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A B S T R A C T   

Apple is an important fruit, and fruit authentication is significant for quality and safety control. The Loess Plateau 
(LP) in China is an important apple-producing region. However, the geographic authentication of LP apples has 
not been well studied. In this study, we discriminated LP apples based on multielement analysis. We analysed the 
differences in 29 elements of 522 samples collected from LP and others in 2018–2020 and constructed 
discriminant models for LP apple authentication. Linear discriminant analysis, partial least square-discriminant 
analysis, back-propagation artificial neural networks, and random forest (RF) showed different rates in training 
and validation accuracy. RF showed better tolerance to the removal of the less-important elements in model 
optimization. The final RF was optimized on 11 elements, which obtained 95.30% training accuracy for the 
2018–2019 samples and 97.29% validation accuracy for the 2020 samples. The multielement-based authenti-
cation of LP apples could aid further studies of geographical origins.   

1. Introduction 

Fruit is an essential part of human diets and provide indispensable 
vitamins, antioxidants, minerals, and many phytonutrients for human 
health. Apple (Malus domestica L.) is a favourite fruit with a high content 
of nutrients, such as ascorbic acid, K and Mg, and the flavonoids 
chlorogenic acid, catechin, and quercetin (Acquavia et al., 2021). Apples 
are suitable for various climatic conditions and are mainly produced in 
many temperate regions worldwide. China is the leading country in 
apple production, accounting for approximately half of the total pro-
duction (https://www.fao.org/faostat/en/#data/QC). Apple produc-
tion in China is widely distributed in different regions, which mainly 
include the surrounding Bohai Bay, the Loess Plateau (LP), the ancient 
Yellow River original and north Qinling Mountains, and the southwest 
cool highland (Zhang, Zhou, Li, Wei, & Han, 2018; Zhang et al., 2019). 
Apples from different geographical regions of China are believed to have 
different internal and external qualities (Kuang, Nie, Li, Cheng, & Shen, 
2020). Specifically, apples from Xinjiang, Gansu and Shaanxi Provinces 
are sweeter in taste and more fragrant. Apples from Yunnan and Sichuan 
Provinces have good taste and a deeper red color of the fruit peel. Apples 
from Yantai in Shandong Province have a juicy taste with a suitable acid 
and sweet flavour. As a result, apples from special areas often demand 

higher prices. However, dishonest traders often mix and replace these 
special local products with cheaper or inferior ones to deceive high 
profits (Zhang et al., 2019). Therefore, the authenticity of apples is 
essential for ensuring quality and protecting consumer interests. 

The Loess Plateau (LP) is one of the most important apple-producing 
regions in China (Zhang et al., 2018). LP is located in northwestern 
China, estimated from latitude N 31◦ to N 42◦ and longitude E 92◦ to E 
116◦, which is close to the central Asia apple origin center (Juniper, 
Watkins, & Harris, 1998). As a eugenic area for apple growing, the LP 
planted approximately one million ha of apple trees and output half of 
the total apple production in China (Zhang et al., 2022). Compared with 
other regions, the LP has favorable environmental advantages such as 
relatively arid climates, high altitudes (ranging from 750 to 1700 m), 
thick soil, and intense and long duration of sunshine, which are suitable 
for apples growing with higher soluble solid content, and more intensive 
flavour and extractive appearance (Kuang et al., 2020). However, these 
characteristics are hardly reliable for distinguishing LP apples from 
others. Although apples from LP such as Jingning and Tianshui in Gansu 
Province and Luochuan in Shaanxi Province are specially protected by 
geographical indications, adulterate behaviours are becoming more 
serious under the current rapid cargo flows. Poor fruit authentication 
and quality control frustrate the development of a competitive brand for 
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LP apples and infringe on the rights of customers. 
In recent years, multielement fingerprints have been proven to be 

