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Deep hierarchical embedding 
for simultaneous modeling of GPCR 
proteins in a unified metric space
Taeheon Lee1, Sangseon Lee2, Minji Kang3 & Sun Kim4,5,6,7*

GPCR proteins belong to diverse families of proteins that are defined at multiple hierarchical levels. 
Inspecting relationships between GPCR proteins on the hierarchical structure is important, since 
characteristics of the protein can be inferred from proteins in similar hierarchical information. 
However, modeling of GPCR families has been performed separately for each of the family, subfamily, 
and sub-subfamily level. Relationships between GPCR proteins are ignored in these approaches as 
they process the information in the proteins with several disconnected models. In this study, we 
propose DeepHier, a deep learning model to simultaneously learn representations of GPCR family 
hierarchy from the protein sequences with a unified single model. Novel loss term based on metric 
learning is introduced to incorporate hierarchical relations between proteins. We tested our approach 
using a public GPCR sequence dataset. Metric distances in the deep feature space corresponded 
to the hierarchical family relation between GPCR proteins. Furthermore, we demonstrated that 
further downstream tasks, like phylogenetic reconstruction and motif discovery, are feasible in the 
constructed embedding space. These results show that hierarchical relations between sequences were 
successfully captured in both of technical and biological aspects.

G protein-coupled receptor (GPCR) is the largest transmembrane protein family and one of the most exten-
sively investigated drug targets1,2. Recently, unexplored GPCR proteins are investigated as novel drug targets 
for several diseases3. Furthermore, a recent study demonstrated that understanding genetic variations in GPCR 
proteins could enhance the effectiveness of drugs4. Thus, precise characterization of GPCR families can help 
accelerate drug discovery. GPCR is classified in a hierarchical class structure, represented by family, subfamily, 
and sub-subfamily level classes. This structure was constructed following the sequence similarity and evolution-
ary histories of the proteins5. Analyzing the characteristics of the proteins with respect to this structure lies at 
the heart of GPCR studies6 and inspecting the relations between GPCR sequences regarding this structure is 
an important research subject for two main reasons. First, properties of the protein are often inferred from the 
existing proteins that have already been experimentally validated7. Second, evolutionary history of the proteins 
can be revealed from the relations among proteins.

Approaches based on machine learning techniques, such as hierarchical classification and clustering, on the 
GPCR class structure have been widely explored. For example, classifiers that are designed specifically at each 
hierarchical family level were introduced to classify GPCR proteins. In this approach, classification was proceeded 
in a top-down manner from family classes to sub-subfamily classes8,9. Unsupervised clustering algorithm was 
also proposed to investigate the properties of GPCR proteins like sequence similarity, classification of GPCR 
sequences, and phylogenetic tree reconstruction6. These methods have shown successes in modeling GPCR 
fairly accurately. However, existing methods had to model GPCR at each of the family hierarchies separately and 
inevitably employed series of separate steps to deal with the features in the class structure since the representa-
tions used in the methods can hardly reveal unified features across the class hierarchies. Otherwise, they had 
to compute the distances between protein sequences for all pairs, which is computationally too heavy6,9,10. As a 
result, processing complex features throughout the hierarchy levels as a whole is nearly impossible with previ-
ous representations11. In the sense that GPCR class hierarchy was constructed using complex features including 
phylogenetic traits, ligand types and their functions12, these approaches may not provide research opportunities 
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to inspect the relations between these traits throughout the GPCR proteins. In this regard, it is important to 
construct comprehensive representations of GPCR proteins with hierarchical features inclusively incorporated.

In this work, we present DeepHier, a novel method that simultaneously learns and represents complex protein 
features across the hierarchies. Our end-to-end deep learning network constructs a single embedding space of 
GPCR sequences where hierarchical sequence information is preserved in terms of metric distances. DeepHier 
incorporates significant features across all hierarchical levels into a single vector. On the constructed embedding 
space, distances in the embedding space can be utilized in analyzing GPCR proteins for several downstream tasks.

