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Abstract 

Background:  The over-distributed pattern of malaria transmission has led to attempts to define malaria “hotspots” 
that could be targeted for purposes of malaria control in Africa. However, few studies have investigated the use of 
routine health facility data in the more stable, endemic areas of Africa as a low-cost strategy to identify hotspots. Here 
the objective was to explore the spatial and temporal dynamics of fever positive rapid diagnostic test (RDT) malaria 
cases routinely collected along the Kenyan Coast.

Methods:  Data on fever positive RDT cases between March 2018 and February 2019 were obtained from patients 
presenting to six out-patients health-facilities in a rural area of Kilifi County on the Kenyan Coast. To quantify spatial 
clustering, homestead level geocoded addresses were used as well as aggregated homesteads level data at enumera-
tion zone. Data were sub-divided into quarterly intervals. Kulldorff’s spatial scan statistics using Bernoulli probability 
model was used to detect hotspots of fever positive RDTs across all ages, where cases were febrile individuals with a 
positive test and controls were individuals with a negative test.

Results:  Across 12 months of surveillance, there were nine significant clusters that were identified using the spatial 
scan statistics among RDT positive fevers. These clusters included 52% of all fever positive RDT cases detected in 29% 
of the geocoded homesteads in the study area. When the resolution of the data was aggregated at enumeration zone 
(village) level the hotspots identified were located in the same areas. Only two of the nine hotspots were temporally 
stable accounting for 2.7% of the homesteads and included 10.8% of all fever positive RDT cases detected.

Conclusion:  Taking together the temporal instability of spatial hotspots and the relatively modest fraction of the 
malaria cases that they account for; it would seem inadvisable to re-design the sub-county control strategies around 
targeting hotspots.
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Background
The Pareto principle states that for many outcomes 
approximately 80% of consequences come from only 20% 
of the causes. The concept was developed under eco-
nomic theory but has been applied to models of infec-
tious disease epidemiology [1–3]. In malaria, events are 

often over-distributed in space and time driven by varia-
tions in local vector ecology, host susceptibility to infec-
tions or outcomes of infections [1, 4–12].

The concept that malaria is over-distributed in space 
has led to attempts to define “hotspots” in more stable, 
endemic areas of Africa [13]. The active detection of 
cases or infection linked to household coordinates of 
population censuses provides valuable insights on the 
extent and frequency of definable hotspots of potential 
disproportionately high burden/clustered households. 
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Under stable endemic settings that remain under the 
control phases, passive case detection (PCD) data from 
routine health information systems is all that is typi-
cally available to define households or local areas with 
the highest burdens. However, the use of routine health 
facility data for ‘hotspots’ detection remains underuti-
lized in these areas due to their limitations in terms of 
representativeness and completeness [14]. Hence, far 
fewer studies have investigated the potential of passive 
case detection in health facilities to identify hotspots 
[10, 15–21].

As we move towards improving the use of routine data, 
the use of spatial tools to detect malaria hotspots (i.e. sin-
gle villages or groups of households within villages with 
increased risk of malaria transmission) using routinely 
collected data would increase the value of local health 
information systems at district levels. Previous stud-
ies have tended to use geospatial data at the household 
level, which is not available in routine reporting, where 
location data is usually restricted to village or enumera-
tion zone. Here the objective was to explore the spatial 
and temporal dynamics of fever positive rapid diagnostic 
test (RDT) malaria cases routinely collected in six health 
facilities along the Kenyan Coast.

Methods
Study area
This is a secondary analysis of data collected from six 
health facilities located in the southern part of Kilifi 
Health and Demographic Surveillance System (KHDSS) 
located along the Kenyan coast (Fig.  1). The study area 
has been described in detail elsewhere [22, 23]. Briefly, 
malaria transmission is perennial but relatively higher 
during the long (April-June) and short (October-Decem-
ber) rains with an infection prevalence of approximately 
10% detectable among residents of all ages [22]. In this 
area, 29 peripheral private and public health facilities 
and one referral hospital (Kilifi county hospital) provide 
health care to the population. The six health facilities 
were selected on the basis that they were public health 
facilities and were more likely to comply with govern-
ment policies on diagnosis, treatment and participate in 
routine reporting of data. They also had a high burden of 
patients (a minimum of 10 patients per day) and were not 
part of ongoing active surveillance. A catchment area for 
the health facilities was defined as the enumeration zones 
(EZs) within a 2  km radius of each health facility. The 
catchment areas were estimated as the boundary within 
which the probability of attending these health facilities 
was relatively high. The area included an enumerated 
mid-year population of 72,560 in 2018 and 36 EZs con-
sisting of 9,596 homesteads.

Health facility‑based passive surveillance of fever 
infections
At each facility, the study included records of all 
patients ≥ 6  months of age that sought treatment 
between March 2018 to February 2019 with a history 
of fever in the last 24 h or a measured axillary tempera-
ture ≥ 37.5 °C, hereafter referred as febrile patients. All 
febrile patients were tested using a malaria rapid diag-
nostic test (RDT) (CareStart™) to detect HRP2 specific 
to Plasmodium falciparum. If the RDT results were 
positive the patient received appropriate treatment as 
per the Government of Kenya guidelines for malaria-
case management [24]. During the surveillance period, 
malaria test positivity rate (TPR) did not differ during 
the wet (42.7%) versus dry season (43.5%) (p = 0.173) 
[22].