important characteristics for the authentication of agroproducts (Dou 
et al., 2022; Luykx & Van Ruth, 2008). Elements are the chemical 
compositions that provide information about the environmental condi-
tion of plant-derived products. The multielement fingerprints of agro-
products are closely shaped by the soil and related to the climate in 
which they grow (Zhao, Tang, & Yang, 2021). Recently, inductively 
coupled plasma–mass spectrometry (ICP–MS) has been used for the 
analyses of multielement concentrations in comprehensive biological 
samples such as grains, vegetables and fruits (Giorgia Potorti et al., 
2022; von Wuthenau, Segelke, Müller, Behlok, & Fischer, 2022; Li et al., 
2023). Its advantages include being fast, having high throughput, and 
reducing costs when compared with atomic absorption or atomic 
emission spectrometry. In addition, statistical analysis methods were 
used to reorganize variations in data and build discriminate models in 
mathematical linguistics (Jandric et al., 2021). Specifically, principal 
component analysis (PCA), linear discriminant analysis (LDA), and 
partial least square-discriminant analysis (PLS-DA) represent linear 
discriminant methods, which explain most of the variations in reduced 
data dimensionality (Luykx & Van Ruth, 2008). The nonlinear 
discriminate prediction of back-propagation artificial neural networks 
(BP-ANNs) and random forests (RFs) were equipped with multivariate 
analysis, and complex iterative calculations were performed to filter out 
noise from the raw data in effective ways (Maione & Barbosa, 2019). 
Thus, element fingerprints combined with multidimensional discrimi-
nation analysis provide a significant methodology for the authentication 
of fruit products, such as grapes (Longobardi, Casiello, Centonze, 
Catucci, & Agostiano, 2017), wine (Cruz et al., 2015; Rapa, Ferrante, 
Rodushkin, Paulukat, & Conti, 2023), apple (Zhang et al., 2022), apple 
juice (Bat et al., 2016; Xu, Xu, Wang, Wang, & Liao, 2020), and kiwifruit 
(Guo, Yuan, Dou, & Yue, 2017). 

Our previous studies showed that apples from five regions in China 
had different element profiles, and the optimized discrimination model 
of BP-ANN scored approximately 80 % in discriminate accuracy (Zhang 
et al., 2019). In addition, we found that Se, Pb, Zn, Na, and Mn were 
significant for the authentication of apples from the southwest cold 
highlands in China (Zhang et al., 2022). To obtain sufficient accuracy for 
the discrimination of LP apples, the present study was conducted by 
performing ICP–MS based element fingerprint detection and multidi-
mensional discriminate modelling. The element concentrations of apples 
and their variations from different regions and years were obtained. 
Linear and nonlinear discriminate models were constructed for LP apple 
authentication. The discrimination rates of different models were 
compared. The applicable model was also optimized with the important 
elements, which were obtained with sufficient training and validation 
accuracy for LP apple discrimination. This study provides a basis for 
further apple geographical authentication. 

2. Materials and methods 

2.1. Reagents and solvents 

ICP–MS multielement calibration standard solutions with Ag, Al, As, 
Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, 
Tl, U, V, and Zn at 10 μg/mL and internal standard solutions with Bi, Ge, 
In, Li, Lu, Rh, Sc, and Tb at 100 μg/mL were purchased from Agilent 
Technologies (California, USA). Standard solutions of elements 
including B and P at 100 μg/mL and the certified reference material 
(CRM) of apple (GBW10019, serial number: GSB-10) were purchased 
from the National Institute of Metrology of China (Beijing, China). Nitric 
acid (70 %) was purchased from Sinopharm Chemical Reagent Beijing 
Co., Ltd. (Beijing, China). High-purity argon and helium gases were 
purchased from Huludao Weiye Gas Reagent Co., Ltd. (Liaoning, China). 
Ultra-pure water (18 MΩ) was obtained from Wahaha Co., Ltd. (Hang-
zhou, China) and further purified on a water purification system (Milli- 

Q-Direct 8, Millipore, California, USA). 

2.2. Sample collection and prepreparation 

A total of 522 apple orchards were selected for sample collection 
from the main Chinese apple-producing regions from 2018 to 2020, 
including 198 samples from the LP region and 324 representatives from 
the non-Loess Plateau (NLP) region (Fig. 1 and Table S1). According to 
the geographic distribution, the LP region contained Gansu, Shaanxi, 
Shanxi and northwest Henan Provinces. The NLP region contained 
Liaoning, Shandong, Hebei, Yunnan and southeast Henan Provinces. 
Fuji apple was the selected cultivar, the orchard chosen was considered 
to represent the apple distribution, and the geographic locations were 
recorded in detail (Table S1). For each sample, 5 kg of apple fruits at 
harvest maturity were collected from at least 6 trees and transported to 
the laboratory immediately. Samples were washed with water, rinsed 
with deionized water, and naturally dried. Then, apples were obtained, 
and the core was discarded, cut into particles of 1 cm3, frozen in liquid 
nitrogen, ground by a SPEX SamplePrep system (Metuchen, NJ, USA), 
and stored at − 20 ◦C for further use. 

