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A B S T R A C T   

As industrial technology continues to advance through integration, society’s demand for elec
tricity is rapidly increasing. To meet the requirements of refined grid management and address 
the elevated challenges arising from the increased electrical load, this paper delves into the 
investigation of distribution vehicle scheduling for the practical scenario of batch rotation of 
smart meters. Initially, based on the practical distribution task requirements of a provincial 
metrology verification center, a multi-level optimization model is constructed for the batch 
rotation and distribution vehicle scheduling of smart meters. The primary objective is to maxi
mize the enhancement of smart meter distribution efficiency while minimizing the overall dis
tribution cost. Moreover, this paper introduces a refined Grey Wolf Optimization algorithm (OLC- 
GWO) based on Opposition-based Learning, Levy flight strategy, and Cauchy mutation to solve 
the model. By generating an opposite population to improve the quality of initial feasible solu
tions and further harnessing the global search capabilities of Levy flight and Cauchy mutation 
operators, the algorithm’s effectiveness is enhanced. The algorithm is subjected to testing using 
multiple benchmark functions and its performance is compared with variants of GWO, as well as 
several cutting-edge intelligent optimization algorithms including Particle Swarm Optimization 
(PSO), Harris Hawks Optimization (HHO), and Honey Bee Algorithm (HBA). The results indicate 
that OLC-GWO exhibits excellent performance in terms of convergence speed and optimization 
capability. Finally, the improved algorithm is subjected to simulation experiments by incorpo
rating order data from the practical distribution operations of a provincial metrology verification 
center. The outcomes verify the efficiency of the proposed algorithm, reinforcing the practical 
significance of the established model in addressing the real-world challenge of batch rotation and 
distribution vehicle scheduling for smart meters.   
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1. Introduction 

1.1. Background 

The rise of the smart grid signifies the profound integration of emerging fields such as information technology, communication 
technology, sensing and detection technology, and energy power technology with the physical infrastructure of the power grid. This 
convergence creates a power system that is highly informational, automated, refined, and interactive. This modernized power grid 
possesses exceptional power regulation capabilities, grid structural flexibility, and energy service quality, offering unprecedented 
opportunities for energy distribution and management [1]. 

Within the comprehensive construction of the smart grid, the intelligent development of grid logistics scheduling has become a 
pivotal aspect of achieving optimized operations in the smart grid. Traditional production scheduling methods struggle to address the 
heightened complexity and challenges faced by new-generation power grid material distribution scheduling, which includes multi- 
level distribution networks, heterogeneous vehicle types, and constraints related to multiple material types and time windows. 
Consequently, the problem of batch rotation and distribution vehicle scheduling for electricity meters in the context of the smart grid 
has emerged as a challenging optimization problem, presenting new requirements for achieving efficient energy distribution. 

1.2. Literature review 

The core of the smart meter distribution scheduling problem is a multi-objective vehicle routing problem with complex constraints, 
which has been extensively studied by scholars both domestically and internationally. Since the introduction of the Vehicle Routing 
Problem (VRP), numerous variants have arisen to address academic research and practical application needs. These include Vehicle 
Routing Problems with Time Windows (VRPTW) [2], Green Vehicle Routing Problem (GVRP) [3], Multi-Objective Vehicle Routing 
Problem (MOVRP) [4], and Multi-Objective Vehicle Routing Problem with Flexible Time Windows (MOVRPFlexTW) [5]. 

In reference [6], a novel variant, the Two-Echelon Vehicle Routing Problem with Time Windows, Intermediate Facilities, and 
Occasional Drivers (2E-VRPTW-IF-OD), was introduced along with a robust solution. To address the challenge of obtaining consistent 
Pareto-optimal solutions with minimal amplitude differences for Multi-Objective Vehicle Routing Problem with Time Windows 
(MOVRPTW), reference [7] proposed a parallelized algorithm based on a two-stage distributed disruption-reconstruction hybrid 
genetic algorithm. In Ref. [8], a method based on Radial Basis Function Network (RBFN) was suggested to solve the Multi-Objective 
Vehicle Routing Problem with Stochastic Demands (MO-VRPSD). Considering urban freight contexts and the emergence of “grey zone” 
customers between city centers and surrounding areas, reference [9] formulated a two-stage multi-objective vehicle dispatch method, 
offering valuable insights for sustainable urban logistics planning. 