Spatial resolution
To quantify spatial clustering of passively detected cases, 
two spatial resolutions were considered. All health facil-
ity attendees included in this study were linked to the 
KHDSS homestead level geospatial coordinates in order 
to assess heterogeneity at very fine spatial scale (i.e. the 
gold standard methodology). However, geospatial data at 
this level would not be available routinely in health facili-
ties. Since patient records generally do not include actual 
residential addresses, homesteads level data was aggre-
gated at enumeration zone (EZ) (equivalent to village) 
in order to explore the feasibility of hotspots detection 
using village level information. The geographic coordi-
nates of the centroid of each EZ was used.

Statistical analysis
The focus of the analysis was across all ages (≥ 6 months) 
as these data are available from existing DHIS2 platforms 
and because TPR across all ages was strongly associated 
with infection prevalence in the community, suggest-
ing that passive surveillance does provide a reflection of 
infection  prevalence  in the community [22]. Since geo-
spatial coordinates (longitude and latitude) of home-
steads tended to have small number of patients resulting 
in higher standard errors and therefore less precise TPR, 
smoothing was performed for visualization purposes 
only on the maps. TPR was calculated as a simple propor-
tion of RDT positive homestead members within a radius 
of < 1 km around each index patient. To explore different 
smoothed estimates of TPR, the radius was also altered 
at < 0.2 km and < 0.5 km. TPR for each EZ was calculated 
as the number of positive diagnostic tests as a proportion 
of the total tests performed among febrile patients aggre-
gated at the EZ level.
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Fig. 1  Map showing the location of the health facilities and their catchment areas
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Local spatial cluster detection
Local clustering detection was performed using Mar-
tin Kulldorff’s spatial scan statistic (SaTScan) [25]. The 
raw data, and not smoothed TPRs, were used for hot-
spot detection. SaTScan imposes circular scanning win-
dows across a study area with radius varying from zero 
to a maximum of 50% of the population in the sampling 
frame. An elliptic window shape can be used as an alter-
native to the circular window, in which case a set of 
ellipses with different shapes and angles are used as the 
scanning window. This may provide higher power for true 
clusters that are elliptical in shape, but lower power for 
circular or other very compact clusters [25]. Each scan-
ning window is evaluated as a potential cluster by the cal-
culation of a log likelihood ratio (LLR) test statistic based 
on the observed, expected and total number of cases. 
To test the null hypothesis of complete spatial random-
ness, SaTScan employs Monte Carlo simulations where 
for each simulation run, the observed cases are randomly 
permuted in space across the entire set of data locations. 
The observed log likelihood is then compared with the 
simulated log likelihoods to determine significance. The 
statistical significance of a cluster (or ‘‘hotspot’’) is then 
evaluated taking into account the multiple tests for the 
many potential cluster locations and sizes assessed.

Kulldorff’s spatial scan statistics using Bernoulli proba-
bility model was used to detect hotspots of fever positive 
RDTs, where cases were febrile individuals with a positive 
test and controls were individuals with a negative test. 
The maximum spatial cluster size was set at a radius of 
3 km. For each detected hotspot, a relative risk (RR) was 
computed. The RR is the magnitude of the risk of malaria 
for individuals residing within the hotspot compared to 
the estimated risk in the surrounding area. The circular 
windows were used in line with common practice. They 
are computationally efficient, and it is easier to determine 
hotspot properties that are of interest (Radius, RR and 
significance). The most likely cluster (hereafter referred 
to primary cluster) was identified based on the maximum 
log likelihood ratio. In addition, other clusters with sta-
tistically significant log likelihood values were defined as 
secondary clusters.

Temporal stability of hotspots
There were no clear patterns between seasonality and 
TPR [25]. Therefore, to test for temporal stability of 
spatial clusters, the data was sub-divided into quar-
terly intervals i.e. March to May 2018 (Q1), June to 
August 2018 (Q2), September to November 2018 (Q3) 
and December 2018 to February 2019 (Q4). The spatial 
analysis was repeated for each interval rather than a spa-
tial–temporal because the size of the database made sec-
ondary clusters very likely and the option for analysing 
secondary clusters is not available for spatial–temporal 
analysis but is validated for spatial-only analysis [26].

Spatial cluster analysis was performed using SaTScan™ 
software version 9.6 (Information Management Services 
Inc, Silver Spring, Maryland, USA). All other statisti-
cal analyses were performed in Stata, version 13 (Stata 
Corporation, College Station, TX) and R version 3.6.1 (R 
Core Team (2019), Vienna, Austria). Maps of hotspots 
were produced in R.

Results
Description of the spatial data
Overall, the study comprised of 28,134 febrile health 
facility attendees across all ages in 5,323 geocoded home-
steads between March 2018 and February 2019. Among 
all febrile patients, 12,143 (43%) tested positive for 
malaria using RDT. The number of febrile health facili-
ties attendees varied across the quarterly intervals rang-
ing between 4,284 and 9,119 (Table  1). The RDT fever 
test positivity rate was lowest between March and May 
2018 at 39% (1,651 cases) and highest between June and 
August 2018 at 45% (4,096 cases) (Table 1). A similar test 
positivity rate (45%) was observed between December 
2018 and February 2019 (Table 1). The overall smoothed 
1  km TPR ranged between 0% and 89.3% in 5,323 geo-
coded homesteads located in 36 EZs (Additional file 1). 
The smoothed TPR was comparable when the radial 
distance was altered which ranged between 0 and 100% 
for both 0.2 km and 0.5 km (Additional file 1). The 1 km 
radius was chosen over other radial distances as ‘noise’ 
was minimized with greater stability.