2.3. Sample digestion and instrumental analysis 

Three replicates of each sample of 5.0 g were introduced into 
digestion tubes, and 8.0 mL of nitric acid (70 %) was added and incu-
bated at room temperature overnight (Zhang et al., 2022). The sample 
digestion was conducted on a MARS6 system (CEM, Matthews, North 
Carolina, USA) in a 1600 kW microwave, and run with the following 
temperature programs: maintaining 40 ◦C for 5 min; heating at 10 ◦C/ 
min for 10 min to 140 ◦C; maintaining 140 ◦C for 5 min; heating at 5 ◦C/ 
min for 8 min to 180 ◦C; and maintaining 180 ◦C for 10 min. Then, the 
samples were transferred to a vacuum acid-catching system to evaporate 
the nitric acid until the residual aqueous layer was concentrated to 2 to 
3 mL. After cooling to room temperature, the samples were diluted to 50 
mL with purified water and filtered through a 0.22 μm nylon membrane 
from Tianjin Jinteng Experimental Equipment Co., Ltd. (Tianjing, 
China). The supernatant was subjected to ICP–MS analysis. 

The analyses of 29 elements were conducted by an ICP–MS system 
(Agilent ICP–MS 7850, California, USA). High purity argon was used as 
the carrier gas, with a total pressure of 600 kPa. Helium was used as the 
MS shield gas, with a pressure of 100 kPa. The tuning of the mass 
spectrum was used to confirm the instrument’s performance. The error 
of the mass axis was within 0.1 Da, and the 10 % peak width was higher 
than 0.65, which is considered a good performance of mass spectrom-
etry. Calibration curves with Ag, Al, As, Ba, Be, Cd, Co, Cr, Cs, Cu, Fe, Ga, 
Li, Mn, Na, Ni, Pb, Rb, Se, Sr, Tl, U, and V were prepared with con-
centrations ranging from 0 to 200 μg/L within 10 gradients. Macroele-
ments of Ca, K, Mg, and P were prepared at a concentration of 2000 μg/L 
for the upper limit of the standard curves. Samples were injected with a 
flow rate of 0.8 mL/min. The internal standard solution was mixed with 
each sample to monitor the stability of the system and evaluate the 
reliability of the experimental data. In each branch analysis, the refer-
ence standard of apple was simultaneously prepared and analysed for 
the analytical quality assessment. The elemental concentrations of the 
reference material were compared with the certified values. Only if the 
elements of the reference material obtained with acceptable recoveries 
and variations, were the elemental concentrations of the samples 
recorded. 

2.4. Data statistics 

The concentrations of the elements were calculated and arranged in 
Microsoft Excel (version 2013). Student’s t test was performed to iden-
tify the elements with different concentrations between LP and NLP 
samples by SPSS software (version 24.0). PCA was used to construct 
several uncorrelated principal components (PCs) to observe the 
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intergroup differences in reduced data dimensionalities (Jandric et al., 
2021). Sample classification models were performed by R (version 
3.5.1) and MATLAB (version 2017b), including the linear models LDA 
(Jandric et al., 2021) and PLS-DA (Luykx & Van Ruth, 2008) and the 
nonlinear models BP-ANN (Maione & Barbosa, 2019) and RF (Maxwell, 
Warner, & Fang, 2018). The validation and training accuracies of the 
models were obtained by calculating the proportions of effective sample 
discrimination. Models were further optimized according to the values 
of variable importance in projection (VIP) of elements. Receiver oper-
ating characteristic (ROC) analyses were performed to evaluate the 
predictive performance of these discriminate models. 

Samples were grouped into training and validation sets according to 
a fixed pattern, which corresponded to each discriminate model (Zhang 
et al., 2019; Zhang et al., 2022). First, samples from 2018 were selected 
as the training set (244 samples), and samples from 2019 (139 samples) 
and 2020 (139 samples) were selected as two individual validation sets. 
Then, samples from 2019 were selected as the training set, and samples 
from 2020 were selected as the validation set. Samples from 2018 and 
2019 (383 samples) were selected as the training set, and samples from 
2020 were selected as the validation set. Finally, all the samples were 
selected for constructing discriminate models, which were randomly 
and evenly subdivided into two disjoint subsets at a 3 to 1 ratio: a 
training set containing 392 samples and a test set containing 130 
samples. 