In a series of experiments, we showed that the metric space generated by DeepHier successfully reflected 
hierarchical class structure of GPCR proteins. First, we extensively investigated distances among sequences in 
the embedding space using cluster analysis techniques. In the distance-based cluster analysis on the embedding 
space, proteins are grouped well according to the hierarchical class labels of proteins. Second, we showed that 
phylogenetic trees constructed from the embedding vectors accurately reflected the phylogeny of the proteins. 
In addition, we showed that biologically significant motifs in the GPCR proteins are well-represented in each 
cluster. We further investigated how those motifs are generalized or narrowed along different hierarchical levels. 
Last but not least, experiments on the query search demonstrated that similarity search on proteins can be done 
fairly efficiently with the embedding vectors.

Related work
Analyzing biological sequences with deep learning.  Alignment-base algorithms achieved remark-
able successes in identifying characteristics of biological sequences. However, performance of alignment-based 
algorithms might deteriorate significantly when there are large variations in sequences such as duplication or 
deletions of subsequences13. Furthermore, multiple sequence alignment algorithms require huge amount of 
computation time with respect to the number of sequences14. For these reasons, a number of alignment-free 
methods have been developed to achieve performances comparable to alignment-based algorithms.

Recently, deep learning technologies have brought unprecedented advances in analyzing biological sequences. 
For example, a previous deep learning study proposed deep convolutional layers to recognize protein folds from 
sequences with competitive accuracy and robustness15. Other works showed that biological sequences can be 
successfully modeled with a one-layer convolutional layer equipped with one-max pooling operator16,17. In these 
works, each convolutional filter was trained to acquire features that correspond to significant sequence patterns. 
Especially, DeepFam17 showed promising results in modeling proteins families with motif features. Recent deep 
learning work extended motif discovery components in DeepFam by adopting word2vec techniques to model 
distributional dependencies among nucleotides18. Although DeepHier is built upon the architecture proposed 
in DeepFam, it differs from the previous works in that neural network architecture is significantly expanded to 
incorporate hierarchical class information into a single model. Furthermore, our work enables the embedding 
of hierarchical features, which are originated from the protein family hierarchy, onto a single metric space.

Metric learning on deep learning.  With the success of deep learning models, more and more works have 
been proposed to utilize distances in the deep feature space. Training objective in these studies are to learn an 
effective mapping function of data where similarity between inputs can be directly inferred from the embed-
ding vectors. Neural networks are trained to favor close distances between representations for data points of 
similar properties and distant representations for dissimilar data. For example, Siamese networks19 and Triplet 
networks20 were introduced in order to make feature vectors for similar data points to be located closely in 
distances in the proposed deep embedding spaces. Similarly, center loss was introduced to construct compact 
intra-class representations and separable inter-class representations21. In center loss, mean embedding vectors of 
data classes are employed as reference vectors to guide training. DeepHier adopted center loss to learn compact 
and separable embedding function according to protein family information.

In deep metric learning for sequence analyses, components of training phases are designed to grant biologi-
cally significant meanings to distances in the embedding space. For instances, a Siamese neural network for 
biological sequences was introduced, where alignment distances between sequences can be directly estimated 
from the embedding vectors of the given sequences22. Moreover, an embedding function based on long short-
term memory was suggested to incorporate structural similarities of proteins during training23. While previous 
studies learned metrics for single level information of biological sequences, up to our knowledge, our work is a 
first work to model hierarchical relations between protein sequences into a single metric space.

Methods
Neural network architecture.  The overall structure of DeepHier is extended and modified from 
DeepFam17. DeepFam is a one-dimensional convolutional neural network with different convolutional filter 
sizes that can model sequence motifs of various lengths. Due to the success of DeepFam in modeling protein 
families, this architecture has been employed as a baseline neural network in previous studies. For example, 
DeepNOG extended the encoding layer of DeepFam by representing amino acid characters into numerical vec-
tors using a trainable model24. DeepPPF also adopted the basic architecture of DeepFam by using convolutional 
filters of various sizes and one-max pooling layer to model motif patterns18. To fully utilize the modeling capa-
bilities of DeepFam, our work also adopted this architecture.