In solving vehicle dispatch problems, existing research mainly falls into two categories: exact algorithms and heuristic algorithms. 
The former is commonly used for small-scale problems, while the latter excels in addressing large-scale and complex issues. Notable 
exact algorithms encompass branch and bound, linear programming, and dynamic programming methods. In Ref. [10], for the waste 
sorting transportation problem, a stabilized branch-and-price-and-cut algorithm based on an extended network is proposed. This 
approach simplifies the pricing subproblem through network extension and enhances convergence performance using stabilization 
techniques. Although such algorithms yield favorable results for small-scale logistics dispatch, their efficiency drastically diminishes as 
problem size grows. 

Heuristic algorithms include ant colony optimization [5,11], genetic algorithm [12–14], simulated annealing [15], and more. In 
Ref. [16], a tailored multi-objective hybrid metaheuristic algorithm is designed for the Factory-in-a-box manufacturing vehicle routing 
problem. This algorithm directly considers the specific attributes of the problem, rendering it well-suited for its modeled scenarios. In 
Ref. [17], a hybrid enhanced GSA-PSO scheme is proposed, merging gravitational search algorithm and particle swarm optimization 
(PSO) while introducing adaptive inertia vectors, learning factors, and chaotic initialization. This scheme is applied to optimize load 
dispatch in microgrids with electric vehicles. In Ref. [18], a novel agent-based metaheuristic architecture is introduced, treating each 
vehicle as an agent and using centralized agent cooperation for search control. 

Given the robustness and parallelism of heuristic algorithms, they exhibit superior optimization capabilities in solving large-scale 
complex problems. Thus, this study leverages the relatively novel Grey Wolf Optimization (GWO) algorithm for model optimization. 
Variations and improvements of GWO have emerged for its applications in diverse real-world scenarios. Reference [19] enhances GWO 
by addressing search agent positioning and boundary handling, particularly for intelligent grid planning. In Ref. [20], a 
multi-mechanism collaborative improved Grey Wolf Optimization algorithm is proposed. This introduces an evolutionary boundary 
constraint mechanism for handling individuals crossing boundaries. Gaussian mutation strategy and spiral function are incorporated 
for perturbation, while an improved sigmoid function acts as a nonlinear convergence factor, enhancing algorithm generality and 
robustness. 

1.3. Research motivation and objectives 

While a substantial body of research has focused on VRP and its variants, comprehensive solutions for the smart meter distribution 
scheduling problem remain limited. Particularly, addressing the complexities of multi-tiered distribution networks, heterogeneous 
vehicle types, diverse material categories, and time windows in the context of large-scale smart meter rotation poses a challenge, 
lacking a comprehensive optimization approach. 

In this context, this study centers around real-world scenarios of extensive smart meter rotation. It comprehensively addresses 

Z. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e26516

3

conditions within multi-tiered distribution networks, including constraints such as heterogeneous vehicle types and distribution costs. 
By incorporating vehicle, time, and transportation costs as optimization objectives, a multi-level optimization model is established for 
intelligent smart meter batch rotation vehicle scheduling, providing reference for related research. Moreover, considering the weak 
alignment between existing algorithmic models and the literature, coupled with limited global development capabilities of algorithms 
and a tendency to prematurely converge to local optima, this paper introduces an improved Grey Wolf Optimization algorithm. This 
algorithm not only establishes the mapping relationship between the algorithm and the model but also effectively breaks free from 
local optima, ultimately achieving an optimal distribution strategy for intelligent smart meter batch rotation within the power grid. 
Through these endeavors, the paper aims to present a novel and practically valuable solution, along with an effective optimization 
approach, for the intelligent smart meter batch rotation scheduling problem. 

2. Multi-stage scheduling model of smart meter batch rotation distribution vehicles 

2.1. Nomenclature  

Symbol Description Unit 

Constant 
dSi The distance between metering center S and power supply bureau i km 
dij The distance between power supply bureau i and power supply bureau j km 
dim The distance between power supply bureau i and power substation m km 
dmn The distance from power station m to power substation n km 
Vd The transport speed of model d km/h 
Fd The fixed cost of a single sortie for model d CNY 
Cd Unit distance transportation cost of model d CNY/h 
G Labor cost per unit time of transportation CNY/h 
WP Storage cost per unit time of turnover stack CNY/h 
GMP The quality of a single meter MP kg 
CP Labor delivery costs to reach a single site CNY 
Ld Maximum load limit for model d kg 
β1 Maximum number of containers stored  
β2 Maximum storage quantity of revolving stack  
I(m,MP) Consumption of electricity meter MP by power substation m  
S(m,MP) Meter MP inventory of power substation m before replenishment  
Q(m,MP) Demand for electricity meters MP in power substation m  
Set 
CS Vehicle set of metering center S  
Ci Vehicle set of power supply bureau i  
E Set of power supply bureaus  
U set of meter types  
Pi Set of power supply substations under the jurisdiction of power supply bureau i  
Variable 
QkS

