that determines the decay rate.

5.2. Point Motion Segmentation by Integrating the Point Motion Masses

For the given point zj,l
t−k and the given poses xt and xt−k, the point motion of

zi,m
t can be described by mass function massj,l→i,m

(t−k)→t(state). For all given previous scan

points Zt−k = {z1,l
t−k, · · · , zj,l

t−k, · · · , zN,l
t−k} and the given poses xt and xt−k, several mass

functions mass1,l→i,m
(t−k)→t(state) · · ·massN,l→i,m

(t−k)→t(state) can be calculated. We must integrate the

mass functions into one mass function massi,m
(t−k)→t(state). In addition, for the previously

buffered point clouds Zt−1, · · · , Zt−W+1, Zt−W in the time window W, several mass functions
Massi,m

(t−1)→t(state), · · · , Massi,m
(t−W)→t(state) can be obtained, and these mass functions should be

integrated into a single mass function Massi,m
t (state) to represent the motion of one point zi,m

t . To
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integrate two different mass values from different laser scans and times, Dempster’s combination rule
(Equation (11)) is applied.

Mass1 ⊕Mass2 =⇒ (11)

Mass1⊕2(A) =
Mass1∩2(A)

1−Mass1∩2(φ)
, Mass1⊕2(φ) = 0,

∀A ⊆ Ω, A 6= φ (12)

Dempster’s combination rule is based on the conjunctive combination rule described by Equation (13).

Mass1∩2(A) = ∑
B∩C=A|B,C⊆Ω

Mass1(B) ·Mass2(B) (13)

6. Experiments

6.1. Experimental Environments

An autonomous vehicle (A1) was used for the experiment to evaluate the proposed algorithm. A1
was equipped with two LiDARs (Velodyne VLP-16) and an IMU, as shown in Figure 9. The LiDARs
provided point cloud data with a 10 Hz sampling frequency and their maximum detection range is
100 m.

LiDAR: Velodyne VLP-16

IMU: raw data from RT3002 

Figure 9. Test vehicle and sensor (LiDAR and positioning system) configuration.

LiDAR lasers beams have beam divergence, which means the beam cross section is increased
over time. We designed a beam divergence model based on the specification of the LiDAR sensors, as
shown in Figure 10. The horizontal and vertical beam divergence characteristics were different. The
standard deviation σ of the distance accuracy was set to 3 cm. Because the distance accuracy can vary
based on factors such as temperature and target reflectivity, the selection of the standard deviation σ

for the probabilistic LiDAR model must consider the uncertainty. The horizontal field of view (FoV)
was 360◦, and the horizontal angular resolution was set to 0.2◦. The vertical FoV was 30◦, and the
vertical resolution was 2◦. Because the LiDAR controls the laser emitting angle, it was assumed that
the angular uncertainties (vertical and horizontal) were negligible.
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(a) (b)

Distance

(mm)

Horizontal

(mm)

Vertical

(mm)

1000 15.4 11.0

2000 18.2 12.5

5000 26.4 17.0

10000 40.1 24.5

15000 53.8 32.0

25000 81.2 47.0

50000 149.7 84.6

100000 286.8 159.6

Figure 10. LiDAR beam divergence model: (a) divergence characteristics from VLP-16 specification
and (b) divergence length over detection distance.

Dead reckoning was implemented using the IMU to estimate the LiDAR pose for each time step.
For the experiments, raw IMU data (acceleration and gyro) from the RT3002 sensor were used without
real-time kinematic (RTK) GNSS correction. The specifications of the MEMS IMU are listed in Table 1.
Although the IMU was not sufficiently accurate to estimate the long-term pose of the LiDAR sensor, it
can provide stable performance in short windows of approximately 50 or less (five seconds or less). In
addition, the evidential integration algorithm was able to account for the inaccuracy of the IMU-based
pose estimation by tuning the registration confidence λreg. By considering the installed MEMS IMU,
we set λreg to 0.9.

Table 1. Specification of IMU sensor. An IMU was used inside the GNSS/INS (RT3002) to estimate the
pose of the LiDAR sensor.

IMU Performance

Acceleration

Bias 10𝑚𝑚/𝑠2 (1𝜎)

Linearity 0.01%

Scale Factor 0.1% (1𝜎)

Range 100𝑚/𝑠2

Angular 

Bias 0.01°/𝑠 (1𝜎)

Scale Factor 0.1% (1𝜎)

Range 100°/𝑠

The synchronization between the LiDAR, IMU, and point motion classification algorithm was
measured by a pulse per second (PPS) signal from an RT3002. The LiDARs and IMU were precisely
calibrated to be located in the same coordinate system.

6.2. Segmentation Performance Evaluation through Comparative Analysis

To evaluate the performance of the point-wise motion segmentation, experiments were conducted
under various scenarios (e.g., cities and highways). The total length of the experiment road is more
than two kilometers. Figure 11a shows single scene of the experimental condition, where moving
cars and stationary road structures were mixed. The result of segmentation through the proposed
algorithm is shown in Figure 11b. The RGB value for each point is set using the proposed motion belief
algorithm. The red values represent static state belief, the green values represent dynamic state belief,
and the blue values represent unknown state belief. Therefore, the objects that have a high probability
of stopping will appear red, moving objects will appear green, and unsegmented objects will appear
blue. As shown in Figure 11b, traffic signs and roadside trees are segmented as red, and moving cars
are classified as green.
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(a) (b)

Figure 11. (a) Test site with moving cars and stationary road structures and (b) classification results of
point-wise LiDAR motion segmentation.

