
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Article
The mutational landscape
 of SARS-CoV-2 variants
diversifies T cell targets in an HLA-supertype-
dependent manner
Graphical abstract
Highlights
d Link between SARS-COV-2 mutation biases, HLA alleles, and

immune escape

d Dominant C/U SARS-CoV-2 mutations diversify the CD8+

T cell epitope repertoire

d Mutation biases modulate epitope presentation in an HLA-

supertype-dependent manner

d Preferential loss of epitopes in B7 HLA supertype due to

prevalent loss of proline
Hamelin et al., 2022, Cell Systems 13, 143–157
February 16, 2022 ª 2021 Elsevier Inc.
https://doi.org/10.1016/j.cels.2021.09.013
Authors

David J.Hamelin,DominiqueFournelle,

Jean-Christophe Grenier, ...,

Hélène Decaluwe, Julie Hussin,

Etienne Caron

Correspondence
julie.hussin@umontreal.ca (J.H.),
etienne.caron@umontreal.ca (E.C.)

In brief

Hamelin et al. investigated the global

mutation landscape of SARS-CoV-2 by

interrogating 330,246 SARS-CoV-2

sequences from GISAID. The dominant

C/U mutation type was found to

diversify the repertoire of experimentally

validated SARS-CoV-2 CD8+ T cell

epitopes in an HLA-supertype-dependent

manner. Notably, the prevalent removal of

proline was predicted to preferentially

abrogate epitopes presented by the B7

HLA supertype. This model lays a

foundation for testing the impact of

SARS-COV-2 mutants on T cell escape in

an HLA-dependent manner.
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2Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
3ImmunXperts, a Nexelis Group Company, 6041 Gosselies, Belgium
4Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
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SUMMARY
The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we
describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the
population level during the first year of the pandemic. We analyzed a total of 330,246 high-quality SARS-
CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019
to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues
are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of
SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family; this is largely
driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7-supertype-asso-
ciated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immuno-
surveillance during the first year of the pandemic.
INTRODUCTION

As of September 2021, the COVID-19 pandemic, caused by the

novel severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has led to upward 4.6 million deaths and 222 million

confirmed cases worldwide (https://coronavirus.jhu.edu/map.

html), making vaccine development and deployment an urgent

necessity (Callaway, 2020). As a result of unprecedent efforts,

vaccines have been developed and licensed within a 1-year

time frame and are currently being widely distributed for mass

vaccination (Krammer, 2020).

A clear understanding of the natural protective immune

response against SARS-CoV-2 is essential for the development

of vaccines that can trigger lifelong immunologic memory to pre-

vent COVID-19 (Sette and Crotty, 2021; Stephens and McElrath,

2020). Since the start of the pandemic, numerous studies have

investigated the association between COVID-19 clinical out-

comes and SARS-CoV-2-specific antibodies and T cell immunity

(Altmann and Boyton, 2020; Le Bert et al., 2020; Braun et al.,

2020; Grifoni et al., 2020a; Long et al., 2020a, 2020b; Meckiff

et al., 2020; Moderbacher et al., 2020; Sekine et al., 2020; Weis-
Cell
kopf et al., 2020). Memory may be a concern for SARS-CoV-2-

specific antibodies, as they were recently shown to be present

in convalescent COVID-19 patients in a highly heterogeneous

manner (Dan et al., 2021) and, in some cases, observed to be un-

detectable just a few months post-infection (Seow et al., 2020).

In contrast, an increasing number of studies point CD4+ and

CD8+ T cells as key regulators of disease severity (Liao et al.,

2020; Moderbacher et al., 2020; Schub et al., 2020; Weiskopf

et al., 2020; Zhou et al., 2020). Studies of convalescent

COVID-19 patients have also shown broad and strong CD4+

and CD8+ memory T cells induced by SARS-COV-2, suggesting

that T cells may provide robust and long-term protection (Dan

et al., 2021; Peng et al., 2020). Similar observations have been

made for the most closely related human coronavirus, SARS-

CoV, for which T cells have been detected 11 years (Ng et al.,

2016) and 17 years (Le Bert et al., 2020) after the initial infection,

whereas antibodies were noted to be undetectable after

2–3 years (Liu et al., 2006; Tang et al., 2011; Wu et al., 2007).

Thus, vaccines designed to produce robust T cell responses

are likely to be important for eliciting lifelong immunity against

COVID-19 in the general population.
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To investigate how T cells could contribute to long-term

vaccine effectiveness, precise knowledge about SARS-CoV-2

T-cell-specific epitopes is of paramount importance (Liu et al.,

2020). To this end, bioinformatics tools were developed to

predict T-cell-specific epitopes during the early phase of the

pandemic (Grifoni et al., 2020b). A comprehensive map of epi-

topes recognized by CD4+ and CD8+ T cell responses across

the entire SARS-CoV-2 viral proteome was also recently re-

ported (Tarke et al., 2021a). The structural proteins spike (S),

nucleocapsid (N), and membrane (M) were shown to be rich

sources of immunodominant HLA-associated epitopes, ac-

counting for a large proportion of the total CD4+ and CD8+

T cell response in the context of a broad set of HLA alleles

(Tarke et al., 2021a). As of May 2021, �700 HLA-class-I-

restricted SARS-CoV-2-derived epitopes have been exper-

imentally validated (https://www.mckayspcb.com/SARS2Tcell

Epitopes/) (Quadeer et al., 2021).

T cell epitopes that have been mapped across the entire

SARS-CoV-2 viral proteome are reference peptides that are un-

mutated because they have been predicted from the sequence

of the original SARS-CoV-2 that emerged from Wuhan, China

(Grifoni et al., 2020b). However, analyses of unprecedented

numbers of SARS-CoV-2 genome assemblies available from

large-scale efforts have shown that SARS-CoV-2 is accumu-

lating an array of mutations across the world, leading to the cir-

culation and transmission of thousands of variants around the

globe at various frequencies, and hence, contributing to the

global genomic diversification of SARS-CoV-2 (van Dorp et al.,

2020a; Korber et al., 2020; Laamarti et al., 2020; Mercatelli and

Giorgi, 2020; Mercatelli et al., 2021; Popa et al., 2020). This

extensive diversification has resulted in widespread variants

such as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta)

(Cherian et al., 2021; Frampton et al., 2021; Tegally et al.,

2021). Although the delta lineage was not yet present in the hu-

man population during the first year of the pandemic, it is of the

utmost importance to continually interrogate the relationship be-

tween emerging SARS-CoV-2 variants and the adaptive immune

system (Tarke et al., 2021b). In addition, it is important to high-

light here that the pool of mutations observed in SARS-CoV-2

sequences were shown to be associated with a remarkably

high proportion of cytidine-to-uridine (C-to-U) changes that

were hypothesized to be induced by members of the APOBEC

RNA-editing enzyme family (van Dorp et al., 2020a; Di Giorgio

et al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li et al.,

2020; Matyá�sek and Kova�rı́k, 2020; Rice et al., 2020; Simmonds,

2020; Wang et al., 2020). Since shown for other viruses (Grant

and Larijani, 2017; Monajemi et al., 2014), we reasoned that

the putative action of such host enzymes during the first year

of the pandemic could lead to the large-scale escape from im-

munodominant and protective SARS-CoV-2-specific T cell re-

sponses, thereby potentially compromising their effectiveness

to control the virus at the population scale.