Rather than merely adopting the previous work, however, we introduce novel components on the architec-
ture, Embedding layer and Multi-branch classifier, to effectively build a metric space. Overall architecture of 
DeepHier is illustrated in Fig. 1.
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Feature extractor with CNN.  In DeepFam, variable length convolutional filters were used with one-max pool-
ing layer17. In such setting, output activation value from each convolutional filter encodes information on 
whether significant motif patterns are presented in the input sequences. This architecture was demonstrated to 
be successful in capturing motifs from biological sequences16,17. Especially, DeepFam was successful in detecting 
motifs of variable lengths. In this work, we also adopted this one-max pooling architecture since GPCR families 
are characterized by highly preserved sequence regions25. After applying one-max pooling, the resulting values 
in the convolutional layer is concatenated into an one-dimensional representation, which can be regarded as a 
list of existence values for learned motifs.

Embedding layer.  A linear layer that comes after the convolutional layer is to project outputs from the convo-
lutional layer onto a low-dimensional vector space. Projected vector will be used as an embedding vector of an 
input protein sequence. To simplify the explanation, we assume embedding vectors lie in a d-dimensional space. 
After the linear transformation follows an L2 normalization operator on resulting vectors to keep the distances 
between embeddings from exploding. Thus, we restricted the vector representation of each sequence to lie in a 
d-dimensional hyper-sphere.

Multi‑branch classifier.  Three branches of Multilayer Perceptron (MLP) classifier are attached to the embed-
ding layer. Techniques of using branches in a single neural network, with each branch dedicated to a domain-
specific task, were proposed in Multi-Domain Network (MDNet)26 to construct shared features across the 
multiple domains. In our architecture, three branches correspond to each hierarchical level: class, family and 
subfamily level. Under this multi-branch architecture, gradients from these classifiers will guide embedding vec-
tors to incorporate hierarchical information regarding GPCR protein family into a single representation.

Loss function.  In DeepHier, a loss function with respect to a metric space is introduced to construct mean-
ingful distance relations between protein sequences. We first list the notations used in defining the loss terms in 
Table 1. In the table, µyi is calculated as a mean vector of deep representations of sequences that corresponds to 
class yi proteins21 .

Figure 1.   Overall figure of DeepHier. (a) Neural network architecture. (b) Loss function.
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Cross‑entropy loss with a softmax function.  Cross-entropy loss with a softmax function is frequently used as a 
loss function for training classifiers. Softmax function is used to generate probability distribution of candidate 
labels from the output layer of the network. In many cases, softmax function is combined with cross-entropy 
loss in supervised setting to enforce classifiers to output higher probability on desired labels. This is effective for 
neural network models in learning separable representations between different classes. Likewise, we employed 
this function as a part of the loss to empower neural networks to learn separable features in input sequences for 
each label.

Center loss.  Center loss21 was proposed to complement the cross-entropy loss with a softmax function. 
Although cross-entropy loss with a softmax function is practical enough to separate features between classes, 
it lacks ability to learn compact representations between data that is in the same class21,22. To address this, this 
additional loss term minimizes the distances among data points within a same class. Center loss can be stated 
in following form:

With loss from this metric, parameters are updated to make representation of the input data get closer to the 
mean vector during training. Computer vision community have utilized this form of metric loss functions when 
there are larger number of classes. Especially, domains like face recognition problems were benefited from metric 
losses21,27. GPCR protein modeling is similar to these applications since we need to model relatively large number 
of classes (86 sub-subfamilies) with few number of data samples. Hence, we used center loss to train DeepHier.

In exploiting the above loss function, mean vectors should be updated simultaneously with parameters being 
updated. In the previous work21, mean vectors are calculated based on the images in mini-batch basis since con-
sidering vector representations of the whole dataset, generally comprising of 50K to 200M images for computer 
vision, is computationally exhaustive. However, the number of sequences in the training data is relatively small, 
total of 8222 GPCR proteins for our study. Therefore, we updated mean vectors of classes based on the feature 
vectors from the whole dataset.