Table 2. Confusion matrices of the tracking-based algorithm and the proposed algorithm with various
time window configurations.

Actual class
Performance

Static Dynamic

P
re

d
ic

te
d

 c
la

ss

Tracking

Static 670066 15335 Accuracy: 73%

Dynamic 266600 93127 Static Recall: 72%

Unknown 0 0 Dynamic Recall: 86%

Proposed algorithm

(W = 20)

Static 490395 11589 Accuracy: 78%

Dynamic 47926 97321 Static Recall: 82%

Unknown 57905 51868 Dynamic Recall: 61%

Proposed algorithm

(W = 30)

Static 506600 3257 Accuracy: 83%

Dynamic 53631 132373 Static Recall: 83%

Unknown 48605 25148 Dynamic Recall: 82%

Proposed algorithm

(W = 50)

Static 490736 2863 Accuracy: 86%

Dynamic 57348 153552 Static Recall: 83%

Unknown 43313 4421 Dynamic Recall: 95%

Proposed algorithm

(W = 100)

Static 480355 10662 Accuracy: 84%

Dynamic 60341 146936 Static Recall: 82%

Unknown 44241 2050 Dynamic Recall: 92%

To quantitatively analyze the segmentation performance, confusion matrices for the
tracking-based classification algorithm and the proposed algorithm with various time window
configurations were created, as shown in Table 2. Using the occupancy grid map, static point
segmentation is possible, but dynamic point classification is not possible. Therefore, the performance
of the segmentation algorithm based on the occupancy grid map is not included in the confusion
matrix. For the segmentation using the proposed algorithm, the point motion is classified as static or
dynamic when the belief of static and dynamic is over 0.8, respectively. The true class of points used
as a reference for evaluation was classified manually. Although public data is more appropriate for
comparing performance with other algorithms, there is no public data labeled by point-wise motion
to verify the performance of real-time motion classification. The object tracking-based point motion
segmentation algorithm segments a point as dynamic when it is located inside the bounding box
of the track above a certain speed, and the remaining points not included in the moving track are
segmented as static. However, the performance of point-wise motion segmentation is not superior
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due to incorrect bounding boxes and inaccurate speed estimation by the tracker. The segmentation
accuracy of the proposed algorithm is better than that of the tracking-based segmentation algorithm
when the time window W is 20, 30, 50, and 100, as shown in Table 2. The segmentation performance
for a time window of 50 is better than that of 100 because the drift error of pose estimation affects the
segmentation performance.

6.3. Real-Time Performance Evaluation

The algorithm was verified in an RTMaps environment with a QuadCore Intel Core i5-3570K,
3600 MHz (36× 100) CPU. Hard real-time performance could not be fully evaluated because it is not
an embedded environment, but it can be optimized later by checking the soft real-time performance
in the RTMaps environment. To evaluate the real-time performance of the algorithm, the occupancy
grid map-based segmentation algorithm was compared with the proposed algorithm. As shown in
Figure 12, the algorithm based on occupancy grid maps took a long time because all cells in the
area the LiDAR beam passed were constantly updated. The larger the window size of the proposed
algorithm, the more computation is required. The most appropriate time window setting for the
proposed algorithm is 50, as illustrated by the confusion matrix, and its computation time is below the
sampling period of the Velodyne LiDAR (100 milliseconds).

Window size [-] Computation time [ms]

20 64.8

30 73.3

50 89.6

100 122.1

200 212.9

(a) (b)

Figure 12. (a) table and (b) plot of Computation time for the occupancy grid map and the proposed
algorithm.

7. Conclusions

This paper proposed a segmentation algorithm to rapidly classify the motion states of a LiDAR
point cloud in real-time. The motion segmentation algorithm requires inputs of point clouds and 3D
pose (position and direction) of the LiDAR sensor. The point-wise motion segmentation is performed
based on the laser beam characteristics and the 3D pose correlation between consecutive LiDAR points.
A combination of probability and evidence theory is used to accurately and reliably segment the
motion state of points into dynamic, static, and unknown.

(1) The point motion segmentation algorithm considers the characteristics of the LiDAR laser
beam, such as multi-echo, beam divergence, and horizontal and vertical resolution. Therefore, the point
motions are segmented more accurately and reliably than by conventional algorithms (e.g., occupancy
grid mapping and tracking-based segmentation algorithm).

(2) To update the motion state of each LiDAR point, a combination of probability theory and
evidence theory is applied to point motion modeling to accurately reflect the LiDAR characteristics.
Probability theory is used to model the likelihood fields of LiDAR point clouds, taking into account
the uncertainty of LiDAR measurements. Evidence theory is used to incorporate multipoint motion
probabilities, taking into account pose uncertainty and the unknown state.

(3) The proposed point motion segmentation algorithm was evaluated experimentally. The
segmentation accuracy was 86% for a time window of W = 50. This is better than the accuracy
of the tracking-based algorithm (73%). Because the proposed algorithm can handle one LiDAR point
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clouds in a one-step process, when operating under 100 ms, it is suitable for real-time applications in
automated and intelligent vehicle systems.

The performance of the algorithm is related to the positioning algorithm that estimates the pose
of the LiDAR sensor. In future research, we plan to analyze the quantitative relationship between the
LiDAR sensor positioning and the proposed algorithm performance, and to study the SLAM algorithm
that classifies the point motion and simultaneously estimates the pose of the LiDAR sensor.
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