Table 1  Summary of data routinely collected at six health facilities stratified by quarterly intervals

Summary measures March–may 2018 (Q1) June–august 2018 (Q2) September–
november 2018 
(Q3)

December 2018–
february 2019 (Q4)

Overall

Number of geo-coded home-
steads

2290 3532 3368 2890 5323

Number of attendees (N) 4284 9119 8396 6335 28,134

Number of cases (n) 1651 4096 3554 2842 12,143

TPR, (95% CI) 38.5% (37.1%, 40.0%) 44.9% (43.9%, 45.9%) 42.3% (41.3%, 43.4%) 44.9% (43.6%, 46.1%) 43.2% (42.6%, 43.7%)
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Spatial hotspot detection
Across 12  months of surveillance, there were nine sig-
nificant clusters that were identified using the purely 
spatial scan statistics among RDT positive fevers of all 

age groups (Fig. 2). The primary cluster with a radius of 
3.0 km was detected in the west of the study area among 
patients attending Chasimba health centre, composed of 
289 (5.4%) homesteads accounting for 16.0% (1939) of all 

Fig. 2  Spatial distribution of smoothed mean TPR across 12 months of surveillance at homesteads level aggregated at 1 km radius and the spatial 
hotspots of fever positive RDT cases, analysed without smoothing. Each plotted point represents an individual homestead, where red shading 
indicates high TPR and green shading indicates lower TPR. The large black circles indicate the significant hotspots (analysed without smoothing) 
where 1 indicates the primary cluster located in Chasimba health centre and clusters 2–9 are the secondary hotspots located in Ziani, Kadzinuni, 
Bomani and Jaribuni dispensaries
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fever test positive cases detected (cluster 1 in Fig. 2). The 
homesteads within this cluster were 1.75 (p < 0.001) times 
more at risk of testing positive for malaria than home-
steads outside the cluster. In addition, secondary hot-
spots were identified among patients attending three of 
the five remaining health facilities (i.e. Ziani (cluster 2, 3, 
and 9), Kadzinuni (cluster 4), Bomani (cluster 5) and Jar-
ibuni (cluster 6 and 7) dispensaries, Fig. 2). There were no 
clusters detected using data obtained from Mavueni dis-
pensary. Cumulatively, in both the primary and second-
ary hotspots, there were 1520/5323 (28.6%) homesteads 
that accounted for 51.8% (6293/12,143) of all fever test 
positive cases detected in the study area. When data were 
aggregated at EZ level, a spatial resolution equivalent to 
what might be available through routine health informa-
tion systems, the primary and secondary hotspots iden-
tified were generally located in the same areas as those 
identified using the homestead level data (Fig. 3).

Temporal stability of hotspot detection
To test for temporal stability of spatial clusters, the data 
was sub-divided into quarterly intervals. When the spa-
tial analysis was repeated for each quarter, several hot-
spots were detected. The relative risk of infection within 
these clusters was significantly higher in comparison to 
the population outside of these clusters (Table  2). The 
radius of the spanning windows ranged from 0.66 km to 
3.0 km and four, six, four and five clusters were detected 
in the first, second, third and four quarters, respectively 
(Table  2). These spatial clusters represented between 
17.7% (405) and 32.6% (1,098) of all the geocoded home-
steads (Table  2). Only two clusters seemed temporally 
stable across the quarterly intervals (Fig. 4).

The primary cluster in the first quarter was 2.9  km 
radius west of the study area, composed of 106 (4.6%) 
homesteads accounting for 17.3% (287) of all fever test 
positive cases identified in that period. The homesteads 
within this cluster attended Chasimba health centre and 
were 2.29 (p < 0.001) times more at risk of testing posi-
tive for malaria than homesteads outside the cluster. In 
the second quarter, the primary cluster had the highest-
risk (1.66; p < 0.001) and overlapped with the cluster 
detected in the first quarter. This cluster represented 
8.5% of the homesteads accounting for 14.2% of all fever 
test positive cases (Table 2). The primary cluster detected 
in the third quarter had a radius of 2.28 km with a risk 
of 1.62 (p < 0.001), but was located in the central part of 
the study area among patients attending Ziani dispen-
sary. This cluster represented 15.9% of the homesteads 
and 22.9% of all fever test positive cases detected in 
that period (Table  2). The cluster with the highest risk 
(RR = 1.75; p < 0.001) in the third quarter was in a similar 
location as the primary clusters detected in the first and 

second quarter. The fourth quarter showed a similar pat-
tern to what was observed in the first and second quarter. 
The highest-risk hotspot was detected in the same loca-
tion with a RR of 1.75 (p < 0.001) and represented 7.4% of 
the homesteads and accounted for 18.9% of all fever test 
positive cases in that period (Fig. 4).