Overall loss.  Combining cross-entropy loss LS from the classifiers and center loss for each hierarchy, overall loss 
function can be stated in the following equation.

where S denotes the set of hierarchy levels (S = {family, sub-family, sub-subfamily}) and loss function is stated 
as a weighted sum of losses from each hierarchy. To balance between center loss and cross-entropy loss with 
a softmax function, �C was introduced as a weight for center loss21. Here, ωSi and ωci represent the weight for 
cross-entropy loss with a softmax function, and center loss respectively.

Training procedure.  To effectively incorporate hierarchical information into a single embedding space, 
we designed a training procedure in three different phases. At each phase of training procedures, we devised 
DeepHier to focus on loss values from one level, from family-level to sub-subfamily level. In our setting, training 
phases are ordered following the hierarchical order, from family level to sub-subfamily level. This order ensures 
neural networks to firstly learn general representations that correspond to family level properties of GPCR fami-
lies and then acquire fine-grained representations for sub-subfamily level.

Analyzing distances in the embedding space.  To assess the quality of distances in the proposed space, 
we evaluated how well the distances in the embedding space represent the hierarchical class structure of GPCR 
protein family. Embedding vectors from DeepHier were compared to following methods: (1) model with the 
same architecture as DeepHier but without using the center loss function (w/o Center Loss); (2) model with 
the same loss function and feature extractor as in DeepHier but without a multiple branches output layer (w/o 
Multiple Branch); (3) DeepFam17, a one-layer convolutional neural network with a one-max pooling operator 
that captures sequence motifs; (4) DeepPPF18, a novel convolutional neural network that trained encoding layers 
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Table 1.   Notations related to loss terms.

L Total loss to be used in training

LS Summed cross-entropy loss with a softmax function from three hierarchies

LSi Cross-entropy loss with a softmax function from hierarchy level i where i ∈ {cls, fam, sub}

LC Summed center loss from three hierarchies

LCi Center loss from hierarchy level i

d(xi) Embedding vector in the hidden layer for input sequence xi
µyi Class center of embedding vectors in deep feature space for class that input xi belongs to
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for amino acid characters; (5) Autoencoder, a convolutional autoencoder trained with reconstruction loss; (6) 
MLP classifier on a flattened one-hot encoding vector; and (7) K-mer frequency vectors (3-mer and 4-mer). For 
models based on neural networks, activations of neurons at the last hidden layer were used as representations 
for the sequences.

To be specific, clusters were compared to the class labels at family, subfamily and sub-subfamily levels using 
adjusted mutual information (AMI) and silhouette scores. In calculating the silhouette scores, real class labels 
from three hierarchical levels were used as groundtruth. Since silhouette score is related with intra-cluster and 
inter-cluster distances, silhouette scores under our scheme represent the consistency of distances in embedding 
space to the real class labels. Correspondence between the hierarchical clustering results and GPCR family labels 
was evaluated using AMI score. In estimating the score, we used the real label information as ground-truth label 
information to measure the quality of clustering results. Agglomerative clustering based on ward linkage, a 
hierarchical clustering algorithm where pairs of clusters with closest distances are merged together, were applied 
to the embedding vectors until the target number of clusters are obtained. In our experiment, we increased the 
target number of clusters from 2 to 100 with a step size of 3. AMI scores were measured between class labels and 
cluster results from each of the target cluster number. We provide detailed explanations on AMI and silhouette 
scores in the supplementary material.

Analyzing the hierarchical structure in the embedding vectors.  Relationship between proteins on 
the hierarchical class structure is an important aspect to be investigated in GPCR protein studies. We analyzed 
the overall distance relations between proteins in the embedding space compared to the real class labels. After-
wards, we further constructed a phylogenetic tree from the embedding vectors in order to demonstrate that 
phylogenetic analysis is possible with embedding vectors. Here, a phylogenetic tree was constructed using a 
neighbor-joining clustering method28.