3. Results 

3.1. Analytical method assurance 

By performing ICP–MS analysis, we established a method for the 

detection of 29 elements in apples. The calibration curves for element 
detection were calculated by the predetection of standard solutions 
(Table S2). Elements were all obtained with correlation coefficient 
values higher than 0.99. The CRM of apple was simultaneously detected 
in each independent sample test, and from all the tests, the experimental 
values of 27 elements were detected with acceptable ranges, and their 
recoveries ranged from 95 % to 102 % (Table S3). Two elements, Ag and 
Ga, were without the recommended concentrations in the reference 
apple, which were obtained with relative standard deviations (RSDs) 
within ± 15 %. These results proved that the apple CRM (GBW10019) 
was an effective reference material for analytical quality control. 
Therefore, the current methods were sufficient to obtain the apple 
element compositions with high accuracy and precision. 

3.2. Multielements, intergroup differences and PCA results of apples 

Table 1 and Fig. S1 show the multielement compositions of apples 
from the LP and NLP regions from 2018 to 2020. Apples were detected 
with relatively higher concentrations of K, P, Mg, and Ca, with average 
concentrations of 1138.00, 118.72, 41.00, and 48.66 mg/kg, respec-
tively. LP apples generally contained a higher concentration of Ca but a 
lower concentration of Mg than NLP apples. Apples were detected with 
moderate concentrations of B, Na, Fe, Al, and Rb, with average con-
centrations of 2.47, 4.78, 2.09, 1.16, and 0.88 mg/kg, respectively. LP 
apples were generally detected with lower concentrations of B, Na, and 
Fe than the NLP apples (Student’s t test p < 0.05, Fig. S1). The other 16 
elements were trace in apples and were detected at concentrations 
below 1.00 mg/kg. Among them, Mn, Sr, Pb, As, Co, Se, Cd, Tl, and Be 
were detected with significantly different concentrations between LP 
and NLP apples (p < 0.05, Fig. S1). 

Fig. 1. The picture shows a map of China with detailed origins of the apple samples collected. Provinces of Gansu, Shaanxi, Shanxi and northwest Henan represent 
the Loess Plateau (LP) apple-producing region. Provinces of Liaoning, Shandong, Hebei, Yunnan and southeast Henan represent the non-Loess Plateau (NLP) region. 
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Based on the 29 elements in the apples, PCA was performed to 
construct several uncorrelated PCs to reduce the data dimensionality. 
From samples collected in 2018, 2019, and 2020, the first five PCs ob-
tained 64.76 %, 62.21 %, and 80.21 % of the total variance, respectively. 
Based on the score plots of the first two PCs, the PCA diagrams showed 
overlaps between LP and NLP samples for three consecutive years 
(Fig. S2). From the combined samples of 2018–2020, 2018–2019, and 
2019–2020, the first five PCs scored 74.65 %, 55.79 % and 57.39 % of 
the total variance, respectively. As shown in Fig. 2A and B, NLP samples 
were mainly obtained with relatively higher PC1 scores than LP samples, 
suggesting considerable differences in element profiles between LP and 
NLP samples. However, major PCA diagrams showed overlaps between 
LP and NLP samples, reflecting that PCA showed weak function in 
sample discrimination. The contribution values of 29 elements to 
different PCA models are shown in Table S4. Elements V, Mn, Ba, Ca, Co, 
Rb, Ga, K, and Tl have higher contribution rates to multiple models, 
while Al, U, B, P, Li, and Se have lower contributions to these models. 
Therefore, PCA initially showed the differences in multielement profiles 
between LP and NLP apples. 

3.3. Linear models for discrimination of apples from LP and NLP regions 

PLS-DA was conducted to discriminate the LP and NLP apples by 
linear classification methodology. The PLS-DA model was first estab-
lished based on samples from 2018, and its training accuracy of LP and 
NLP samples reached 69.76 % and 74.05 %, respectively (Table 2). The 
predictive abilities of the model were tested by the validation samples of 
2019 and 2020, which obtained validation accuracies that reached 
75.54 % and 75.53 %, respectively. Based on the training samples of 
2019, the established PLS-DA model obtained a training accuracy of 
78.42 %. The predictive abilities of this model for the validation samples 
of 2020 reached 74.82 %. PLS-DA of 2018–2019 samples obtained 
75.72 % training accuracy, and its validation accuracy for 2020 samples 
was 74.82 %. PLS-DA two-dimensional plots showed the separation 
between LP and NLP samples from 2018 and 2019, and the separation 

trends were related to the different scores in function 1 (Fig. 2C). PLS-DA 
of all 2018–2020 samples was obtained with a training accuracy of 
77.97 %. ROC analysis showed that the area under the curve (AUC) 
averaged 0.95, indicating that the model shows consistency with reality 
(Table S5). The values of variable importance in projection (VIP) for 29 
elements were calculated in PLS-DA models (Table S6). Be, Sr, Co, Pb, 
As, Cr, Mn, and Na gave significant VIP scores, suggesting that these 
elements have an important contribution to the model (Fig. 3A). 