(i,MP)
The number of vehicles kS distributed to the power supply Bureau i meter MP  

Qki
(m,MP)

The number of vehicles ki distributed to the power substation m meter MP  

0-1 variable 
qkS qks = 1 when vehicle kS is used and 0 otherwise  
qki qki = 1 when vehicle ki is used and 0 otherwise  
XkS

Si XkS
Si = 1 when the vehicle kS goes from the metering center S to the power supply bureau i, and 0 otherwise  

XkS
ij XkS

ij = 1 when the vehicle kS goes from power supply bureau i to power supply bureau j, and 0 otherwise  

Xki
im Xki

im = 1 when vehicle ki goes from power supply bureau i to power substation m, and 0 otherwise  
Xki

mn Xki
mn = 1 when the vehicle ki goes from power substation m to power substation n, and 0 otherwise   

2.2. Problem description 

Within a supply cycle T, each substation compiles the demand for smart meters in their responsible transformer area and reports it 
to the Power Supply Bureau. The Power Supply Bureaus then collectively report to their respective Metering Centers, forming a 
consolidated demand. This process ultimately facilitates batch smart meter rotation and distribution within the two-tier distribution 
network " Metering Center - > Power Supply Bureau - > Power Substation.” 

Fig. 1 shows the overall schematic diagram of intelligent warehouse of Provincial Metering Center. Assume that the provincial 
metering center S has N power supply Bureau in the responsible area. Denote the power supply bureau as E = {1,2,⋯, i, j,⋯,N}. Any 
power supply bureau i has Ni power substations Pi = {1,2,⋯,m,n,⋯,Ni}. For the first-level network, the distribution vehicle set of 
metering center S is CS = {1,2,⋯,kS,⋯,KS}. For the second-level distribution network, the distribution vehicle set of any power supply 
bureau i is Ci = {1,2,⋯,ki,⋯,Ki}, where the transport vehicle type set is: {1,2,⋯,d,⋯,D}. To obtain the optimal scheduling scheme for 
smart meter batch rotation distribution vehicles, improve the distribution efficiency of smart meters in provincial metering centers, 
and reduce the overall distribution cost, this paper constructs the following multi-level optimization model for smart meter batch 
rotation distribution vehicles scheduling. 
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2.3. Model assumptions  

1) Vehicles in each distribution network are responsible solely for completing tasks within their respective networks, returning to 
their originating metering centers or power supply bureaus upon task completion.  

2) Second-level distribution tasks can commence once first-level network tasks are finished.  
3) Loading and unloading times of transport vehicles are not considered.  
4) Cross-docking between transport vehicles is not accounted for.  
5) Distribution vehicles are subject to payload limits, and outsourced vehicles used should have a volume smaller than the vehicle 

capacity when fully loaded. 

2.4. Model building 

Consider splitting the overall two-tier distribution network “Metering Center -> Power Supply Bureau -> Power Substation” into 
two layers of distribution networks: the first layer is from the Metering Center to the Power Supply Bureau, and the second layer is from 
the Power Supply Bureau to the Substation. Furthermore, decompose the second-layer distribution network to obtain the distribution 
relationships between each Power Supply Bureau and Substation. The total cost of a distribution order includes fixed vehicle costs, 
time costs, and transport distribution costs. Introduce decision variables Q, q, and X as 0–1 variables to determine vehicle usage, the 
number of distributions, and distribution paths, respectively. Consequently, the various costs can be represented as follows:  

1. Fixed cost of vehicle delivery: 

The fixed cost of vehicle delivery is the fixed cost of each type of vehicle per unit trip in the two-level distribution network, as shown 
in Eq. (1). 

Cf =
∑

kS∈Cs

∑

i∈E

∑

ki∈Ci

(
Fd · qkS · qki

)
. (1)    

2. Time cost: 

The time cost, which includes the broad cost of labor such as driver driving and on-board operation, and the cost of turnover pallet 
storage per unit of time, is a cost that increases over time, as shown in Eqs (2) and (3). 