In this study, we report a comprehensive study of the global

genetic diversity of SARS-CoV-2 to expose the impact of muta-

tion bias on epitope presentation and HLA-restricted T cell

response within the first year of the pandemic, from December

2019 to December 2020. More specifically, we asked the

following questions: (1) what are the impact of SARS-CoV-2

prevalent mutations detected across the global human popula-
144 Cell Systems 13, 143–157, February 16, 2022
tion on the repertoire of validated SARS-CoV-2 T cell targets,

with specific emphasis on CD8+ T cell epitopes? and (2) are

mutational patterns in the genomic and proteomic composition

of SARS-CoV-2 indicative of disrupted (or enhanced) epitope

presentation and T cell immunity in human populations? By

answering these questions, we provide a theoretical framework

to understand how SARS-CoV-2 mutants have shaped T cell im-

munity to evade effective T cell immune responses at the popu-

lation level during the first year of the pandemic, i.e., without

mass-vaccination-induced immune pressure on viral evolution

and adaptation.

RESULTS

The global diversity of SARS-CoV-2 genomes influences
the repertoire of T cell targets
As of May 2021, nearly 1.7 million complete SARS-CoV-2

genome assemblies are publicly available via the Global Initiative

on Sharing All Influenza Data (GISAID) repository. In the context

of this large-scale effort, we performed a global analysis of

SARS-CoV-2 genomes to assess whether mutations that

emerged during the first year of the pandemic could disrupt

HLA binding of clinically relevant SARS-CoV-2 CD8+ T cell epi-

topes. First, we identified missense mutations by aligning

330,246 high-quality consensus SARS-CoV-2 genomic se-

quences (GISAID; December 31st, 2020, prior to mass vaccina-

tion) to the reference sequence, Wuhan-1 SARS-CoV-2 genome

(Figure 1). We found a total of 13,780 mutations identified in

at least 4 SARS-CoV-2 genomes/individuals from GISAID,

including 1,721 unique amino acid mutations in the S protein,

with D614G as the most frequent one (94%) (Korber et al.,

2020) (Tables S1 and S2). Next, we implemented a bioinformat-

ics pipeline to assess the impact of these mutations on HLA

binding for 620 unique SARS-CoV-2 HLA class-I epitopes that

were recently reported to trigger a CD8+ T cell response in acute

or convalescent COVID-19 patients (Quadeer et al., 2021; Tarke

et al., 2021a) (see STARMethods). On average, we found that the

predicted binding affinity of 181 of these SARS-CoV-2 epitopes

(30%) for common HLA-I alleles was reduced by �100-fold (Ta-

ble S3; Figure 1). It is also apparent that mutations negatively

impacted the HLA binding affinity of 56 (31%) and 19 (10%)

CD8+ T cell epitopes located in the immunodominant S and N

proteins, respectively (Figures 2A and 2B). Notably, a gap in

the N protein, composed of a serine-rich region, is associated

with higher mutation rate and a marked lack of predicted T cell

epitopes and response (Figure 2B). Epitopes located in the

RBD vaccine locus were also impacted bymutations (Figure 2C).

Loss of epitope binding for commonly expressed HLA class-I

molecules was validated in vitro for a subset of representative

SARS-CoV-2 epitopes (Figure S1). Of relevance, we found

that the common D614G mutation in the S protein is linked to a

15-fold decrease in the binding affinity for the mutated HLA-

A*02:01 epitope YQGVNCTEV when compared with the refer-

ence/unmutated epitope YQDVNCTEV (Figures S1A and S1B).

Our analysis also identified a mutation in the HLA-B*07:02-

restricted N105 epitope SPRWYFYYL, which is one of the

most immunodominant SARS-CoV-2 epitope (Ferretti et al.,

2020; Kared et al., 2021; Saini et al., 2021; Schulien et al.,

2021; Sekine et al., 2020; Tarke et al., 2021a). Although relatively

https://www.mckayspcb.com/SARS2TcellEpitopes/
https://www.mckayspcb.com/SARS2TcellEpitopes/
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Figure 1. Impact of SARS-CoV-2 mutations on CD8+ T cell epitopes

(A) Bioinformatic pipeline for the prediction of SARS-CoV-2 mutated class I peptides associated to 12 common HLA alleles.

(B) Pyramidal graph showing the number of (1)missensemutations in SARS-CoV-2 genomes, (2) predicted class Imutated peptides, (3) predicted class I peptides

subject to Weak Binder (WB) to non-binder (NB) and strong binder (SB) to NB transition (epitope loss category), and (4) predicted class-I mutated peptides

matching reference CD8+ T cell epitopes that have been experimentally validated.

(C) Representative examples of predicted class-I mutated peptides and the impact of the identified amino acidmutation (bold) on peptide binding to a given HLA-I

allele. Reference andmutated EL (eluted ligand) rank (%) generated byNetMHCpan 4.1 EL is indicated for individual predictions. Gain =NB to SB (pale red); loss =

SB to NB (pale green).

(D) Left panel: number of unique mutations leading to ‘‘gain’’ or ‘‘loss’’ of class-I peptides for the indicated HLA-I alleles. Right panel: number of unique mutations

showing no effect on peptide binding for the indicated HLA-I alleles.

(E) Frequency of amino acid substitution types leading to loss of HLA binding for experimentally validated SARS-CoV-2 CD8+ T cell epitopes (fromQuadeer et al.,

2021). Mutations considered were those detected in more than 4 individuals (GISAID) and predicted to lead to a strong loss of HLA-epitope binding for common

HLA-I alleles. Top: number of unique missense mutations for various amino acid substitution types. Bottom: Log2 fold change (mutated/reference) of predicted

loss of HLA-epitope binding (NetMHCpan4.1 %Rank) for the various amino acid substitution types. Each dot represents an epitope pair (mutated/reference).

Color indicates HLA-I alleles affected by the mutations.
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Figure 2. Distribution of CD8+ T cell epitopes and theirmutated variants across the immunodominant spike (S) and nucleocapsid (N) antigens

(A and B) Lower panel: blue dots showing all mutations that occurred in at least 4 SARS-CoV-2 genomes (GISAID). Middle panel: epitope density showing the

overlap of HLA class-I epitopes predicted within the 1st percentile for 12 queried HLA-I molecules. Upper panel: dots showing the frequency of CD8+ T cell

response as determined frommultiple studies aggregated in Quadeer et al. (2021). Red dots are mutated epitopes wherein the mutation event led to a predicted

loss of binding. Sequences of specific epitopes are shown with the mutant amino acid in red. The red box in the N protein highlights a serine-rich region

associated with no T cell response, low epitope density, and high mutation frequency.

(C) 3D structure of the S glycoprotein (Moderna vaccine) and highlighted in yellow is the receptor binding domain (Pfizer vaccine). Shown in red are mutated

epitopes wherein mutation events led to a predicted loss of HLA binding.
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rare (found in only two genomes), the mutation in the N105

epitope consists of P/S at anchor residue position P2

(P106S: SPRWYFYYL / SSRWYFYYL) (Figure 2B) and is pre-

dicted to decrease HLA epitope binding by 47-fold (Figure 4D),

thereby likely reducing the breadth of the immune response in

B*07:02 individuals carrying this mutation. Moreover, our global

analysis validated the presence of two previously reported CD8+

T cell mutated epitopes (i.e., GLMWLSYFI / GFMWLSYFI,

found in 38 genomes, and MEVTPSGTWL / MKVTPSGTWL,

found in 23 genomes), which were shown to lose binding to

HLA-A*02:01 and -B*40:01, respectively, in addition to disrupt
146 Cell Systems 13, 143–157, February 16, 2022
epitope-specific CD8+ T cell response in COVID-19 patients (Fig-

ure S2) (Agerer et al., 2021). Together, these results demonstrate

that mutations driving the global genomic diversity of SARS-

CoV-2 can drastically disrupt HLA binding of clinically relevant

CD8+ T cell epitopes, including epitopes encoded by the immu-

nodominant S and N antigens, therefore affecting epitope-spe-

cific T cell responses in COVID-19 patients.