There were several secondary hotspots identified across 
all the quarterly intervals (Table  2 and Fig.  4). The sec-
ondary clusters were characterized in Jaribuni, Kadzinuni 
and Bomani dispensaries. However, the spatial location 
and size varied across the intervals. There were neither 
primary nor secondary clusters detected using data 
obtained from Mavueni dispensary. Cumulatively, all the 
hotspots detected in the first quarter represented 17.7% 
(405/2290) of all the homesteads accounting for 41.7% 
(689/1651) of all fever test positive cases detected. In 
the second quarter 27.3% (965/3532) of the homesteads 
accounted for 45.0% (1843/4096) of the case, in the third 
quarter 32.6% (1098/3368) of the homesteads accounted 
for 56.0% (1988/3554) of the cases and in the fourth 
quarter 25.3% (732/2890) of the homesteads accounted 
for 44.3% (1259/2842) of the cases detected (Table 2).

In the two temporally stable hotspots, 142/5323 (2.7%) 
homesteads were consistently identified in these hot-
spots across the four-time intervals accounting for 10.8% 
(1311/12,143) of all fever test positive cases detected, 
353 (6.6%) were identified three times and accounted 
for 17.5% (2122) of the cases, 218 (4.1%) identified twice 
accounting for 5.3% (643) of the cases and 306 (5.8%) 
were identified once accounting for 9.0% (1095) of the 
cases while 4,304 (80.9%) homesteads were in the unsta-
ble hotspots or were never identified in a hotspot area. 
Again, when data was aggregated at EZ (village) level, 
the primary and secondary hotspots identified across the 
quarterly intervals (Fig.  5) were roughly located in the 
same areas as those identified using the homestead level 
data (Fig. 4).

Discussion
The results presented demonstrate that information 
obtained through routine testing of febrile patients for 
malaria can identify spatial and temporal heterogenei-
ties of malaria risk at very fine spatial scales, where 
homestead coordinates are available and importantly at 
lower resolutions where village names might be available 
(Fig. 2, 3).

Fever positive RDTs cases exhibited spatial heteroge-
neity as evidenced by the existence of statistically sig-
nificant (p < 0.05) spatial clusters in groups of homesteads 
among residence of six catchment areas of six health 
facilities. Across the 12-month surveillance period, these 
clusters included 52% of all fever positive RDT cases 
detected in 29% of the geocoded homesteads in the study 
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area. In addition, the power to detect clusters of fever 
positive RDT cases did not diminish when data were spa-
tially aggregated at EZ (village) level (Fig.  3) as demon-
strated previously [27]. However, aggregations negatively 

impacted the ability to more accurately determine the 
exact spatial location of the clusters.

These results support the hypothesis that malaria tends 
to significantly cluster within certain geographic units [1, 
5–7, 10, 11, 20, 21, 28].

Fig. 3  Spatial pattern of annual malaria RDT positivity rate by enumeration zones and spatial hotspots of fever test positive cases. The red shading 
in the choropleth map indicates very high TPR (≥ 60%), brown indicated high TPR (40–59%), dark green is low-moderate TPR regions (20–39%) and 
light green shading indicating lower TPR (< 20%). The large black circles indicate the location of high-risk clusters detected by purely spatial scan 
statistics using geographic coordinates of the centroid of each EZ. Cluster 1 indicates the primary cluster located in Chasimba health centre and 
clusters 2—9 are the secondary hotspots located in Ziani (clusters 2 and 3), Kadzinuni (clusters 4 and 8) and Bomani (cluster 6) dispensaries. The 
additional secondary clusters 5, 7 and 9 were located in Chasimba health centre
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When the temporal stability of the hotspots was exam-
ined, the hotspots varied greatly across the intervals 
(Fig. 4). The clusters of fever positive RDT cases moved 
in space across the quarterly intervals and often did not 
recur in the same location. This has also been noted in 
other clustering studies [10, 20, 21]. Only two temporally 
stable hotspots were identified with 2.7% of the home-
steads consistently located in these areas across all the 
intervals and included 10.8% of all fever positive RDT 
cases detected.

Most studies that have mapped the spatial distribu-
tion of malaria burden have relied upon surveys of well-
defined demographic and spatial distributions of the 
at-risk population [6, 10, 17, 20, 21, 26, 29, 30]. Few stud-
ies have examined the use of routine PCD data in defin-
ing clusters of disease risks [10, 15–21, 31, 32]. Of these 
PCD studies, variable patterns of spatial clustering have 
been reported. Some studies support consistent hot-
spots [19, 33] while others suggest greater variability [10, 
17, 20, 21]. For example, in a highland area in Kenya the 
risk of malaria was consistently higher between 2001 and 
2004 among individuals living in a hotspot area however, 
the number of households within the cluster varied and 
included between 29.3% and 49.3% of all cases detected 
[33]. In Ouagadougou, Burkina Faso the location of 
clusters identified as high risk varied little across three 

transmission periods [19]. In areas of moderate malaria 
transmission in coastal Kenya [10, 17], very low transmis-
sion in a highland area of Kenya [21] and Nanoro DSS, 
Burkina Faso [20], hotspots of malaria were not con-
sistently identified over time. At much lower transmis-
sion health facility sites, authors were unable to identify 
any statistically significant clustering of cases [31, 32], 
although this may reflect diminished power due to the 
lower number of cases at lower transmission, as meta-
analysis suggests that the effect size of clustering of cases 
becomes more marked at lower transmission [13].