LDA was used to construct a linear discriminate model for classifying 
the LP and NLP apples. Based on the samples from 2018, LDA obtained a 
training accuracy of 91.80 % (Table 2). The validation accuracy for the 
2018 and 2019 samples reached 97.84 % and 94.96 %, respectively. The 
LDA model of 2019 samples had a training accuracy of 90.64 %, and its 
validation accuracy for 2020 samples reached 91.37 %. LDA of 
2018–2019 samples obtained 92.69 % training accuracy, and its vali-
dation accuracy for 2020 samples was 94.24 %. LDA two-dimensional 
plots showed the separation between LP and NLP samples from 2018 
and 2019 (Fig. 2D). LDA of all 2018–2020 samples was obtained with a 
training accuracy of 91.57 %. ROC analysis showed that the AUC 
averaged 0.96, indicating that the model showed good performance 
(Table S5). The values of variable importance in projection (VIP) for 29 
elements were calculated in LDA models (Table S6). Co, Be, Mn, Sr, Pb, 
Na, K, Mg, Ca, and Tl gave significant VIP scores (Fig. 3A), suggesting 
that these elements have an important contribution to the model. 

From the results of the linear models, the LDA models generally 
obtained higher training and validation accuracies than those of the PLS- 
DA models. Therefore, LDA was selected for linear model optimization. 
Based on the elemental VIP scores, the significant elements were 
selected for the linear model reconstruction, and the model accuracies 
were obtained accordingly. The final model was optimized based on the 
training set of samples from 2018 and 2019 and the validation set of 
samples from 2020 (Fig. 3B). After reducing the less important elements, 
the final LDA model was conducted on 10 elements: Sr, Mn, As, Cs, Co, 
Cr, Pb, Be, Na, and U, which was obtained with a training accuracy of 
92.69 % based on 2018 and 2019 samples, and a validation accuracy of 

Table 1 
Multielement concentrations (mg/kg, marked a × 10− 3) in apple samples from the Loess Plateau (LP) and non-LP (NLP).  

Sample set 2018  2019  2020   

LP (86) NLP (158) LP (55) NLP (84) LP (57) NLP (82) 