Discovering motifs from the embedding vectors.  As a way of demonstrating the biological signifi-
cance of the vectors, we performed motif discovery experiments on the deep feature vectors. In these experi-
ments, MUSCLE, a multiple sequence alignment tool29, was used to detect conserved sequence patterns. Sets of 
reference proteins were selected from the hierarchical clustering results in the above section where target num-
ber of clusters were incremented. On the sequences in the designated clusters, we applied MUSCLE to figure out 
the highly preserved regions of that cluster. Afterwards, preserved regions from the alignment algorithm were 
compared to known motifs in the literatures to check if results are consistent with biological knowledge.

Query search on embedding spaces.  We conducted a sequence similarity query search on the protein 
family database as one of the downstream tasks on the embedding space from DeepHier. Distances in the low-
dimensional embedding space have long been utilized for effective query search in the high dimensional data. 
In this setting, similarity between data points is defined in terms of distances in the low-dimensional space30. In 
a similar manner, since deep feature space was trained to express GPCR similarity in terms of metric distances, 
we directly utilize the euclidean distances between embedding vectors. We handled query search in terms of 
nearest points in the embedding space. In such setting, unlike conventional alignment-based algorithms for 
sequences, distance calculations on embedding space could be accomplished simply with numerical calcula-
tions. We compared the results with Basic Local Alignment Search Tool (BLAST), the de facto standard tool for 
sequence similarity search31. Since computation speed has been major limitations of alignment-based tools, we 
compared the execution time of each algorithm.

Experimental setup
Dataset preparation.  The GPCR sequences were acquired from the BIAS-PROFS GPCR dataset9. In this 
dataset, sequence labels are annotated in three-level hierarchies, from the family level to the sub-subfamily level. 
In processing the dataset, classes with fewer than 10 sequences were removed, resulting in 86 sub-subfamilies 
and 8222 sequences. During the experiment for query search, sequences from the training dataset were utilized 
as a target database of approximately 6200 sequences. In contrast, query sequences were only retrieved from the 
test dataset.

Sequence representation.  To enable computations on deep learning models, one-hot encoding scheme 
was adopted for DeepHier, where every amino acid position was represented as a one-hot vector32,33. In addi-
tion, each sequence was padded with zeros to a fixed length because CNN requires input vectors of the same 
size. Thus, after converting a sequence into one-hot vectors, we padded each sequence to the length of 100017. 
As a result of encoding, each sequence was converted into a vector of size R1000×20 . Here, 20 is the alphabet size 
of amino acid characters.

Hyperparameter setting.  Hyperparameters used in the experiments are listed in Table  2. Parameters 
regarding convolutional layer were identical to those of DeepFam. However, in our work, we did not employ 
dropout operator since the embedding vectors need to be learned consistently while training. In addition, the 
dimension of embedding vectors needs to be set in advance. We selected the dimension of embedding vectors 
using validation dataset according to accuracies on sub-subfamily level classification. Weights for softmax and 
center loss terms are also set, separately for the family, subfamily and sub-subfamily phase.
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Implementation details.  Neural network models were implemented with Python 3.6.8 and PyTorch 
1.1.034, an open-source deep learning library. Dataset was split into train, validation and test datasets with ratios 
of 0.8, 0.1 and 0.1 respectively for each subfamily class. We selected the best performance model on validation 
set and performances were measured in 10-fold cross-validation scheme. Only the embedding vectors from the 
test dataset were used for evaluation and visualization during experiments.

Results
Evaluation on embedding distances.  Inspection on silhouette scores.  Figure 2 contains the calculated 
silhouette score from each method. In the figure, only DeepHier and DeepHier w/o multiple branch are the model 
equipped with a center loss that constructs metric distances in deep feature space during training. The distinctive 
result from these models is that they show non-negative silhouette scores in three class levels, whereas vectors 
from other models present non-negative values only in one level and negative or near-zero scores in other levels. 
These demonstrate that center loss regarding metric space helped neural network to build effective distance rela-
tions for GPCR families.