In addition to mutations leading to a loss of HLA epitope bind-

ing, we identified a significant number of mutations predicted to

enhance the presentation of peptides by their respective HLA

molecules, leading to a ‘‘gain’’ of binding (Figures 1C, 1D, and



Figure 3. Global amino acid mutational biases in SARS-CoV-2 proteomes

A total of 330,246 SARS-CoV-2 genomeswere translated into protein sequences and analyzed for the identification of any amino acidmutational bias. Amino acid

residues (x axis) that were removed and introduced in SARS-CoV-2 variants are presented by negative and positive percentage difference in overall amino acid

composition (GRSO values; y axis), respectively. Analysis of mutational biases was performed for mutations occurring at various frequencies: 1 genome (blue

line), 2 to 100 genomes (yellow line), 100 to 1,000 genomes (green line), and more than 1,000 genomes (red line). Simulations of neutral evolution simulation

(random mutations; black lines) were performed using the SANTA-SIM algorithm and serve as control for assessing the statistical significance of the observed

pattern for individual amino acid residues. The dotted red lines show the cutoff values (fold-change >4; p value < 1310�11) that were used to define the residues

that were preferentially removed or introduced (asterisk).
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S3). Because the unmutated epitopes are predicted to be non-

HLA binders, these mutations were not searched against the

list of known validated epitopes, which consist of strong-HLA-

binding reference epitopes. Whether SARS-CoV-2 mutations

predicted to increase HLA epitope binding can enhance T cell re-

sponses to control the virus in COVID-19 patients remains to be

determined experimentally.

Amino acid mutational biases shape the global diversity
of SARS-CoV-2 proteomes
While analyzing the impact of themutational landscape of SARS-

CoV-2 on experimentally validated CD8+ T cell epitopes, we

observed that specific mutation types were over-represented

while others were under-represented (Figures 1E, S1C, and

S1D). For instance, we found that 31% of the prevalent muta-

tions (i.e., found in >100 genomes) predicted to abrogate the

presentation of experimentally validated CD8+ T cell epitopes

(Quadeer et al., 2021) led to the removal of proline residues

(Pro/X) (Figure S1C). These observations led to the hypothesis

that the disproportionate presence of certain mutation types

among mutations predicted to disrupt peptide presentation

could originate from biases in the proteome of SARS-CoV-2 mu-

tants. To further investigate whether specific amino acid muta-

tional biases could be observed globally in the proteome of

SARS-CoV-2 mutants, we asked whether certain amino acid

residues were preferentially removed from or introduced into

the global proteomic diversity of SARS-CoV-2, thereby poten-

tially diversifying CD8+ T cell epitopes in a systematic manner.

To test this, we computed all residue substitutions (amino acid

removed and introduced) found in SARS-CoV-2 proteomes and

calculated global residue substitution output (GRSO) values, i.e.,

the percentage difference in overall amino acid composition for

individual amino acids (see STAR Methods for details). GRSO
values were computed for mutations found at various fre-

quencies in GISAID (i.e., found in only 1 genome, 2 to 100 ge-

nomes, 100 to 1,000 genomes, and >1,000 genomes) (Figure 3).

Distinct mutational patterns at the amino acid level were

observed among mutations detected in more than 100 ge-

nomes/individuals (Figure 3), referred to in this study as ‘‘preva-

lent mutations’’ (see STARMethods and Table S2). Among those

mutations, the amino acids alanine (A), proline (P), and threonine

(T) were preferentially removed by 10.2% (p = 1.23 10�13), 9.1%

(p = 1.6 3 10�15), and 10.5% (p = 1.3 3 10�14), respectively. In

contrast, phenylalanine (F), isoleucine (I), leucine (L), and tyrosine

(Y) were preferentially introduced by 13.4% (p = 2.0 3 10�17),

15.2% (p = 2.4 3 10�17), 4.3% (p = 6.3 3 10�11), and 5.0%

(p = 7.0 3 10�14), respectively (Figure 3). Statistical significance

of these GRSO values was assessed by generating simulated

samples of 1,000 SARS-CoV-2 genomes evolving under

neutrality (n = 10 replicates) using the SANTA-SIM algorithm

(Jariani et al., 2019) (see STARMethods for details). Of note, mu-

tations that were detected in 2 to 100 individuals appeared

significantly more neutral, with none of the mutational patterns

enriched above the selected cutoff values (fold-change >4;

p value < 1 3 10�11). Thus, our results show that specific amino

acid residues were preferentially removed or introduced in the

proteome of SARS-CoV-2 mainly by prevalent mutations. There-

fore, we introduce the notion that the global diversity of SARS-

CoV-2 proteomes is shaped by specific amino acid mutational

biases. Such biased amino acid compositions generated by

prevalent mutations may have a systematic impact on epitope

processing and presentation to shape SARS-CoV-2 T cell immu-

nity in human populations. To address this systematic impact, all

downstream analyses described in this study were performed

from the set of 1,933 prevalent mutations (identified in >100 ge-

nomes) listed in Table S2.
Cell Systems 13, 143–157, February 16, 2022 147
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Prominent removal of proline residues leads to a
predicted global loss of epitopes presented by HLA-B7
supertype molecules
The association of peptides with the binding groove of HLA mole-

cules largely relieson thepresenceof anchor residues, alsoknown

as peptide-bindingmotifs (Falk et al., 1991). Hundreds of different

peptide-binding motifs have been reported over the last decades

(Gfeller andBassani-Sternberg, 2018). Overlapping bindingmotifs

arequalifiedas ‘‘HLAsupertypes’’ on thebasisof theirmainanchor

specificity (Greenbaum et al., 2011; Sidney et al., 2008). Of rele-

vance here, proline acts as a critical anchor residue at position

P2 for epitopes presented by HLA-B7 (B7) supertype molecules,

which include awide range of commonly expressedHLA-B alleles

in humans, i.e., HLA-B*07, -B*15, -B*35, -B*42, -B*51, -B*53,

-B*54, -B*55, -B*56, -B*67, and B*78 (Sidney et al., 2008). In

fact, the B7 supertype covers �35% of the human population

(Franciscodos et al., 2015). Hence, we reasoned that the global

removal of proline residues observed in the proteome of prevalent

SARS-CoV-2 mutants (Figure 3) could drastically compromise

T cell epitope binding to B7 supertype molecules, thereby poten-

tially interfering with SARS-CoV-2 T cell immunity in a relatively

large proportion of the human population.

Due to the preferential removal of proline by prevalent muta-

tions, we investigated the extent at which proline residues were

substituted at anchor binding position P2 and, consequently, re-

sulted in loss of epitopes presented by B7 supertype molecules.

To answer this, we performed the following four steps: (1) we

applied NetMHCpan 4.1 (Reynisson et al., 2020) using the refer-

ence and mutated SARS-CoV-2 genomes to generate a list of all

possible reference/mutated peptide pairs (8–11 mers) predicted

to bind 16 common HLA-B types that belong to the B7 supertype

family (Figure S4B). (2)We analyzed all reference/mutated peptide

pairs, along with their differential predicted binding affinities to

quantitatively identify HLA strong binder (SB) to non-binder (NB)

transitions [(SB) NetMHCpan %rank < 0.5 to (NB) NetMHCpan

%rank >2]. (3) We categorized all peptide pairs based on the mu-

tation type (amino acid X/ amino acid Y) and the position of the

mutationwithin the peptide sequence. (4) Lastly, we quantified the

number of reference/mutated peptide pairs and the associated

fold-change in predicted binding affinity for each category. Our re-

sults show that prevalent mutations predicted to impact the

presentation of peptides by the B7 supertype are dominated by

P/L (p = 8.6 3 10�35) and P/S (p = 3.4 3 10�24) substitutions

at anchor residue position P2 (Figures 4A and 4B). Reference/

mutated peptide pairs from these categorieswere themost abun-

dant, with >250 mutated peptides per category (Figure 4C). P/L

andP/Smutations resulted, on average, in a 61-fold reduction in

predicted HLA binding affinity for a representative set of clinically

validated CD8+ T cell epitopes (Figure 4D).