K 1079.95 ± 199.49 1227.81 ± 231.65 1024.23 ± 249.17 1192.23 ± 243.80 1101.79 ± 263.80 1077.76 ± 235.26 
P 118.66 ± 39.52 132.76 ± 82.20 95.77 ± 37.45 123.39 ± 31.64 97.52 ± 30.05 119.30 ± 79.01 
Ca 41.40 ± 5.64 34.95 ± 8.57 47.17 ± 7.61 42.22 ± 11.77 43.95 ± 7.68 43.64 ± 9.85 
Mg 48.63 ± 6.74 52.29 ± 9.19 43.07 ± 6.55 51.10 ± 9.84 43.52 ± 6.18 46.96 ± 8.75 
B 2.56 ± 0.92 2.60 ± 0.84 2.08 ± 0.91 2.69 ± 1.11 2.03 ± 0.73 2.29 ± 0.86 
Na 4.98 ± 3.71 6.47 ± 2.74 2.58 ± 1.78 4.76 ± 2.54 2.58 ± 2.03 4.59 ± 1.91 
Fe 1.48 ± 0.57 2.49 ± 3.85 1.42 ± 0.56 2.02 ± 0.89 1.54 ± 0.79 1.91 ± 0.62 
Al 1.31 ± 0.74 1.25 ± 0.80 0.93 ± 0.50 1.19 ± 0.73 1.01 ± 1.00 1.10 ± 0.71 
Rb 0.83 ± 0.50 0.96 ± 0.58 0.72 ± 0.35 0.84 ± 0.49 1.03 ± 0.72 0.83 ± 0.52 
Cu 0.58 ± 0.21 0.57 ± 0.21 0.42 ± 0.21 0.53 ± 0.21 0.46 ± 0.42 0.54 ± 0.20 
Mn 0.33 ± 0.10 0.47 ± 0.15 0.32 ± 0.08 0.47 ± 0.19 0.36 ± 0.20 0.44 ± 0.16 
Zn 0.25 ± 0.07 0.29 ± 0.08 0.42 ± 0.53 0.36 ± 0.18 0.34 ± 0.18 0.31 ± 0.19 
Sr 0.39 ± 0.34 0.19 ± 0.16 0.40 ± 0.43 0.18 ± 0.10 0.30 ± 0.35 0.19 ± 0.10 
Ba 0.15 ± 0.05 0.18 ± 0.15 0.16 ± 0.09 0.16 ± 0.12 0.11 ± 0.10 0.07 ± 0.08 
Pba 26.37 ± 22.80 14.04 ± 12.46 26.33 ± 27.69 12.05 ± 7.45 18.03 ± 21.47 13.21 ± 7.26 
Cra 14.08 ± 13.01 34.94 ± 52.90 21.90 ± 17.59 27.38 ± 36.54 18.20 ± 17.60 18.25 ± 15.19 
Nia 55.11 ± 188.04 22.32 ± 47.20 13.02 ± 35.07 12.85 ± 14.83 8.52 ± 7.76 11.00 ± 6.51 
Asa 2.46 ± 1.26 4.73 ± 8.16 2.38 ± 1.58 5.48 ± 13.96 1.38 ± 1.47 7.73 ± 16.40 
Coa 2.39 ± 0.88 5.66 ± 3.47 2.20 ± 0.86 5.09 ± 3.37 3.59 ± 6.40 3.40 ± 2.66 
Csa 2.82 ± 1.53 3.15 ± 2.45 2.55 ± 1.57 2.76 ± 2.25 3.87 ± 3.92 3.31 ± 2.60 
Lia 8.78 ± 16.76 4.29 ± 10.23 7.37 ± 9.12 5.77 ± 25.91 5.05 ± 7.86 5.73 ± 26.12 
Sea 3.12 ± 1.16 3.34 ± 1.45 4.38 ± 1.71 3.99 ± 1.54 3.61 ± 1.18 3.77 ± 3.16 
Va 1.31 ± 0.51 1.26 ± 0.46 1.62 ± 0.70 1.69 ± 0.81 1.63 ± 0.78 1.61 ± 0.73 
Aga 0.52 ± 0.74 0.42 ± 0.28 0.79 ± 1.03 0.83 ± 1.37 0.73 ± 1.03 0.77 ± 1.97 
Cda 0.23 ± 0.32 0.53 ± 0.80 0.38 ± 0.30 0.51 ± 0.64 1.23 ± 3.33 0.50 ± 0.65 
Gaa 0.35 ± 0.14 0.37 ± 0.18 0.38 ± 0.16 0.42 ± 0.21 0.36 ± 0.20 0.42 ± 0.21 
Tla 0.22 ± 0.17 0.38 ± 0.38 0.20 ± 0.10 0.34 ± 0.28 0.19 ± 0.10 0.31 ± 0.19 
Ua 0.17 ± 0.23 0.13 ± 0.21 0.13 ± 0.07 0.17 ± 0.18 0.12 ± 0.09 0.43 ± 0.31 
Bea 0.08 ± 0.06 0.27 ± 0.21 0.04 ± 0.07 0.25 ± 0.27 0.08 ± 0.13 0.17 ± 0.19  
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94.24 % for 2020 samples. The important features of elements ranked by 
LDA are shown in Fig. 3C. 

3.4. Nonlinear models for discrimination of apples from LP and NLP 
regions 

BP-ANN was carried out to discriminate the LP and NLP apples with a 
nonlinear methodology. Based on the samples from 2018, the BP-ANN 
obtained a training accuracy of 93.44 % (Table 2). The validation ac-
curacy for the 2018 and 2019 samples reached 95.68 % and 93.53 %, 
respectively. The BP-ANN model of the 2019 samples had a training 
accuracy of 92.09 %, and its verification accuracy of the 2020 sample 
reached 93.53 %. The BP-ANN of the 2018–2019 samples obtained 
94.26 % training accuracy, and its validation accuracy for 2020 samples 
was 94.24 %. The BP-ANN of all 2018–2020 samples was obtained with 
a training accuracy of 94.06 %. ROC analysis showed that the AUC was 
0.94 on average, indicating that the model showed good performance 
(Table S5). The values of variable importance in projection (VIP) for 29 
elements were calculated in the BP-ANN models (Table S6). Mn, Na, K, 
Cd, Co, Be, Pb, Ca, Sr, Li, and U gave significant VIP scores, suggesting 
that these elements have significant contributions to modelling 
(Fig. 4A). 