Ct1 =
∑

kS∈Cs

∑

i,j∈E
G
(
XkS

Si dSi
/

Vd +XkS
ij dij

/
Vd

)
+
∑

i∈E

∑

ki∈Ci

∑

m,n∈Pi

G
(
Xki

imdim
/

Vd +Xki
mndmn

/
Vd

)
, (2)  

Ct2 =
∑

i∈E

∑

m∈Pi

∑

MP∈U
WP

[
Q(m,MP) + S(m,MP) − I(m,MP)

β1β2

]

. (3) 

Fig. 1. Provincial metering center intelligent warehouse overall diagram.  
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3. Transportation and distribution costs: 

Considering that the distribution scheme should minimize the transportation and distribution distance and reduce the number of 
repeated arrivals at each station, the transportation and distribution cost includes the distribution cost per unit distance and the 
distribution cost required to reach each station, as shown in Eqs (4) and (5). 

Ctrans1 =
∑

kS∈CS

∑

i,j∈E
Cd

(
XkS

Si dSi +XkS
ij dij

)
+
∑

i∈E

∑

ki∈Ci

∑

m,n∈Pi

Cd
(
Xki

imdim +Xki
mndmn

)
, (4)  

Ctrans2 =
∑

kS∈CS

∑

i,j∈E
CP

(
XkS

Si +XkS
ij
)
+
∑

i∈E

∑

ki∈Ci

∑

m,n∈Pi

CP
(
Xki

im +Xki
mn

)
. (5) 

Thus, the objective function of the multi-level optimization model of distribution vehicle scheduling is shown in Eq. (6). 

min Z =Cf + Ct1 + Ct2 + Ctrans1 + Ctrans2. (6)  

2.5. Constraints analysis 

Considering the cargo limitations of each type of delivery vehicle, there are constraints as shown in Eqs. (7) and (8). 

QkS
(i,MP)

GMP ≤ Ld(i∈E, kS ∈CS), (7)  

Qki
(m,MP)

GMP ≤ Ld(i∈E,m∈Pi, ki ∈Ci). (8) 

To ensure that each vehicle returns to the metering center or power supply bureau after completing the distribution task, each 
vehicle must leave after arriving at a station, thus the constraints shown in Eqs. (9)–(12). 

∑

kS∈CS

qkS =
∑

kS∈CS

∑

i∈E
XkS

iS , (9)  

∑

i∈E

∑

ki∈Ci

∑

m∈Pi

Xki
im =

∑

i∈E

∑

ki∈Ci

∑

m∈Pi

Xki
ni , (10)  

∑

i∈E

∑

kS∈CS

XkS
ij =

∑

j∈E

∑

kS∈CS

XkS
ij , (11)  

∑

i∈E

∑

ki∈Ci

∑

m∈Pi

Xki
mn =

∑

i∈E

∑

ki∈Ci

∑

n∈Pi

Xki
mn. (12) 

To prevent drivers from exerting themselves excessively, each vehicle should have a maximum delivery distance limit, as shown in 
Eqs (13) and (14). 

∑

i,j∈E

(
XkS

Si dSi +XkS
ij dij

)
≤ dist(kS ∈CS), (13)  

∑

m,n∈Pi

(
Xki

imdim +Xki
mndmn

)
≤ dist(i∈E, ki ∈Ci). (14) 

Considering the demand continuity constraints of the power supply bureau and the power substation, Eqs. (15) and (16) are 
obtained. 

Q(m,MP)=
∑

ki∈Ci

Qki
(m,MP)

(m∈Pi), (15)  

Q(i,MP)=
∑

kS∈CS

QkS
(i,MP)

(i∈E), (16) 

To eliminate possible subloops in the two-level network during the scheduling process, assume that EkS = {1,2,⋯,NkS} represents 
the set of power supply bureau responsible for vehicle kS, and Eki = {1,2,⋯,Nki} represents the set of power substations responsible for 
vehicle ki, there are constraints shown in Eqs. (17) and (18). 