The use of passively collected routine health facility 
data does offer opportunities to detect clusters down to 
the village level at an affordable cost. However, appro-
priately structured and defined health facility data will 
be needed. In many areas, routinely collected health 
facility data generally do not include accurate residen-
tial address. Therefore, to tap the full potential of these 
data, it will be important to refine the current surveil-
lance tools such that they have the potential of collect-
ing information at sufficiently precise scales (at individual 
level and ‘village’ scales). Closing these gaps could result 
in health information systems that have the potential of 
becoming scalable, integral, and sustainable components 
of control programmes, which can then target interven-
tions to clusters of elevated risk [18, 21].

Table 2  Spatial clusters of fever positive RDT cases detected by SaTScan, ordered from the cluster with the highest LLR, stratified by 
quarterly intervals

Period Cluster order Radius (km) Number of 
cases in cluster 
(n)

Cumulative 
cases/total 
cases

Expected cases Number of 
HMs in cluster 
(n)

Cumulative 
HMs/total 
HMs

RR p-value

Q1 1 2.90 287 287/1651 139.12 106 106/2290 2.29  < 0.001

2 2.31 270 557/1651 174.58 216 322/2290 1.65  < 0.001

3 1.13 44 601/1651 21.2 23 345/2290 2.11  < 0.001

4 0.66 88 689/1651 59.74 60 405/2290 1.50 0.03

Q2 1 3.00 583 583/4096 371.51 220 220/3532 1.66  < 0.001

2 1.72 289 872/4096 197.21 143 363/3532 1.50  < 0.001

3 2.09 363 1235/4096 270.88 227 590/3532 1.37  < 0.001

4 2.52 103 1338/4096 64.69 40 630/3532 1.61  < 0.001

5 2.49 222 1560/4096 163.97 84 714/3532 1.37  < 0.001

6 2.32 283 1843/4096 229.1 251 965/3532 1.25 0.02

Q3 1 2.28 815 815/3554 550.29 546 546/3368 1.62  < 0.001

2 2.78 503 1318/3554 306.47 177 723/3368 1.75  < 0.001

3 2.97 537 1855/3554 400.44 306 1029/3368 1.40  < 0.001

4 1.24 133 1988/3554 89.74 69 1,098/3368 1.50  < 0.001

Q4 1 2.75 538 538/2842 334.22 216 216/2890 1.75  < 0.001

2 1.51 226 764/2842 157.47 188 404/2890 1.47  < 0.001

3 1.74 134 898/2842 84.34 74 478/2890 1.62  < 0.001

4 1.82 247 1145/2842 183.04 178 656/2890 1.38  < 0.001

5 2.70 114 1259/2842 73.12 76 732/2890 1.58  < 0.001
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Fig. 4  Spatial distribution of smoothed mean TPR across all ages at homesteads level aggregated at 1 km radius and the spatial hotspots of fever 
positive RDT cases stratified into quarterly monthly periods, analysed without smoothing. Each plotted point represents an individual homestead, 
where red shading indicating high TPR and green shading indicating lower TPR. The large black circles indicate the significant hotspots (analysed 
without smoothing) where 1 indicates the primary cluster and clusters 2–6 are the secondary hotspots
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Fig. 5  Spatial pattern of annual malaria RDT positivity rate by enumeration zones and spatial hotspots of fever test positive cases stratified into 
quarterly monthly periods. The red shading in the choropleth map indicates very high TPR (≥ 60%), brown indicated high TPR (40–59%), dark green 
is low-moderate TPR regions (20–39%) and light green shading indicating lower TPR (< 20%). The large black circles indicate the location of high-risk 
clusters detected by purely spatial scan statistics using geographic coordinates of the centroid of each EZ. Cluster 1 indicates the primary cluster 
located and clusters 2–7 are the secondary hotspots
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Hotspot-targeted interventions have been hypothesized 
to be a highly efficient method of reducing malaria trans-
mission not only inside these hotspots but also in adja-
cent areas [7, 10]. While biologically plausible, there has 
been mixed evidence to support this concept. For exam-
ple, a trial conducted in western Kenya failed to observe 
any sustained reduction in transmission [34]. Despite 
achieving high coverage of interventions in hotspot 
areas, the interventions resulted in a modest and tran-
sient reduction in transmission inside targeted hotspots 
and failed to influence malaria transmission dynamics 
outside the targeted areas [34]. In a more recent study in 
Rufiji District, southern Tanzania, the implementation of 
a locally tailored surveillance-response strategy contrib-
uted convincingly to the reduction of malaria burden in 
hotspot villages (with the highest malaria incidence ratio) 
using health facility-based data [35]. This study offered 
the first example of surveillance as an intervention in 
areas with high malaria burden, which is in line with 
the current World Health Organization-recommended 
strategies for district-level malaria information systems 
[35–37].