RF was used to construct binary classification trees for sample 
discrimination. Based on the samples from 2018, RF obtained a training 

accuracy of 94.67 % (Table 2). The validation accuracy for the 2018 and 
2019 samples reached 98.56 % and 98.57 %, respectively. The RF model 
of the 2019 samples had a training accuracy of 94.96 %, and its vali-
dation accuracy of the 2020 samples reached 96.40 %. The RF of the 
2018–2019 samples obtained 95.30 % training accuracy, and its vali-
dation accuracy for the 2020 samples was 97.29 %. The RF of all 
2018–2020 samples was obtained with a training accuracy of 95.79 %. 
ROC analysis showed that the AUC was 0.99, indicating that the model 
showed good performance (Table S5). The values of variable importance 
in projection (VIP) for 29 elements were calculated in the RF models 
(Table S6). Be, Co, Sr, Cd, Li, Tl, Pb, Ca, Na, and Ba gave significant VIP 
scores, suggesting that these elements have an important contribution to 
the model (Fig. 4A). 

The nonlinear models were optimized to obtain an operational model 
for the discrimination of LP and NLP apples. The RF models showed 
better performance than those of BP-ANN in model reconstruction, 
which was also obtained with acceptable training and validation accu-
racies after reducing the less-important elements. The optimized RF 
model was conducted on 11 elements: Cd, Ca, Be, Mn, Na, Sr, Co, Li, Ba, 
Tl, and Pb. During tree construction, the cumulative error rates 
decreased to 0.09 and 0.06 for the LP and NLP samples, respectively 
(Fig. 4B). The classification accuracy was 95.30 % based on samples 
from 2018 and 2019, and the classification rate of cross-validated ob-
servations was 97.29 % for the 2020 samples. The important features 

Fig. 2. PCA, PLS-DA and LDA of samples from Loess Plateau (LP) and non-LP (NLP) regions with the contents of mutielements. A: PCA of all samples showed the plot 
distribution between LP and NLP samples. B: PCA of samples from 2018 to 2019 showed overlaps between LP and NLP samples. C: PLS-DA of samples from 2018 to 
2019 showed separation between LP and NLP samples. D: LDA of samples from 2018 to 2019 showed the separation between LP and NLP samples. 
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ranked by RF were also obtained (Fig. 4C). 

4. Discussion 

For the authentication of apples from the Loess Plateau in China, this 
study analyses 29 elements of 522 apples collected from different re-
gions in 2018–2020. In this study, a validated method of ICP–MS 
detection was established, which can be used to determine the content of 
multiple elements in a sample through one-time sampling and detection. 
Compared with other analytical methods with atomic fluorescence and 
atomic absorption, ICP–MS detection is more convenient and has higher 
throughput and efficiency (Rapa et al., 2023). Apples are rich in various 
mineral elements, among which P, Fe, Mg, and Zn have important 
nutritional functions for human health (Acquavia et al., 2019; Zhang 
et al., 2022). In addition, this study reported the contents of various 
trace elements in apples from the main regions of China, which will be 
beneficial to the dietary mineral evaluation of apples. Therefore, this 
study used the ICP–MS method to report the content of 29 elements in 
apples from the main production regions in China, and the results can 
lay a foundation for the subsequent study of multiple elements in apples. 

Compared with apples from other regions, LP apples have certain 
characteristics in multielement profiles, suggesting that the level of 
mineral elements in apples is affected by producing regions. The com-
parison shows that LP and NLP apples have significant differences in Ca, 
Mg, Fe, Cu, Mg, Sr, Ba, and Pb (Fig. S1). The mineral element charac-
teristics of apples in LP production region are related to the soil and 
climate conditions. Previous research has shown that the soil in LP 
production region is consistent, mainly yellow cotton soil, cinnamon 
soil, and dark loessial soil, which are formed due to the accumulation of 
yellow sand brought by the northwest monsoon (Bu, Zhang, Wang, 
Yang, Shao, & Wu, 2016). In addition, many LP areas have relatively 
high geographical altitudes, sufficient sunlight, high diurnal tempera-
tures, and dry climates. The NLP mainly contains the regions of the 
surrounding Bohai Bay, the ancient Yellow River original and the 
southwest cool highland. Specifically, the surrounding Bohai Bay and 
the ancient Yellow River original are hilly lands of lower altitude (<300 
m) with sandy loam and brown soil, and their climates are hotter and 
moister (Shen, Zhang, Nie, Zhang, & Bacha, 2022). The southwest cool 
highland apple-producing region contains parts of Sichuan, Yunnan, and 
Tibet Provinces, which are mainly hilly land with high altitude and 
covered with red and low-pH soils (Zhang et al., 2022). Major areas from 
this region have a climate of high diurnal temperature, arid atmosphere, 
and intensive sunlight exposure. The differences in environment and 
climate may be the potential reasons for the mineral element charac-
teristics of apples from different regions. 