⎧
⎨

⎩

∑

i,j∈E
XkS

ij ≤ |EkS | − 1

2 ≤ |EkS | ≤ NkS − 1
, (kS ∈CS), (17)  
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⎧
⎨

⎩

∑

m,n∈Pi

Xki
mn ≤ |Eki | − 1

2 ≤ |Eki | ≤ Nki − 1
, (ki ∈Ci). (18)  

3. An improved grey wolf optimizer 

3.1. Grey wolf optimizer 

The Grey Wolf Optimizer (GWO) is a novel swarm intelligence optimization algorithm introduced by Mirjalili et al. in 2014, 
simulating the hierarchical structure and hunting behavior of grey wolf packs [21]. It offers advantages such as strong local search 
capability, fast convergence speed, and minimal control parameters. In the algorithm, the grey wolf population is divided into four 
hierarchical levels: α-wolf, β-wolf, δ-wolf, and ω-wolf, shown in Fig. 2. The hunting process involves encircling, chasing, and attacking, 
with the ω-wolf’s updates guided by the leadership of the first three levels. 

Assuming in a D-dimensional search space, the position vector of each grey wolf individual in the pack is represented as X = (X1,X2,

⋯,XD), the iterative formula for the wolf pack’s encircling prey behavior can be expressed by Eqs. (19) and (20). 

D= |C ·XP(t) − X(t)|, (19)  

X(t+ 1)=XP(t) − A ·D, (20)  

where t denotes current iteration, D is the distance between individual and prey, and XP is the prey position vector. A and C are co
efficient vectors, obtained from Eqs. (21) and (22). 

A= 2ar1 − a, (21)  

C= 2r2, (22)  

where A is the convergence factor and linearly decreases from 2 to 0 with the number of iterations, r1 and r2 are random numbers 
between (0,1). 

After the wolf pack encircles the prey, it begins to hunt under the leadership of three wolves. The iterative formula of the wolf pack 
hunting prey can be expressed by Eqs. (23)–(25). 

⎧
⎨

⎩

Dα = |C1 ·Xα − X|
Dβ =

⃒
⃒C2 ·Xβ − X

⃒
⃒

Dδ = |C3 ·Xδ − X|
, (23)  

⎧
⎨

⎩

X1 = Xα − A1 ·Dα
X2 = Xβ − A2 ·Dβ
X3 = Xδ − A3 ·Dδ

, (24)  

X(t+ 1)=
X1 + X2 + X3

3
. (25)  

where Xα,Xβ, and Xδ represent the current position vectors of the wolves, Dα, Dβ, and Dδ, the distances between the other wolves and 
the three wolves, and X(t+1) the updated position vector for other wolves. When |A| > 1, the wolves are forcedly separated from their 
prey, then scattered in various areas in search of a prey, to find the global optimal solution. When |A| < 1, the wolves attack towards 
their prey, by searching locally around the promising region. 

Fig. 2. Schematic diagram of the grey wolf algorithm hierarchy.  
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3.2. Improved grey wolf optimizer 

While GWO exhibits good local optimization capability, the fact that the position updates of the wolf pack are determined by the 
three leader alpha, beta, and delta wolves leads to each individual converging towards the region of these leading wolves, resulting in 
weak global exploration ability and a susceptibility to premature convergence to local optima. Furthermore, due to the random 
generation of the initial population, the issue of uneven initial population distribution can arise. 

This paper proposes improvements to GWO in terms of initial population and update strategy, resulting in an enhanced Grey Wolf 
Optimization algorithm (OLC-GWO) based on Opposition-based Learning, Levy flight strategy, and Cauchy mutation. Initially, high- 
quality initial wolf population is generated using Opposition-based Learning to enhance algorithm convergence. Furthermore, a hi
erarchical perturbation mechanism is designed, employing distinct update strategies for different rank wolves: Cauchy mutation for 
elite individuals (alpha, beta, and delta wolves) and Levy flight strategy for weaker individuals (omega wolf), preserving the optimal 
solutions. Through this mechanism, the algorithm’s global optimization capability is significantly enhanced, enabling rapid escape 
from local optima without compromising stability of optimal solutions. 

3.2.1. Opposition-based learning 
The population generated solely through random strategy lacks fitness estimation and exhibits uneven distribution, resulting in 

inferior solution quality and convergence speed. This paper utilizes Opposition-based Learning to enhance the population initialization 
strategy of GWO [22], aiming to elevate the quality of initial solutions for accelerated convergence and improved global optimization 
capability, as depicted in Fig. 3. 

If the feasible solution in j-th dimension of the i-th grey wolf in population P is xij, the generation of the reverse population is given 
by Eq. (26): 

x′
ij = ρ

(
xj

min + xj
max − xij

)
. (26)  

where ρ is the inverse factor, while xj
max and xj

min are respectively the maximum and minimum values of feasible solutions in the j-th 
dimension. 