Limitations
The data presented here does not represent the uni-
verse of all the health facilities in the study area, febrile 
patients may have elected to use home-based treatment, 
private facilities or formal health services more distal to 
their home. The data do however represent information 
from busy public health facilities and were used here to 
demonstrate the potential value of information obtained 
through routine testing of febrile patients for malaria in 
describing the local malaria epidemiology at fine spatial 
scales. The spatial and temporal coverage of observa-
tions in this study is likely to have had an impact on the 
stability of the hotspots detected. However, PCD data 
needs analysis over short temporal resolutions to insti-
gate immediate intervention requiring real-time analy-
sis. In the present analysis, hotspots stability was based 
on the fraction of homesteads that fell within clusters 
that occurred across all the four-time intervals. Lack of 
longer-term data in this study limits the ability to exam-
ine stability of hotspots beyond a year. It is possible that 
the spatial heterogeneity observed may have been due to 
measurement bias of how fever positive RDTs cases were 
defined. For example, there is a possibility that a fever test 
positive case was from a single infectious bite or repeated 
inoculations within the same individual because all cases 
testing RDT positive including re-attendance were used. 
To evaluate the degree of potential measurement bias as 
an alternative explanation, SaTScan analysis was rerun 
using records of first cases only of RDT positive patients. 
The results were generally similar to the results obtained 

using records of all cases (Additional file  2). Although 
Kulldorff’s scan statistic was successfully used to detect 
circular clusters, it may ignore more subtle small-scale 
spatial clusters that do not fit within circular windows 
[38, 39]. Arguably, clusters that require specific window 
shapes are relatively subtle and therefore unlikely to be of 
primary importance to routine malaria control. Many of 
the limitations of this study would apply to routine health 
facility data in many settings, and this study was set out 
to test the utility of such data for hotspot detection.

Conclusion and programme implications
In this study, approximately a third of the homesteads 
in the study area fell within identified hotspots and 
accounted for half of all health facility fever positive 
RDTs cases. These hotspots varied over time, with only 
two temporally stable hotspots which accounted for 
10.8% of malaria cases in the 2.7% of homesteads.

The operational question is whether these areas are 
detectable with routine data and, if so, whether they are 
‘hot enough’ to re-design district level control strategies 
from one of universal coverage of interventions, assum-
ing no heterogeneity, to one of a more tailored, nuanced 
approach based on local data. The temporal instabil-
ity of the hotspots suggests that the use of local data 
would require real-time analysis and intervention. The 
complexity of these analyses in time and space suggests 
that hotspot-targeted interventions may at this stage be 
unnecessary in this part of Kilifi county.

The results presented continue to demonstrate that 
information obtained through routine testing of febrile 
patients for malaria can describe local malaria epide-
miology at fine spatial scales. The challenge remains 
to develop programmatically affordable and scalable 
approaches using routine data that allows for the identi-
fication of local spatial heterogeneity to consider targeted 
supplementary control efforts.
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for all ages. Panel c shows the distribution of yearly smoothed mean TPR 
aggregated at a 0.2 km radius for all ages.

Additional file 2: Spatial distribution of smoothed mean TPR across all 
ages using records of first cases only of RDT positive patients at home-
steads level aggregated at 1 km radius, the spatial hotspots of fever test 
positive cases and the location of the health facilities.

Acknowledgements
We are grateful to the study team fieldworkers, sub-county health manage-
ment teams, dispensary health committees, and KEMRI community repre-
sentatives’ teams for the support during data collection in the health facilities. 
We are specifically grateful to Benjamin Tsofa for his support during the imple-
mentation phase of this study, and to Janet Musembi and Omar Ngoto for the 
clinical support of the study. We would also like to appreciate David Walumbe, 
Mark Otiende and David Amadi for their assistance with DSS related queries 
and to Edward Mundia for developing the data entry systems. This paper is 
published with the permission of the director of KEMRI. This research was 
funded in whole by the Wellcome Trust [103602 and 212176]. For the purpose 
of Open Access, the author has applied a CC-BY public copyright licence to 
any author accepted manuscript version arising from this submission.

Authors’ contributions
AK oversaw the implementation of field studies, analysed and interpreted 
the data and drafted the manuscript. GM and CM coordinated the data 
collection process for the field studies. AK, PB and RWS conceived the study, 
reviewed and revised the manuscript. All authors read and approved the final 
manuscript.

Funding
This work was supported through support to RWS as part of his Wellcome 
Trust Principal Fellowship (103602 and 212176) and support to AK through 
the DELTAS Africa Initiative [DEL-15–003]. The DELTAS Africa Initiative is an 
independent funding scheme of the African Academy of Sciences (AAS)’s 
Alliance for Accelerating Excellence in Science in Africa and supported by the 
New Partnership for Africa’s Development Planning and Coordinating Agency 
with funding from the Wellcome Trust [107769] and the UK government. All 
authors are grateful to the support of the Wellcome Trust to the Kenya Major 
Overseas Programme (203077). The funders had no role in study design, data 
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
Data cannot be shared publicly because it includes homestead level coor-
dinates as an essential component, and these are personal identifiable data. 
Data that support the findings of this study are available from the KEMRI Insti-
tutional Data Access/Ethics Committee. Details of the guideline can be found 
in the KEMRI-Wellcome data sharing guidelines (https://​kemri-​wellc​ome.​org/​
about-​us/#​Child​Verti​calTab_​15). Access to data is provided via the KEMRI 
Wellcome Data Governance Committee: dgc@kemri-wellcome.org.

Declarations

Ethical approval and constent for participate
The health facility surveillance did not impose any changes in the national 
treatment guidelines and data used in the analysis were gathered as part 
of routine care. Consent was waived by the ethics committee; therefore, 
individual patient consent was not sought. All the records were pseudo-
anonymized at the point of data capture in the healthcare facilities but linked 
to the demographic surveillance by an ID number. This study was approved 
by the Kenya Medical Research Institute Scientific Ethics Review Unit (KEMRI/
SERU/CGMR-C/106/3592) and the Oxford tropical research ethics committee 
(OxTREC Reference: 511-18).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya. 2 Ministry 
of Health, Kilifi County Government, Kilifi, Kenya. 3 Centre for Tropical Medicine 
and Global Health, Nuffield Department of Clinical Medicine, University 
of Oxford, Oxford, UK. 