Vectors from the Autoencoder and k-mer frequencies, that do not use any class information during train-
ing, show low scores in all levels. This result shows that label information was a powerful supervisor in training 
a model. Although DeepFam and DeepPPF achieved remarkable classification performances in their original 
works17,18, they did not show competitive scores in clustering qualities. These results indicate that center loss 
in DeepHier effectively constructed a meaningful embedding function compared to other models that do not 
address metric distances during training.

We now focus on comparison of two models that adopted center loss during parameter updates. Although the 
model without multiple branch shows positive scores for all three levels, our model shows significantly higher 

Table 2.   List of hyperparameters.

Hyperparameter Value

Kernel sizes 8, 12, 16, 20, 24, 28, 32, 36

Number of filters 256 × 8

Dimension of embedding vectors 30

Number of hidden units in classifier 15

Learning rate 0.001

L2-regularizer on classifier 0.0005

Weight on center loss ( �C) 0.01 0.3 0.5

Weight for center loss on family level ( ωCcls
) 0.8 0.1 0.1

Weight for center loss on subfamily level ( ωCfam
) 0.15 0.8 0.15

Weight for center loss on sub-subfamily level ( ωCsub
) 0.05 0.1 0.75

Weight for cross-entropy loss with a softmax function on family level ( ωScls) 0.8 0.1 0.1

Weight for cross-entropy loss with a softmax function on subfamily level ( ωSfam) 0.15 0.8 0.25

Weight for cross-entropy loss with a softmax function on sub-subfamily level ( ωSsub) 0.05 0.1 0.65
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Figure 2.   Evaluation on embedding distances based on clustering results. (a) Silhouette score of representation 
vectors regarding true class labels on three hierarchical levels. (b) Adjusted mutual information (AMI) score 
calculated for class label in each level versus k clusters yielded from hierarchical clustering algorithm.
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scores. In summary, the proposed two components for metric learning, multiple branches and center loss, have 
been successful in learning compact representations at all levels.

Inspection on AMI scores.  Changes in AMI score for the number of clusters are illustrated in Fig. 2. AMI score 
is maximized when the number of resulting clusters from the algorithm gets closer to the real number of labels in 
that class level, 5 for family and 37 for subfamily. Interestingly, this can be interpreted as: hierarchical clustering 
results show best correspondence when a target cluster number is close to the actual number of class labels. This 
demonstrates that distance relations between embedding vectors match well with hierarchical class structure. 
Similar to results from the experiments of silhouette scores, some algorithms achieved comparable AMI scores 
in the sub-subfamily level clustering evaluation. However, DeepHier shows notably higher score in the family 
and subfamily levels. In fact, our model is the only method that generates the maximum AMI score higher than 
0.7 for all class levels. This again supports that DeepHier was successful in incorporating information from all 
three class levels into a single unified embedding vector. In addition, comparison between results from DeepHier 
and DeepHier without center loss demonstrates that center loss in our approach makes our embedding more 
compactly represented.

Analysis on the hierarchical structure.  Overall distance structures in the embedding space.  In Fig. 3, 
distance matrix was generated using pairwise euclidean distances between the embedding vectors. Protein se-
quence vectors were clustered using a hierarchical clustering algorithm, Unweighted pair group method with 
arithmetic mean (UPGMA)35. To visualize the hierarchical clustering result, columns were ordered based on the 
clustering results whereas rows were sorted according to family, subfamily, sub-subfamily class labels. Cluster-
ing results are demonstrated with dendrogram in the figure. Each of the three-line color bands on the columns 
and rows corresponds to the hierarchical class label of each sequence. Thus, correspondence between clustering 
results and true class information can be revealed by comparing three-line color bands on columns and rows.