In addition to the dominant P/S/L substitution type, other

P/X substitutions were observed, including in variants of

concern. For instance, our most recent analysis (August 2021)

of mutations found in the pangolin B.1.1.7 variant (alpha) showed

that the P681H mutation found in the spike protein led to disrup-

ted association of the reference epitope SPRRARSVA for several

HLA-B7 types. In fact, the P-to-H substitution resulted in a strong

loss of epitope binding predicted for 7/16 HLA-B7 types tested.

Notably, themore recent B.1.617.2 (delta) variant was also found

to disrupt the same epitope SPRRARSVA via a proline-to-argi-
148 Cell Systems 13, 143–157, February 16, 2022
nine mutation in the spike protein (Spike:P681R) (Figure 2A).

Thus, our results strongly suggest that biased substitutions of

proline residues in the proteome of SARS-CoV-2 shapes the

repertoire of epitopes presented by B7 supertype, including epi-

topes encoded by the genome of the B.1.1.7 and B.1.617.2 var-

iants. This finding lets us to propose that mutation biases found

in SARS-CoV-2 may contribute to CD8+ T cell epitope escape in

a B7 supertype-dependent manner.

The mutational landscape of SARS-CoV-2 enables
disruption or enhancement of epitope presentation in an
HLA-supertype-dependent manner
We found that specific amino acid residues were preferentially

removed (proline, alanine, and threonine) or introduced (isoleu-

cine, phenylalanine, leucine, and tyrosine) in SARS-CoV-2 pro-

teomes (Figure 3). Most of these amino acids act as key epitope

anchor residues for multiple HLA class-I supertypes (Figure S4).

For instance, phenylalanine and tyrosine are key anchor residues

for all known A*24 alleles of the A24 supertype family, whereas

proline is known to play a critical role in the anchoring of epitopes

to alleles of the B7 supertype family (Figure 5). Therefore, one

would expect the introduction of phenylalanine and tyrosine in

SARS-CoV-2 proteomes to facilitate peptide presentation by

A24, whereas the removal of proline would disrupt peptide pre-

sentation by B7. With this concept in mind, we hypothesized that

the distinct amino acid mutational biases found throughout prev-

alent SARS-CoV-2 mutations could systematically mold epitope

presentation in an HLA-supertype-dependent manner.

In order to compare supertypeswith eachother, wegenerated a

‘‘gain/loss plot’’ for each supertype assessed (Figure 5C). Gain/

loss plot were generated by computing the number of mutations

that resulted in ‘‘gain’’ or ‘‘loss’’ of epitopes for representative

class-I alleles selected for each supertype (see STAR Methods

for details). ‘‘Gain’’ was assigned for mutated epitopes that were

predicted to transit from non-HLA binders (NetMHCpan %rank

>2) to strong HLA binders (NetMHCpan %rank < 0.5), whereas

‘‘loss’’ was assigned for mutated epitopes that were predicted to

transit from strong HLA binders to non-HLA binders. Our analysis

shows that most supertypes preferentially gain new epitopes as a

result of SARS-CoV-2 mutations: A1 (p = 4.5 3 10�11), A2 (p =

0.001), A24 (p = 1.0 3 10�26), B8 (p = 2.4 3 10�14), B27 (p =

2.5310�6). Preferential lossof epitopeswasonly shown tobesta-

tistically significant for B7 supertype (p = 0.0012). Note that we

explain the relatively lowstatistical valueobtained forB7supertype

by the presence of isoleucine and phenylalanine (preferentially

introduced inSARS-CoV-2proteomes;seeFigure3) atanchor res-

idue P9 for certain HLA types (namely HLA-B*51:01 and HLA-

B*53:01) (Figure 5A). In fact, omitting motifs containing isoleucine

or phenylalanine increased the significance of epitope lost versus

gained (p= 2.63 10�7) (Figure 5C). Together, our results show that

theaminoacidmutational biases that feature theglobaldiversity of

SARS-CoV-2proteomescanpositivelyornegativelyaffectbinding

affinities of mutated epitopes for a wide range of HLA class-I mol-

ecules in a supertype-dependent manner.

The C-to-U point mutation bias largely drives
diversification of SARS-CoV-2 T cell epitopes
Next, we sought to better understand the genetic determinants

that drive the association between epitope presentation and
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Figure 4. Mutation of P at the anchor residue position for B7 supertype-associated epitopes

(A) (Left panel) Motif view of SARS-CoV-2 reference peptides predicted to bind B7 supertype molecules (HLA-B*07:02, -B*35:03, -B42:02, -B*5101, -B*53:01,

-B*54:01, -B*55:01, -B*56:01, and -B*67:01). (Right panel) Motif view of the corresponding mutated peptides.

(B) Heatmap showing the frequency of specific amino acid substitutions between reference and mutated peptides.

(C) Graph showing the number of mutations (upper panel; y axis) leading to specific amino acid substitutions (x axis) at anchor residue positions P2 (red dots) and

P9 (green dots) or elsewhere (black dots). Dotted red line indicate the cutoff used to define dominant substitutions. The lower panel shows fold changes for

individual amino acid substitutions.

(D) Experimentally validated CD8+ T cell epitopes (fromQuadeer et al., 2021) that are affected by the lost of a P residue. Mutated epitopes encoded by S, N, open

reading frame (ORF) 1a, 1b, and 3a are shown as representative examples. Effect of the P/X substitutions on predicted epitope-binding affinities (NetMHCpan

4.1 %Rank) is shown. Data of magnitude of T cell response for reference epitopes were obtained from Quadeer et al. (2021).

ll
Article
the amino acid mutational biases found in the SARS-CoV-2 pop-

ulation. To this end, we analyzed the abundance of all the

possible nucleotide mutation types (i.e., A-to-C, A-to-G, A-to-

U, C-to-A, C-to-G, C-to-U, etc.). This analysis indicates that

C-to-U is the most common mutation type (43%), followed by

G-to-U (28%), as well as A-to-G, G-to-A, and U-to-C

(from 9.7% to 11.6%) (Figure S5A), in line with observations

made by others (Di Giorgio et al., 2020; Klimczak et al., 2020;
Kosuge et al., 2020; Li et al., 2020; Matyá�sek and Kova�rı́k,

2020; Rice et al., 2020; Simmonds, 2020; Wang et al., 2020).

Next, we aimed to determine the contribution of these different

nucleic acid mutation types to the global mutational pattern

observed at the amino acid level in Figure 3. To do so, we gener-

ated simulated population samples of 1,000 SARS-CoV-2 ge-

nomes using SANTA-SIM (Jariani et al., 2019), applying various

extents of mutational biases corresponding to the two most
Cell Systems 13, 143–157, February 16, 2022 149
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Figure 5. Loss or gain of SARS-CoV-2 mutated epitopes for different HLA class-I supertypes

(A and B) Motif views showing established epitope-binding motifs for different HLA-I alleles that belong to the HLA-B7 (A) and HLA-A24 (B) supertype family.

Shaded squares highlight anchor residues that are preferentially removed (pale green) or introduced (pale orange) in SARS-CoV-2 proteomes (related to Figure 3),

respectively. Histograms below the motif views indicate the number of frequent mutations (identified in at least 100 individuals) leading to the loss or gain of

epitopes.