Received: 1 February 2021   Accepted: 9 May 2021

References
	1.	 Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. 

Heterogeneities in the transmission of infectious agents: implications for 
the design of control programs. Proc Natl Acad Sci USA. 1997;94:338–42.

	2.	 Galvani AP, May RM. Dimensions of superspreading. Nature. 
2005;438:293–5.

	3.	 Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading 
and the effect of individual variation on disease emergence. Nature. 
2005;438:355–9.

	4.	 Carter R, Mendis KN, Roberts D. Spatial targeting of interventions against 
malaria. Bull World Health Organ. 2000;78:1401–11.

	5.	 Gaudart J, Poudiougou B, Dicko A, Ranque S, Toure O, Sagara I, et al. 
Space-time clustering of childhood malaria at the household level: a 
dynamic cohort in a Mali village. BMC Public Health. 2006;6:286.

	6.	 Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, et al. 
Identification of hot spots of malaria transmission for targeted malaria 
control. J Infect Dis. 2010;201:1764–74.

	7.	 Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, 
et al. Hitting hotspots: spatial targeting of malaria for control and elimina-
tion. PLoS Med. 2012;9:e1001165.

	8.	 Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bousema 
T, et al. Targeting asymptomatic malaria infections: active surveillance in 
control and elimination. PLoS Med. 2013;10:e1001467.

	9.	 Mosha JF, Sturrock HJ, Greenwood B, Sutherland CJ, Gadalla NB, Atwal 
S, et al. Hot spot or not: a comparison of spatial statistical methods to 
predict prospective malaria infections. Malar J. 2014;13:53.

	10.	 Bejon P, Williams TN, Nyundo C, Hay SI, Benz D, Gething PW, et al. A micro-
epidemiological analysis of febrile malaria in Coastal Kenya showing 
hotspots within hotspots. Elife. 2014;3:e02130.

	11.	 Stresman GH, Mwesigwa J, Achan J, Giorgi E, Worwui A, Jawara M, et al. 
Do hotspots fuel malaria transmission: a village-scale spatio-temporal 
analysis of a 2-year cohort study in the Gambia. BMC Med. 2018;16:160.

	12.	 Shaffer JG, Touré MB, Sogoba N, Doumbia SO, Gomis JF, Ndiaye M, et al. 
Clustering of asymptomatic Plasmodium falciparum infection and the 
effectiveness of targeted malaria control measures. Malar J. 2020;19:33.

	13.	 Mogeni P, Omedo I, Nyundo C, Kamau A, Noor A, Bejon P. Effect of 
transmission intensity on hotspots and micro-epidemiology of malaria in 
sub-Saharan Africa. BMC Med. 2017;15:121.

	14.	 Alegana VA, Okiro EA, Snow RW. Routine data for malaria morbidity 
estimation in Africa: challenges and prospects. BMC Med. 2020;18:121.

	15.	 Bisanzio D, Mutuku F, LaBeaud AD, Mungai PL, Muinde J, Busaidy H, et al. 
Use of prospective hospital surveillance data to define spatiotemporal 
heterogeneity of malaria risk in coastal Kenya. Malar J. 2015;14:482.

	16.	 Ndiath MM, Cisse B, Ndiaye JL, Gomis JF, Bathiery O, Dia AT, et al. Applica-
tion of geographically-weighted regression analysis to assess risk factors 
for malaria hotspots in Keur Soce health and demographic surveillance 
site. Malar J. 2015;14:463.

	17.	 Kangoye DT, Noor A, Midega J, Mwongeli J, Mkabili D, Mogeni P, et al. 
Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR 
and vector numbers in a low transmission area on the Kenyan Coast. 
Malar J. 2016;15:213.

	18.	 Mlacha YP, Chaki PP, Mwakalinga VM, Govella NJ, Limwagu AJ, Paliga JM, 
et al. Fine scale mapping of malaria infection clusters by using routinely 
collected health 1 facility data in urban Dar Es Salaam Tanzania. Geospa-
tial Health. 2017;12:294.

	19.	 Ouedraogo B, Inoue Y, Kambiré A, Sallah K, Dieng S, Tine R, et al. Spatio-
temporal dynamic of malaria in Ouagadougou, Burkina Faso, 2011–2015. 
Malar J. 2018;17:138.

	20.	 Rouamba T, Nakanabo-Diallo S, Derra K, Rouamba E, Kazienga A, Inoue Y, 
et al. Socioeconomic and environmental factors associated with malaria 

https://kemri-wellcome.org/about-us/#ChildVerticalTab_15
https://kemri-wellcome.org/about-us/#ChildVerticalTab_15


Page 13 of 13Kamau et al. Malar J          (2021) 20:227 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

hotspots in the Nanoro demographic surveillance area Burkina Faso. BMC 
Public Health. 2019;19:249.

	21.	 Hamre KE, Hodges JS, Ayodo G, John CC. Lack of consistent malaria 
incidence hotspots in a Highland Kenyan Area during a 10-year 
period of very low and unstable transmission. Am J Trop Med Hyg. 
2020;103:2198–207.