It can be observed that hierarchical relations between sequences are apparent in the embedding space from 
DeepHier. Overall pairwise distances between the sequences in the heat map show that embedding vectors 
clearly captured the three distinctive distance relations among GPCR sequences, the brightest one ( 1.6 ∼ ), the 
middle-range one (1.2–1.6) and the darkest one ( ∼ 0.5 ). These distinctions in color level make separations 
between data points more clearly visible. Comparing boundary regions with true label information represented 
with color bands on columns and rows, color distinctions correctly correspond to the label information of 
sequences. For representations from DeepFam, although there exists local clusters of proteins, no hierarchical 
structure between distances is observed. Furthermore, hierarchical clustering results do not match with real 
class hierarchies in DeepFam. This demonstrates that even though DeepFam modeled sub-subfamily classes 
in GPCR protein families fairly well17, hierarchical structure of the proteins was not properly incorporated. In 
contrast, through employing center loss and multiple branches, DeepHier constructed distinctive hierarchical 
relations successfully with distances in the embedding space. We further provide t-SNE visualizations36 for the 
embedding vectors from DeepHierin the supplementary material.

Phylogenetic tree reconstruction.  Phylogenetic tree from the embedding vectors is drawn in Fig. 3. In the tree, 
each family-level label is represented with a distinct color. A branch in the tree was assigned a color correspond-
ing to the family when more than 70% of the leaves in the branch belong to a specific family. In addition, as we 
have done in generating the distance matrix, additional figure of overlaying three-layer color rings with colors 
corresponded to each class in the hierarchy. In the phylogenetic trees, sequences belonging to the same family 
labels were clustered in close positions. In the second and the third rings that represent subfamily and sub-sub-

Figure 3.   Embedding vectors on hierarchical structure, distance matrix and phylogenetic tree. (a) Distance 
matrix of embedding vectors from DeepFam. (b) Distance matrix of embedding vectors from DeepHier. (c) 
Phylogenetic tree reconstructed from DeepHier.
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family respectively, sequences belonging to subfamily and sub-subfamily were also positioned in close locations 
in the tree. In sum, we created a single embedding space that can be used to construct a phylogenetic tree based 
on the single embedding space, grouping GPCR sequences closely at family, subfamily and sub-subfamily levels.

Motif discovery.  To visualize the discovered motifs, WebLogo, a web-based visualization tool37, was used in 
Fig. 4. From the clustering results with a target cluster number of three, conserved sequences of DRY and NSY 
were found to be distinctive features in the first cluster. This cluster had 519 sequences, of which 507 sequences 
belonged to Family A of GPCR protein family. In fact, the discovered motifs in these clusters are the most 
characterizable sequence features shown in family A or Rhodopsin GPCR family1,38,39. Unlike the first cluster, 
however, alignments on the other clusters does not reveal the conserved sequence of DRY. This corresponds to 
our knowledge that DRY and NSY are distinctive features for Rhodopsin-like GPCR proteins. Likewise, other 
significant motifs were found from other clusters too. On the fourth cluster among five clusters in the results, 
conserved sequences of LIGWG​, GPVLASLL and CFLxxEVQ were discovered. These sequences belong to the 
conserved regions in the transmembrane structures of family B or Secretin receptor family of GPCR family40. 
Indeed, this cluster consists of 46 sequences where 44 of them belonged to family B GPCR proteins. At deeper 
hierarchical levels, RKAAKTLG and FKQLHXPTN were found to be conserved in the 48th cluster among 55 
clusters. These features are known to be the representative motifs in the Traceamine sub-subfamily that belongs 
to family A of GPCR proteins. This is consistent with the fact that all the sequences in the cluster are from 
Traceamine sub-subfamily.

Query search speed on embedding space.  We measured execution time of similarity search algorithm. 
Firstly, preparing database with DeepHier requires embedding the whole sequences in the training dataset 
through deep learning model, which is composed of nearly 6300 sequences. Second, time spent for search-
ing through the database should be measured. Thus we compared execution time on database construction 
and database search. For DeepHier, database construction took approximately 12.7 s. In contrast, for BLAST, 
constructing database using makeblastdb command took 368 ms. For similarity search on embedding space, it 
took approximately 19 ms on average for single sequence when database is comprised of 6300 sequences. This 
includes time spent for representing query sequence in terms of embedding vector from the neural network. In 
contrast, BLAST took 266 ms on average.