(C) ‘‘Gain/loss plots’’ showing number of mutations (y axis) leading to a significant loss (pale green) or gain (pale orange) of epitopes for different HLA class-I

supertypes. Each black dot represents the number of mutations associated with gain and loss of epitopes for a given HLA-I allele. Between 14 to 19 alleles per

supertype (Figure S4) were used to generate the graphs and p values (*p % 0.001, **p < 1e�5, ***p < 1e�10).

ll
Article
common mutation types observed (i.e., C-to-U and G-to-U). The

resulting simulated viral populations were then analyzed to eluci-

date the global amino acid mutational pattern engendered by

these simulated nucleic acid point mutation biases and whether
150 Cell Systems 13, 143–157, February 16, 2022
they recapitulate the observed patterns. Indeed, our data show

that the mutational pattern resulting from the simulated C-to-U

bias very closely mimicked the mutational pattern observed in

the real-life dataset (Figure 6A). Namely, the in silico introduction
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Figure 6. The C-to-U point mutation bias largely drives the diversity of SARS-CoV-2 proteomes and CD8+ T cell epitopes

(A) Comparison of global amino acid mutational patterns generated from real-life versus simulated SARS-CoV-2 genomes. Amino acid residues (x axis) that were

removed (y axis; negative values) and introduced (y axis; positive values) in real-life (red line) versus simulated (black, blue, and green lines) SARS-CoV-2 are

presented by percentage difference in overall amino acid composition (y axis; GRSO values), respectively. Evolution of SARS-CoV-2 was simulated by intro-

ducing various extents of C-to-U biases, i.e., 31, 315, and 320 (n = 10). The red line shows the pattern obtained from mutations identified in more than 100

SARS-CoV-2 genomes, related to Figure 3.

(B) (Top) Pie chart showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell epitopes inQuadeer et al. (2021). (Bottom) Pie chart

showing the proportion of nucleotide substitution types from the list of validated CD8+ T cell epitopes that belong to the B7 supertype family in Quadeer

et al. (2021).

(C) Schematic illustrating the C-to-U-mediated epitope escapemodel. The observed P-to-S substitution in the immunodominant SPRWYLFYYL epitope from the

N antigen is shown as an example.
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of a C-to-U mutation bias resulted in the preferential removal of

alanine, proline, and threonine, by 6.7% (p = 5.1 3 10�11), 6.9%

(p = 1.23 10�11), and 8% (p = 4.83 10�12), respectively, as well

as the introduction of isoleucine and phenylalanine by 8.2% (p =

1.33 10�8) and 5.2% (p = 4.33 10�11), respectively (Figure 6A).

The G-to-U mutation bias also contributed to the introduction of

isoleucine and phenylalanine (Figure S5B). Together, these re-
sults show that the predominant C-to-U point mutations largely

contribute to shaping the global proteomic diversity of SARS-

CoV-2.

Given the significant impact of the C-to-U point mutation bias

on the amino acid content of SARS-CoV-2 proteomes, we

reasoned that C-to-U could be themain driver shaping the reper-

toire and diversification of SARS-CoV-2 T cell targets in human
Cell Systems 13, 143–157, February 16, 2022 151
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populations, including targets presented by the particularly inter-

esting B7 supertype molecules. To investigate this, we used all

the SARS-CoV-2 CD8+ T cell epitopes that were experimentally

validated using peripheral blood mononuclear cells (PBMC) of

acute and convalescent COVID-19 patients (Quadeer et al.,

2021; Tarke et al., 2021a) and matched them with their corre-

sponding nucleic acid sequence found in reference/mutated

genome pairs. We then calculated the frequency of the various

mutation types (i.e., A-to-C, A-to-G, A-to-U, C-to-A, C-to-G,

C-to-U, etc.) coding for themutated form of those experimentally

validatedCD8+ T cell epitopes.We found that C-to-U andG-to-U

were the two main mutation types leading to mutated epitopes,

both accounting for 37% of all mutation types among prevalent

mutations (>100 individuals) (Figure 6B). In addition, our data

show that 62% of the prevalent mutations predicted to disrupt

the presentation of epitopes by HLA alleles for the B7 supertype

were found to derive from the C-to-U mutation type (Figure 6B).

These results strongly suggest that the dominant C-to-U point

mutation bias found among prevalent SARS-CoV-2 mutants

has the potential to contribute to shaping the repertoire of

SARS-CoV-2 T cell epitopes in B7 supertype individuals across

human populations. Collectively, our study lets us to propose the

model that C-to-U editing enzymes play a fundamental role in

shaping the mutational landscape dynamics of SARS-CoV-2

CD8+ T cell targets in humans (Figure 6C), and hence, may

contribute to molding T cell immunity against COVID-19 at the

population level.

DISCUSSION

Mutations contribute to the genetic diversity of SARS-CoV-2 and

shape the progression of the COVID-19 pandemic (van Dorp

et al., 2020b, 2020a; Popa et al., 2020). T cells are key players

controlling COVID-19 disease severity. Therefore, determining

whether and how the mutational landscape of SARS-CoV-2

shapes HLA-restricted T cell responses is fundamentally impor-

tant. Traditionally, most studies have investigated how viral

mutations are shaped by T cell response in the context of

HLA-typed cohort patients. This type of approach sought to

determine the evolutionary relationship between HLA genotypes

and variants of long-standing viruses such as HIV-1 (Brumme

et al., 2007; Kawashima et al., 2009) and influenza (Woolthuis

et al., 2016). In the case of a novel virus such as SARS-CoV-2,

such a relationship remains to be established and does not

constitute the scope of our work. Here, we rationalized that an

alternative approach to interrogating SARS-CoV-2 epitope-

associated variants is by investigating the global genomic and

proteomic diversity of SARS-CoV-2 for any outstanding muta-

tional biases, and then, assessing the relationship between

such biases and epitope presentation for a broad set of HLA al-

leles. In other words, in this study, we did not seek to understand

how viral mutations are shaped by T cell immunity but rather to

understand how mutational biases in SARS-CoV-2 may have

shaped T cell immunity at the population level during the first

year of the pandemic. This approach was possible thanks to

an unprecedented number of SARS-CoV-2 genome sequences

available for downstream analysis. Our approach is universal

and could be applied to other epidemic or pandemic viruses in

the future, given the development of distinct, prevalent muta-
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tional biases. Our global approach has led to several conclusions

to help understand how the increasing genomic diversity of

SARS-CoV-2 may shape T cell immunity in human populations.

Our findings have important implications that are discussed

below in the context of disease severity, viral evolution, and vac-

cine resistance.

In this study, we found that prevalent SARS-CoV-2 mutations

are governed by defined mutational patterns, with C-to-U being

a predominant mutation type, as previously shown by others (Di

Giorgio et al., 2020; Klimczak et al., 2020; Kosuge et al., 2020; Li

et al., 2020; Matyá�sek and Kova�rı́k, 2020; Rice et al., 2020; Sim-

monds, 2020;Wang et al., 2020). In fact, we show that theC-to-U

mutation bias in SARS-CoV-2 genomes has a remarkably inti-

mate relationship with the observed amino acid mutational

biases, indicating that C-to-U mutations largely contribute to

the global proteomic diversity of SARS-CoV-2. Moreover, we

show that this mutational bias leads to the preferential substitu-

tion of proline residues with leucine or serine residues in the P2

anchor position of SARS-CoV-2 CD8+ T cell epitopes, and

hence, drastically compromise epitope binding to B7 supertype

molecules. These molecules, which represent �35% of the hu-

man population, preferentially bind epitopes with proline at P2

(Franciscodos et al., 2015). Therefore, the C-to-U mutational

bias observed among prevalent mutants may partially disrupt

SARS-CoV-2 T cell immunity in a very significant proportion of

the human population. Noteworthy, this impact of C-to-U muta-

tions on B7-dependent epitope escape was somehow predict-

able. In fact, proline residues originate from codons that are

highly rich in C, whereas serine and leucine residues originate

from codons that are rich in U. One could therefore predict, at

least to some extent, that a strong C-to-U bias would lead to pro-

line-to-leucine or proline-to-serine substitutions. Thus, this study

highlights the impact of viral mutational biases and codon usage

in shaping the diversity of CD8+ T cell targets. The impact of the

loss of several B7 epitopes on the immune response of an indi-

vidual, however, remains unclear.