Therefore, the initialization steps of opposition-based learning population are as follows:  

(1) Generate the initial population through a random strategy.  
(2) Generate an opposition population based on the initial population.  
(3) Sequentially select corresponding individuals from both populations, calculate their fitness, and utilize a greedy strategy to 

choose the higher fitness individual to be placed in the initial population.  
(4) Sequentially compare all individuals to obtain a higher-quality initial population for algorithm utilization. 

3.2.2. Levy flight strategy 
To address the issue of premature convergence in GWO, an improvement is made to the update strategy by introducing the Levy 

flight strategy [23]. The Levy flight refers to a random walk with a heavy-tailed distribution for step lengths. This phenomenon is 
common in the natural world where organisms search for food in unknown environments. It exhibits characteristics of frequent 
short-distance searches and occasional long-distance searches, effectively expanding the algorithm’s search range and enhancing local 
optimization. With the incorporation of the Levy strategy, the update formula for the ω wolf is presented in Eqs. (27)–(30). 

Fig. 3. Schematic diagram of population initialization based on opposition-based learning.  
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X(t + 1)new =

⎧
⎪⎪⎨

⎪⎪⎩

1
3
×
(
Xα − A1 ·Dα + Xβ − A2 ·Dβ + Xδ − A3 ·Dδ

)
+ θ ⊕ Levy(β), |A| ≥ 0.5

1
3
×
(
Xα − A1 ·Dα + Xβ − A2 ·Dβ + Xδ − A3 ·Dδ

)
, |A| < 0.5

, (27)  

where β is a random number between 0 and 2, 

θ ⊕ Levy(β) ∼ 0.01
u

|v|− β (X(t) − Xα(t)), (28)  

u ∼ N
(
0, σ2

u

)
, v ∼ N

(
0, σ2

v

)
, (29)  

σu =

⎡

⎢
⎣

Γ(1 + β)sin
(

πβ
2

)

Γ
(

1+β
2

)

β × 2
β− 1

2

⎤

⎥
⎦

1
β

, σv = 1, (30) 

Fig. 4. Schematic diagram of individual coding of the grey wolf.  

Fig. 5. General flow chart of the improved grey wolf algorithm.  
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In addition, the decision of whether to keep the updated individuals is then based on the greedy strategy as well as the random 
number rnew, as shown in Eq. (31). 

X(t+ 1)=
{

X(t), f (Xnew(t)) > f (X(t)) and rnew < p
Xnew(t), otherwise . (31)  

where both rnew and p are random numbers between [0,1]. 

3.2.3. Cauchy mutation 
When the alpha wolf falls into a local optimum, other individuals also tend to converge towards the alpha wolf’s region, potentially 

preventing the algorithm from achieving the global optimal solution. To further address these issues, this paper introduces the Cauchy 
mutation operator based on the genetic algorithm’s mutation concept to enhance population diversity [24]. This addition assists the 
population in swiftly escaping local optima. During the later iterations of the algorithm, specifically when the iteration count “t” 
reaches half of the maximum iteration count Tmax iter, a determination is made to identify if the algorithm is trapped in a local optimum. 
The mechanism for detecting whether the algorithm is trapped in a local optimum is shown in Eq. (32), where we define that if the 
global optimum fitness remains unchanged for five consecutive generations, the algorithm is deemed to be stuck in a local optimum. 

{
Local optimal solution , if f (X(t)) = f (X(t − 1)) = ⋯ = f (X(t − 4))

Continue , else . (32) 

When the determination algorithm falls into a local optimum, as shown in Eqs. (33) and (34), the three head wolves, i.e., α, β, and δ 
wolves, are mutated by the Cauchy operator. 

Xα(t+ 1)=Xα(t) + Xα(t) × Cauchy(0, 1), (33)  

Cauchy(0, 1)= tan((rand − 0.5)× π). (34) 

Finally, the fitness of the updated individuals is compared with their previous fitness, and the superior ones are retained as in
dividuals in the new generation of the population. 