The results from the discriminate analysis revealed the practicability 
of LP apple authentication based on inherent differences in multiele-
ment profiles. In PCA, the first five PCs scored approximately 60 % of the 
total variance, which reflects that the main PCs explained the general 
difference in the data. From the elemental PC scores (Table S4), several 
elements contributed significantly to the main PCs, indicating that the 
data variations were correlated to the changes in these elements. PLS- 
DA, LDA, BP-ANN, and RF were used to construct the discriminate 
model of LP apples. From the linear models, the training and validation 
accuracies of the LDA model were generally higher than those of the 
PLS-DA, indicating that the LDA is more suitable than the PLS-DA for 
sample classification. In addition, the two linear models obtained a 
basically consistent ranking of element contribution values (Fig. 3). The 
elements Be, Co, Mn, Sr, Pb, and Na were critical contributors to 
building these linear models, which provide a foundation for LDA model 
optimization. BP-ANN and RF represented the nonlinear models and 
showed better discrimination rates than those of linear models. Our 
previous studies also showed that nonlinear models are more practical 
for recognizing actual data differences with multiple parameters and 
complex iterative calculations (Zhang et al., 2019; Zhang et al., 2022). 
The training and validation accuracies of RF were slightly higher than Ta
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those of BP-ANN, mainly because of the differences in methodology and 
the different parameters assigned to elements (Maxwell et al., 2018; 
Wiesmeier, Barthold, Blank, & Kogel-Knabner, 2011). In addition, the 
critical elements for the RF and BP-ANN models were similar, but the RF 
model was more focused on Be, Co, Cd, Sr, Li, Pb, Ba, and Ti (Fig. 4). 
Therefore, linear and nonlinear discriminate models were constructed 
for the authentication of LP apples, and the comparisons between 
models were substantial for obtaining an optimized model. 

The optimized RF model obtained sufficient efficiency for LP and 
NLP apple discrimination. From the linear models, LDA obtained high 
training and validation accuracies based on 29 elements. The recon-
structed LDA model can obtain a comparable discriminant rate based on 
the selected 10 elements (Fig. 3B and C). Therefore, the LDA model is 
dependent on these important elements involved in modelling (Suzuki, 
Chikaraishi, Ogawa, Ohkouchi, & Korenaga, 2008). The RF model 
showed better tolerance to the removal of the less-important elements 
and obtained acceptable discriminant accuracy based on several 
important elements. The final RF model was constructed based on 11 
elements, which obtained approximately 95 % test accuracy and 97 % 
verification accuracy. Therefore, this study obtained an optimized RF 
model for the discrimination of apples from LP and NLP regions from 
two consecutive years, 2018 and 2019, which was sufficient to distin-
guish LP and NLP apples in the coming year of 2020. This study obtained 
a multielement-based RF model for the authentication of apples from the 
Loess Plateau in China, which laid the foundation for fruit quality and 
safety control. 

5. Conclusion 

This study established multielement-based discriminate models for 
the authentication of LP apples. Comparative analysis showed the 

different multielement profiles between LP and NLP apples. The LDA, 
PLS-DA, BP-ANN, and RF discriminate models showed different training 
and validation accuracies for the discrimination of LP apples. The LDA 
and RF models were reconstructed based on the values of element 
contribution. The RF model showed better tolerance to remove the less- 
important elements. The final RF model was optimized based on 11 el-
ements: Cd, Ca, Be, Mn, Na, Sr, Co, Li, Ba, Tl, and Pb, which obtained a 
classification accuracy of 95.30 % for 2018 and 2019 apples and a 
validation accuracy of 97.29 % for 2020 samples. Further studies related 
to the regulatory mechanism of environmental conditions on apple 
multielement fingerprints should be explored for theoretical confirma-
tion. This study has successfully established a multielement-based RF 
model for the geographical authentication of LP apples, which provides 
a foundation for the quality and safety control of apples and further 
geographical traceability studies. 
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Fig. 3. Linear models for discrimination of apples from Loess Plateau (LP) and non-LP (NLP) regions. A: Relative importance of the elements used in the LDA and 
PLS-DA models. The relative importance values of elements were obtained from the discriminate modelling based on all elements, which were represented by node 
area size. B: Optimized LDA of samples from 2018 to 2019 showed separation between LP and NLP samples. C: Relative importance of the elements Sr, Mn, As, Cs, Co, 
Cr, Pb, Be, Na, and U in the optimized LDA model. 
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