In this study, we observed that proline/X mutations were

more enriched among prevalent mutations (>100 genomes) pre-

dicted to abrogate the presentation of experimentally validated

CD8+ T cell epitopes than across the global mutation landscape

of SARS-CoV-2 proteomes (31% and 9.1%, respectively). These

two percentages are in fact indicative of different phenomena.

The former reflects the susceptibility of certain HLA alleles to

specific mutational patterns (the removal of proline in this

case), whereas the latter reflects the overall mutational biases

observed across SARS-CoV-2 proteomes. This noticeable dif-

ference may suggest that certain mutation types play a

particularly important role in HLA-type-dependent cytotoxic T

lymphocyte (CTL) escape. This concept becomes evident

when considering the 13 common alleles investigated in this

study. The detrimental impact of proline/X mutations on the

presentation of peptides by B7 alleles is reflected in the higher

proportion of proline/X mutations (31%) leading to the loss of

epitopes. This being said, it is important to realize that we do

not make the claim that the presence of proline-to-leucine or

proline-to-serine mutations in the SARS-CoV-2 proteomes

depend on patients being B7 supertype positive or that the B7

supertype drives the evolution of proline-to-leucine/serine muta-

tions.We do, however, demonstrate that the prevalentmutations
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currently in circulation are enriched for proline-to-leucine/serine,

and our in silico predictions suggest that the high occurrence of

this mutation type leads to widespread hinderance of epitope

presentation in B7-supertype-positive individuals.

A key question to address is to what extent does the C-to-U

bias drive SARS-CoV-2 evolution and adaptation over the

course of the ongoing pandemic. As proposed by others, the

most likely explanation for the observed C-to-U bias is the action

of the host-mediated RNA-editing APOBEC enzymes, a family of

cytidine deaminases that catalyze deamination of cytidine to uri-

dine in RNA (van Dorp et al., 2020a; Di Giorgio et al., 2020; Kos-

uge et al., 2020; Olson et al., 2018; Salter et al., 2016). In this

regard, APOBEC activity has been shown to broadly drive viral

evolution and diversity, including in human immunodeficiency vi-

rus (HIV) (Albin et al., 2010; Cuevas et al., 2015; Haché et al.,

2008; Jern et al., 2009; Peretti et al., 2018; Sadler et al., 2010;

Wood et al., 2009). In fact, APOBEC-induced mutations driving

the evolution and diversification of HIV-1 were shown to have

an intimate relationship with T cell immunity (Kim et al., 2014;

Wood et al., 2009). Those studies have shown that the impact

of APOBEC-induced mutations may result in either a decrease

or increase of CD8+ T cell recognition and that the direction of

this response is dictated by the HLA context (Casartelli et al.,

2010; Grant and Larijani, 2017; Kim et al., 2014; Monajemi

et al., 2014; Squires et al., 2015; Wood et al., 2009). This is

very much in line with our findings. Indeed, we showed that

amino acidmutation biases in SARS-CoV-2 proteomes generally

positively affect epitope binding for various HLA class-I super-

types, and most strikingly for A24, whereas B7 is the only super-

type that is consistently negatively affected by the mutation

biases given the markable loss of proline residues in SARS-

CoV-2 proteomes. Together, our results raise the important hy-

pothesis that host-mediated RNA-editing systems shape the

repertoire of SARS-CoV-2 T cell epitopes in a positive and nega-

tive HLA-dependent manner.

Another question is whether populations of B7 supertype indi-

viduals represent an advantageous reservoir for the virus to

evolve toward more transmissible variants. As the genetic diver-

sity of the SARS-CoV-2 population continue to increase, and as

new variants emerge, our global analysis suggests that the

probability for SARS-CoV-2 epitopes to escape CD8+ T cell im-

munosurveillance is higher in B7 individuals compared with A24

individuals. In fact, mutated epitopes are predicted to be unfa-

vorably and favorably presented by B7 and A24 supertypes,

respectively (Figure 5). The supertype dependency is important

here because it suggests that T cell responses are shaped differ-

ently across different human populations in response to infection

by mutated forms of SARS-CoV-2. For instance, the predicted

model lets us hypothesize that, within the first year of the

pandemic (from December 2019 to December 2020), human

populations expressing the A24 supertype at higher frequency

(e.g., >90% of people in specific geographical regions in Taiwan)

may likely mount a T cell response upon infection by mutated

forms of SARS-CoV-2 that will not be as readily disrupted bymu-

tation events, in comparison with individuals expressing the B7

supertype (i.e., �35% of the human population) (Franciscodos

et al., 2015). Interestingly, a recent computational study corrob-

orated the propensity of HLA-B*07:02 to lose epitopes due to

SARS-CoV-2 variants (Nersisyan et al., 2021). Our proposed
model may therefore act as a contributing factor addressing

the global diversity of immunological responses against SARS-

CoV-2 variants as the pandemic progresses. Several studies

have indeed interrogated associations between HLA alleles

and COVID-19 disease severity (Naemi et al., 2021; Pisanti

et al., 2020; Tomita et al., 2020) as well as mutations and T cell

evasion (Agerer et al., 2021; Geers et al., 2021; Motozono

et al., 2021). However, to the best of our knowledge, this is the

first study that proposes a connection between mutation biases,

differential presentation of epitope variants (HLA supertype

dependent), and variability in host responses to SARS-CoV-2

infection, all in the context of the continuously expanding

genomic diversity of SARS-CoV-2mutants. Additionally, the cur-

rent study establishes a basis for investigating CTL-escape in the

context of HLA (super)types strategically selected based on the

diversification patterns of SARS-CoV-2.

With regard to the variants of concern, we noted that the

B.1.1.7 (alpha) variant was predicted to lose the B7-supertype-

associated, experimentally validated epitope SP/HRRARSVA

as a result of a proline-to-histidine substitution. The B.1.617.2

(delta) variant was in fact also predicted to lead to the loss

of the same epitope via a proline-to-arginine substitution

(SP/RRRARSVA). As the B.1.617.2 variant has become the

most widespread SARS-COV-2 lineage globally since July

2021, it would be of interest to experimentally interrogate the

impact of this variant in the activation of CTLs in B7+ individuals.

Although our study does not demonstrate that the dispropor-

tionate loss of proline across the SARS-CoV-2 mutation land-

scape is the cause for the increased infectivity of the discussed

variants of concern, we propose that it may be a contributing fac-

tor in the context of certain populations. In this regard, while

genomic surveillance is ongoing in different regions of the world,

measuring the level of transmission of the B.1.1.7 and B.1.617.2

variants within geographical regions of the world with low B7

population densities and high A24 population densities (in Asia)

or the opposite trend (in Sub-Saharan Africa) (http://www.

allelefrequencies.net/top10freqs.asp) may provide insights into

this concern. As new variants of concern continue to emerge

and as new epitope data are continuously being generated (Gri-

foni et al., 2021), another interesting avenue would be to study

the mutational patterns of those emerging variants and assess

whether and how the potential loss of B7-associated epitopes

in those specific variants impact T cell response in infected pa-

tients. Understanding the impact of losing several subdominant

B7-associated epitopes versus one single immunodominant

epitope could also be investigated in the context of those vari-

ants. In this regard, a particular attention was allocated in our

study to the B*07:02-restricted N105 epitope SPRWYFYYL.