Constructing database in our approach is slower than that of conventional alignment-based approach, since 
DeepHier requires loading of neural network parameters and embedding of whole training sequences. However, 
once embeddings of the sequences in the database is constructed, we don’t need to repeat this process. Thus, we 
believe slow execution time in constructing database might not be a bottleneck in similarity search. For execu-
tion time spent on similarity search, our method only requires approximately 7.1.

To assess the scalability of similarity search when the size of the database grows, we measured the execution 
time with varying the size of database. BLAST shows linearly increasing execution time with the growth of data-
base (Fig. 5). However, similarity search on the embedding vectors from DeepHier shows consistent execution 
time. We believe that since the embedding vectors lie in a low-dimensional vector space, distance can be easily 
calculated with matrix operation. Thus, we obtained scalability in similarity search. These results suggest that 
similarity search with our method can be a scalable alternative to BLAST for ever increasing size of biological 
sequences.

In addition to the execution time for query search, we estimated the accuracy of the search algorithm. 
DeepHier achieved classification accuracies of 0.985, 0.875, and 0.797 for family, subfamily, and sub-subfamily 
hierarchy. In contrast, query search with BLAST achieved accuracies of 0.989, 0.862, and 0.777, respectively. 
Except for family level classes, our method outperformed alignment-based algorithm in query search tasks. In 
sum, our method enables similarity search on biological sequences with comparable accuracy even without 
leveraging alignment-based computations.

Figure 4.   Discovered motif logos for each cluster on phylogenetic tree generated from hierarchical clustering 
results. Cluster information as well as information on the sequences included in the cluster is provided. Cluster 
3-1 denotes that this cluster is first cluster from the hierarchical clustering when the target number of cluster is 3.
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Discussion
We propose a deep learning based embedding function, DeepHier, that simultaneously learns significant pro-
tein features at three hierarchy levels of GPCR families. Sequence features in GPCR proteins are learned from 
the proposed model, which consists of three-branch classifiers and a novel loss term. The main advantage of 
simultaneous embedding of the hierarchies is that distances in the embedding space are directly correlated with 
hierarchical relations between proteins, which lies at the heart of GPCR studies. This is significant in that phy-
logenetic relationships of GPCR protein families can be modeled with the embedding vectors learnt from our 
deep learning model. In sum, we believe the proposed approach presented a novel and significant strategies for 
utilizing deep learning in analyzing GPCR protein sequences.

Until recently, biological sequence analyses relied heavily on alignment-based algorithms. However, recent 
deep learning works demonstrated that neural networks could be used to model biological sequences without loss 
of performances17. Nevertheless, a number of downstream tasks such as sequence query search or phylogenetic 
analysis were mostly done with multiple sequence alignments. In this regard, our work propose an embedding 
function where downstream analyses on biological sequences could be enabled without the expensive sequence 
alignment step. Throughout the experiments, we demonstrated that the embedding space effectively modeled 
GPCR family hierarchy into a single metric space. Furthermore, phylogenetic relations of the proteins were 
inferred with the proposed method. In addition, embedding space from DeepHier was utilized in sequence 
similarity search tasks for ever increasing GPCR databases. Experimental results in our work indicate that several 
downstream analysis on the protein sequences can be successfully accomplished with the embedding vectors 
generated from DeepHier.

In this study, we restricted the analysis on the embedding function to the GPCR sequences. However, as inves-
tigated in previous works6,41, discriminating GPCR proteins from non-GPCR proteins is also of great research 
interest. Additional classification hierarchy that determines whether input sequences are GPCR proteins or 
non-GPCR proteins could be added to the model. Previous machine learning work proposed a rejection option 
for the classifier based on the metric distances in the feature space42. In a similar regard, during the training, 
negative datasets or non-GPCR proteins could be fed into the model and we can train the model to embed vec-
tors of GPCR proteins close in embedding space.

As a future work, information from the structural characteristics of GPCR receptor can be extensively incor-
porated into the training process in a similar manner to the proposed work. Since structural properties are cru-
cial for identifying functions of the protein, such investigation might give opportunity to obtain more accurate 
modeling of GPCR proteins.
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