	22.	 Kamau A, Mtanje G, Mataza C, Malla L, Bejon P, Snow RW. The relationship 
between facility-based malaria test positivity rate and community-based 
parasite prevalence. PLoS One. 2020;15:e0240058.

	23.	 Kamau A, Mtanje G, Mataza C, Mwambingu G, Mturi N, Mohammed S, 
et al. Malaria infection, disease and mortality among children and adults 
on the coast of Kenya. Malar J. 2020;19:210.

	24.	 MoPHS. National guidelines for the diagnosis, treatment and prevention 
of malaria in Kenya. : Division of Malaria Control, Ministry of Public Health 
and Sanitation; 2010. https://​www.​theco​mpass​forsbc.​org/​sites/​defau​lt/​
files/​proje​ct_​examp​les/​Kenya_​Malar​ia_​Tx_​Guide​line_​2010.​pdf.

	25.	 Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods. 
1997;26:1481–96.

	26.	 Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, Ogada E, et al. 
Stable and unstable malaria hotspots in longitudinal cohort studies in 
Kenya. PLoS Med. 2010;7:e1000304.

	27.	 Jones SG, Kulldorff M. Influence of spatial resolution on space-time 
disease cluster detection. PLoS One. 2012;7:e48036.

	28.	 Mirghani SE, Nour BY, Bushra SM, Elhassan IM, Snow RW, Noor AM. The 
spatial-temporal clustering of Plasmodium falciparum infection over 
eleven years in Gezira State the Sudan. Malar J. 2010;9:172.

	29.	 Clark TD, Greenhouse B, Njama-Meya D, Nzarubara B, Maiteki-Sebuguzi 
C, Staedke SG, et al. Factors determining the heterogeneity of malaria 
incidence in children in Kampala Uganda. J Infect Dis. 2008;198:393–400.

	30.	 Mogeni P, Williams TN, Omedo I, Kimani D, Ngoi JM, Mwacharo J, et al. 
Detecting malaria hotspots: a comparison of rapid diagnostic test, 
microscopy, and polymerase chain reaction. J Infect Dis. 2017;216:1091–8.

	31.	 Yeshiwondim AK, Gopal S, Hailemariam AT, Dengela DO, Patel HP. Spatial 
analysis of malaria incidence at the village level in areas with unstable 
transmission in Ethiopia. Int J Health Geogr. 2009;8:5.

	32.	 Rulisa S, Kateera F, Bizimana JP, Agaba S, Dukuzumuremyi J, Baas L, et al. 
Malaria prevalence, spatial clustering and risk factors in a low endemic 
area of Eastern Rwanda: a cross sectional study. PLoS One. 2013;8:e69443.

	33.	 Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC. Malaria hotspot 
areas in a highland Kenya site are consistent in epidemic and non-epi-
demic years and are associated with ecological factors. Malar J. 2006;5:78.

	34.	 Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, Stone W, et al. 
The impact of hotspot-targeted interventions on malaria transmission 
in Rachuonyo South District in the Western Kenyan Highlands: a cluster-
randomized controlled trial. PLoS Med. 2016;13:e1001993.

	35.	 Mlacha YP, Wang D, Chaki PP, Gavana T, Zhou Z, Michael MG, et al. Effec-
tiveness of the innovative 1,7-malaria reactive community-based testing 
and response (1,7-mRCTR) approach on malaria burden reduction in 
Southeastern Tanzania. Malar J. 2020;19:292.

	36.	 WHO. Global technical strategy for malaria 2016–2030: Geneva, World 
Health Organization; 2015. https://​www.​who.​int/​malar​ia/​areas/​global_​
techn​ical_​strat​egy/​en/

	37.	 WHO. World malaria report 2020: Geneva, World Health Organization; 
2020. https://​www.​who.​int/​publi​catio​ns/i/​item/​97892​40015​791

	38.	 Jackson MC, Huang L, Luo J, Hachey M, Feuer E. Comparison of tests for 
spatial heterogeneity on data with global clustering patterns and outliers. 
Int J Health Geogr. 2009;8:55.

	39.	 Cramb SM, Duncan EW, White NM, Baade PD, Mengersen KL. Spatial Mod-
elling Methods. Brisbane: Cancer CouncilQueensland and Queensland 
University of Technology. 2016. https://​eprin​ts.​qut.​edu.​au/​204103/. 
Accessed 03 Dec2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.thecompassforsbc.org/sites/default/files/project_examples/Kenya_Malaria_Tx_Guideline_2010.pdf
https://www.thecompassforsbc.org/sites/default/files/project_examples/Kenya_Malaria_Tx_Guideline_2010.pdf
https://www.who.int/malaria/areas/global_technical_strategy/en/
https://www.who.int/malaria/areas/global_technical_strategy/en/
https://www.who.int/publications/i/item/9789240015791
https://eprints.qut.edu.au/204103/

	Spatial–temporal clustering of malaria using routinely collected health facility data on the Kenyan Coast
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Study area
	Health facility-based passive surveillance of fever infections
	Spatial resolution
	Statistical analysis
	Local spatial cluster detection
	Temporal stability of hotspots

	Results
	Description of the spatial data
	Spatial hotspot detection
	Temporal stability of hotspot detection

	Discussion
	Limitations
	Conclusion and programme implications
	Acknowledgements
	References