This epitope is of high interest as its immunodominance was

experimentally demonstrated in many independent studies (Fer-

retti et al., 2020; Kared et al., 2021; Saini et al., 2021; Schulien

et al., 2021; Sekine et al., 2020; Tarke et al., 2021a). Precisely,

we found a rare mutation consisting of P/S at P2 of this epitope

(SPRWYFYYL / SSRWYFYYL). Its occurrence was predicted

to result in the complete abrogation of binding of the epitope

to B*07:02, thereby likely reducing the breadth of the immune

response in individuals carrying this mutation. As such, we

advise the community to carefully monitor this mutation in sub-

sequent months. Moreover, it is also possible that B7 individuals
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respond less efficiently to the currently available vaccines, as ge-

netic variants promoting B7 escape might favorably emerge in

the future. The B7 supertype could therefore potentially repre-

sent a biomarker of vaccine resistance.

In summary, our study shows that mutation biases in the

SARS-CoV-2 population diversify the repertoire of SARS-

CoV-2 T cell targets in humans in an HLA-supertype-dependent

manner. Hence, we provide a foundation model to help under-

stand how SARS-CoV-2 may continue to mutate over time to

shape T cell immunity at a global population scale. The proposed

process will likely continue to influence the evolution and diver-

sification of SARS-CoV-2 lineages as the virus is under tremen-

dous pressure to adapt in response to mass vaccination.

Limitations and future directions
Our analyses focused on class-I molecules for which predictors

are established to be more accurate in comparison with class II.

HLA-C and non-classical HLA were not included in this study.

Predictions were performed on themost commonHLA class-I al-

leles and rare HLA alleles were not included. Study has been per-

formed using the GISAID dataset available in December 31,

2020, i.e., first year of the pandemic, before mass vaccination.

Our epitope binding results rely on in silico predictions using a

method that has been widely benchmarked but is designed to

predict peptide presentation rather than immunogenicity. Follow

up experiments would need to be performed to further validate

the proposed model. Priority follow up studies are (1) to investi-

gate T cell response to SARS-CoV-2 mutants in large cohorts of

B7 supertype-positive versus negative patients, and (2) to deter-

mine the direct role of APOBEC family proteins in modulation of

SARS-CoV-2-specific T cell immunity. Moreover, this study lays

the foundation to understand the evolutionary dynamics of

pandemic viruses with a time 0/no vaccine-induced immune

pressure start point. Employing SARS-CoV-2 as model provides

an opportunity in future studies to look at the dynamic of the rela-

tionship between mutational patterns and HLA-restricted T cell

immunity in real time. Kinetic analyses using the latest GISAID

dataset, which includes 1.7M SARS-CoV-2 genomes as of

May 2021, may lead to additional insights in this regard.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
154
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Identification of SARS-CoV-2 mutations

B Prediction of mutated and reference CD8+ T-cell

epitopes

B In vitro HLA-peptide binding assays

B SANTA-SIM simulations

B Determination of amino acid mutational patterns

B Prediction of mutation impacts on peptide presenta-

tion in the context of HLA supertypes
Cell Systems 13, 143–157, February 16, 2022
B Assessing the contribution of nucleic acid mutation

types to the global amino acid mutational patterns

B Statistical analysis
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cels.2021.09.013.

ACKNOWLEDGMENTS

We acknowledge and thank GISAID as well as all contributing laboratories for

giving access to their SARS-CoV-2 genome sequences. We also thank Drs.

Alessandro Sette, John Sidney, and Alba Grifoni (La Jolla Institute for Immu-

nology, USA) for helpful discussions. This study was supported by funding
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Synthetic peptides TC Peptide Lab tcpeptidelab.com

Deposited data

Wuhan-Hu-1 RNA isolate NCBI nuccore database NCBI: NC_045512.2

Structure of SARS-CoV-2 Spike Protein Trimer Xiong et al., 2020 PDB: 6ZP2

GISAID Freunde von GISAID e.V. https://www.gisaid.org/

Experimentally Validated SARS-CoV-2 T cell epitopes Quadeer et al., 2021 https://www.mckayspcb.com/SARS2TcellEpitopes/

Supplemental information Hamelin et al. DOI: 10.5281/zenodo.5520066

Software and algorithms

netMHCpan 4.1 Reynisson et al., 2020 https://services.healthtech.dtu.dk/service.php?

NetMHCpan-4.1

Python (v3.7) Python Software Foundation https://www.python.org/

Santa-Sim Jariani et al., 2019 https://github.com/santa-dev/santa-sim

CoVescape In-house algorithm DOI: 10.5281/zenodo.5493359
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to the lead contact, Dr. Etienne Caron (etienne.caron@umontreal.ca).

Materials availability
This study did not generate new materials.

Data and code availability
d Source data statement. This paper analyzes existing, publicly available data. All sequence data used are available from The

Initiative for Sharing All Influenza Data (GISAID), at https://gisaid.org/. The user agreement for GISAID does not permit redis-

tribution of sequences, but researchers can register to get access to the dataset. A GISAID acknowledgment table containing a

full list of the laboratories and authors who contributed to the extensive GISAID SARS-CoV-2 genome database queried in this

study is available in supplementary materials as Table S5.

d Code statement. All original code has been deposited at https://github.com/CaronLab/CoVescape and is publicly available as

of the date of publication. DOIs are listed in the Key Resources Table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Identification of SARS-CoV-2 mutations
All SARS-CoV-2 nucleotide sequences were acquired from the GISAID on 31/12/2021. A total of 330,246 SARS-CoV-2 sequences

spanning 143 countries were acquired and analyzed. All sequences isolated from animals (including viral RNA isolated from bat,

pangolin, mink, cat and tiger) were removed from the list and only high-quality sequences were further analysed. Consensus se-

quences were aligned to the reference sequence, Wuhan-1 (NC_045512.2) using minimap2 2.17-r974. All mapped sequences

were then merged back with all others in a single alignment bam file. The variant calling was done using bcftools mpileup v1.91

in a haploid calling mode. Sequences were processed by batches of 1000 to overcome technical issues with very low-frequency

variants. With the variant calling obtained for each batch, vcf-merge (from the vcftools suite) was used to merge all the variant calls

across the entire dataset. A total of 24,220 variants in at least two consensus sequences were identified. Mutations appearing in

only one genomewere excluded as they are likely enriched for sequencing errors. A list of all missensemutations considered in our

analyses is provided in Table S1. The 1,933 prevalent mutations observed in more than 100 genomes are also clearly shown in

Table S2.
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Prediction of mutated and reference CD8+ T-cell epitopes
Prediction of CD8+ T cell epitopes was carried out using netMHCpan 4.1 EL (Reynisson et al., 2020). For each unique missense mu-

tation, short sequence windows consisting of 14 amino acids on either side of the mutation site were generated, containing either the

reference ormutated amino acid.Working from the resulting 29-residue sequencewindows (mutation +/- 14 residues), 811merswere

predicted against the 12 most frequent HLA alleles within the global population (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01,

HLA-A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, and

HLAB*44:03). Briefly, the NetMHCpan 4.1 EL method relies on a neural network trained on both binding affinity as well as eluted

ligand data to produce a likelihood score for a peptide to be an eluted ligand for the indicatedHLA types. The likelihood score consists

of a percentile rank (%rank) wherein predicted (weak) binders obtain a%rank below 2.0, whereas strong binder (SB) obtain a%rank

below 0.5. Using this ranking system, only mutation-containing peptides where the mutated and/or the reference peptide were

ranked as SB were considered for further analyses. Mutations causing percentile ranks to transition from strong HLA-binder (SB,

netMHCpan%Rank < 0.5) to HLA non-binders (NB, netMHCpan%Rank > 2.0) were considered as leading to ‘Loss of binding’. Mu-

tations causing predicted binding affinities to transition from NB to SB were considered as leading to ‘Gain of binding’. Selection of

clinically validated CD8+ T-Cell epitopes

A list of validated CD8+ T Cell epitopes presented by both HLA-A and -B molecules were downloaded from https://www.

mckayspcb.com/SARS2TcellEpitopes/ (as of January 2021). This database, developed by Dr. MatthewR.McKay and his team, con-

tains compiled and catalogued validated T-cell epitope-HLA pairs from 13 studies aimed at identifying immunogenic SARSCOV-2

T-cell epitopes.

In vitro HLA-peptide binding assays
Peptide binding to class I HLA molecules was quantitatively measured using classical competition assays based on the inhibition of

binding of a high affinity radiolabeled peptide to purified HLAmolecules, as detailed elsewhere (Sidney et al., 2013). Briefly, HLAmol-

ecules were purified from lysates of EBV transformed homozygous cell lines by affinity chromatography by repeated passage over

Protein A Sepharose beads conjugated with the W6/32 (anti-HLA-A, -B, -C) antibody, following separation from HLA-B and -C mol-

ecules by pre-passage over a B1.23.2 (antiHLA B, C) column. Protein purity, concentration, and the effectiveness of depletion steps

was monitored by SDS-PAGE and BCA assay. Peptide affinity for respective class I molecules was determined by incubating

0.1-1 nM of radiolabeled peptide at room temperature with 1 mM to 1 nM of purified HLA in the presence of a cocktail of protease

inhibitors and 1 mM B2microglobulin. Following a two-day incubation, HLA bound radioactivity was determined by capturing

MHC/peptide complexes on W6/32 antibody coated Lumitrac 600 plates (Greiner Bioone, Frickenhausen, Germany). Bound cpm

was measured using the TopCount (Packard Instrument Co., Meriden, CT) microscintillation counter. The concentration of peptide

yielding 50% inhibition of the binding of the radiolabeled peptide was calculated. Under the conditions utilized, where [label]<[MHC]

and IC50 R [MHC], the measured IC50 values are reasonable approximations of the true Kd values. Each competitor peptide was

tested at six different concentrations covering a 100,000-fold dose range, and in three or more independent experiments. As a pos-

itive control for inhibition, the unlabeled version of the radiolabeled probe was also tested in each experiment.

SANTA-SIM simulations
We simulated SARS-CoV-2 genomes with SANTA-SIM, using the consensus sequence WuhanHu-1 as input sequence available at

https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3. Each simulation was run with a population size of 10,000 individual viral se-

quences evolving for 1000 generations, and analyses were conducted on random samples of 1,000 viral sequences. Following

Huddelston et.al. (Huddleston et al., 2020) who used SANTA-SIM to simulate influenza A/H3N2 that has a yearly substitution rate

approximately twice as high as SARS-CoV-2 [�48,824 substitutions/year (https://nextstrain.org/flu/seasonal/h3n2/ha/2y?l=clock)

vs. �24.5 substitution/year (https://nextstrain.org/ncov/global?l=clock)], we chose 400 generations/year, with the mutation rate

per position per generation set to 2.04E-6 (yearly substitution rate/(generations in one year * genome size)). The transition bias

was set to 3.0 for baseline simulations. To evaluate the impact of specific substitution biases, additional simulations were conducted

using a substitution matrix with scores set to 1.0 of transversions, 3.0 for transitions, and biases ranging from 4.0 to 20.0 for the tar-

geted substitution. We generated 10 replicates for all simulated scenarios, except for C-to-U where wemade 100 replicates to better

assess statistical significance.

Determination of amino acid mutational patterns
Mutational biases were identified by calculating the overall change in amino acid composition caused by themutational landscape of

SARS-CoV-2 for each individual amino acid, referred in themain text as ‘global residue substitution output’ (GRSO). For this analysis,

all mutations found globally in at least 4 GISAID entries were analysed together. Preferential introduction or removal of amino acids

was determined by comparing the overall amino acid composition in reference residues vsmutated residues throughout themutation

pool, resulting in a percentile difference in amino acid composition. As such, for amino acid X, the % difference was calculated ac-

cording to the following formula:

% difference =

�
Nbr of mutations introducing X � Nbr of mutations removing X

All Global mutations in at least 4 GISAID entries

�
3 100
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This analysis took into consideration the number of unique mutations. Therefore, to consider mutational biases in the context of mu-

tation frequencies, the analysis described above was conducted separately for mutations occurring in a single GISAID entry (ex-

pected to be enriched for errors); 2-10 GISAID entries; 11-99 GISAID entries; and 100 or more GISAID entries. As a negative control,

the SANTA SIM algorithm was used to simulate the neutral evolution of 1000 SARS-CoV-2 genomes (baseline simulations, N = 10

replicates). This control was used to calculate the statistical significance of the observed biases, by way of a One-Sample T-Test.

Prediction of mutation impacts on peptide presentation in the context of HLA supertypes
Reference/mutated peptide pairs for which the differential predicted binding affinities led to transitions from strongHLAbinder (SB) to

non-HLA binder (NB) [(SB) NetMHCpan %rank < 0.5 to (NB) NetMHCpan %rank >2] or from NB to SB, were identified, catalogued

and analyzed as described above. Binding affinities were predicted for representative HLA types from several major HLA supertypes

(A1, A2, A3, A24, B7, B8, B27, B44), as defined by Sydney et al. We then categorized all reference/mutated peptide pairs on the basis

of their 1) mutation type (amino acid X/ amino acid Y) and 2) the position of the mutation in the peptide sequence. Finally, we quan-

tified the number of reference/mutated peptide pairs and the associated average fold change in predicted binding affinity for each

category. P-values were generated for each category by performing a two-tailed independent T-Test between the fold changes in

binding affinity associated with mutation type A at position X, and all fold changes in binding affinity associated with position X.

Assessing the contribution of nucleic acid mutation types to the global amino acid mutational patterns
To assess the contribution of various nucleic acidmutation types to the observed amino acidmutational patterns, we first determined

the respective contributions of each nucleic acid mutation type to the global mutation landscape. We then selected the five most

abundant mutation types [C/U (41%), G/U (18%), A/G, G/A, U/C (9.7-11.6%)] and assessed their individual impacts on

amino acid mutational patterns using the simulation algorithm SANTA SIM as follows:

For each mutation type, we simulated the evolution of 1000 SARS-CoV-2 genomes over 1000 generations (N = 10 replicates) with

varying degrees of biases (the coefficient used to determine the extent of the biases was exploratively set to ‘x4’, ‘x8’, ‘x15’, and

‘x20’) (Figure S5A). Because the input coefficient does not have a linear relationship with the abundance of the mutation type

observed in the simulation output, we used the simulations with all four parameter values (x4, x8, x15, x20) in order to identify the

simulation parameter that most closely reflected observations in real-life SARS-CoV-2 data. The coefficient for the ratio of X / Y

nucleic acid mutation type to all other mutation types was generated using the following formula:

Mutation Bias Coefficient =

�
All X/Y mutations

All X positions in reference genome

�
�

All mutations
All positions in reference genome

�

Finally, all amino acid mutations were identified for the output of each simulation, as described above. To determine statistical sig-

nificances, simulated mutational biases (at the amino acid level) were compared to a neutral evolution as a negative control (N = 10

replicates) by way of twotailed independent T-Test.

Statistical analysis
A Two-tailed One-Sample T-Test was used to assess the statistical significance of the observedmutational biases against the neutral

simulations (N = 10 replicates). A Two-tailed Independent T-Test assuming different variances was used to assess the statistical sig-

nificances of 1) the simulated biased SARS-CoV-2 evolution, 2) the gain/loss plots in the context of supertypes, and 3) the statistical

significance associated with the average fold change in %rank associated with each position-specific amino acid mutation type in

the supertype analysis.
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