3.2.4. Algorithm coding 
To ensure the algorithm’s solution satisfies the numerous constraints in the established model, during the algorithm’s update 

process, model constraint validation is based on the mapping relationship between vehicle ID, vehicle type, and orders. Throughout the 
distribution, all carrier orders must be fulfilled by vehicles to meet the demands of power bureaus/substations. Each vehicle’s load is 
determined based on the orders it carries; if it violates the load limit, order-vehicle reallocation is performed. The individual’s 
encoding and decoding process is depicted in Fig. 4. To maintain sub-routes between vehicle distribution networks and establish sub- 
circuits, after obtaining distribution paths based on the order-receiving point mapping, departure points are added to the distribution 
paths to satisfy sub-circuit constraints. 

Based on this, using the obtained vehicle distribution paths, the distance of vehicle delivery paths can be calculated. If it doesn’t 

Table 1 
Benchmarking mathematical functions.  

Type of function Functions Dimension Range of Functions Theoretical minimum 
value 

Unimodal benchmark functions f1(x) =
∑n

i=1x2
i 30 [− 100,100] 0 

f2(x) =
∑n

i=1 |xi| +
∏n

i=1
|xi|

30 [− 10,10] 0 

f3(x) =
∑n− 1

i=1 [100(xi+1 − xi)
2
+ (xi − 1)2 ] 30 [− 30,30] 0 

f4(x) =
∑n

i=1([xi + 0.5])2 30 [− 100,100] 0 

f5(x) =
∑n

i=1 ix4
i + random[0,1) 30 [− 1.28,1.28] 0 

Multimodal benchmark functions f6(x) =
∑n

i=1 − xi sin(
̅̅̅̅̅̅̅
|xi|

√
) 30 [− 500,500] − 418.9829*dim 

f7(x) =
∑n

i=1 [x2
i − 10 cos(2πxi) + 10] 30 [− 5.12,5.12] 0 

f8(x) =
1

4000
∑n

i=1
x2

i −
∏n

i=1
cos

(
xi
̅̅
i

√

)

+ 1 
30 [− 600,600] 0 

Fixed-dimension multimodal benchmark 
functions 

f9(x) =

⎡

⎢
⎢
⎢
⎣

1
500

+
∑25

j=1
1

j +
∑2

i=1(xi − aij)
6

⎤

⎥
⎥
⎥
⎦

− 1 2 [− 65.536,65.536] 1 

f10(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 +

4x4
2 

2 [− 5,5] − 1.0316285 

f11(x) = −
∑4

i=1ci exp[ −
∑3

j=1aij(xj − pij)
2
] 3 [1,3] − 3.86 

f12(x) = −
∑5

i=1 [(x − ai)(x − ai)
T
+ ci]

− 1  4 [0,10] − 10.1531  
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comply with the vehicle path constraint, orders are reassigned to vehicles to satisfy vehicle performance constraints. Finally, to address 
maximum service level and maximum storage capacity constraints, thresholds are set for metering center to power supply bureau 
judgment. 

For the choice of algorithm termination conditions, common options in existing optimization algorithms include maximum fitness 
evaluation and maximum iteration count. The relationship can be expressed as the evaluation count = population size * iteration 
count, where the maximum fitness evaluation is suitable for situations where the population size is not fixed and changes with the 
increase of iteration count. For the designed OLC-GWO in this paper, high-quality initial feasible solutions are obtained through the 
introduction of Opposition-based Learning. However, since the population size remains constant throughout the algorithm’s iteration 
process, the effects of the two termination conditions are equivalent. As a result, in the simulation process, this paper still uses the more 
commonly used maximum iteration count as the algorithm’s termination condition. 

3.2.5. Algorithm pseudocode  

Pseudocode of the OLC-GWO  

%%%%%%%%%% Initialize population and parameters %%%%%%%%%%  
% Aparameters are structured parameters of the algorithm  
% Initialize the population based on the opposition-based learning strategy, 
% and calculate the individual fitness 

1 X = Oppositional (Aparameters); 
2 for i = 1:NP 
3 orderInfo = getOrder(X(i,:)); 
4 pathInfo = getPath(X(i,:)); 
5 fit(i) = fitness(X(i,:),orderInfo(i,:),pathInfo(i,:)); 
6 Endfor 
7 Initialize parameters a, A, C 
8 Record the first three individuals with the best fitness as the head wolf  

%%%%%%%%%%%%% Start iterative optimization %%%%%%%%%%%% 
9 while l < Max_iter 
10 for i = 1:size(X, 1) 
11 Updated wolf pack position based on GWO; 
12 Update ω wolf location based on Levy flight mechanic; 
14 Update α, β and δ wolf location based on Cauchy mutation; 
15 Update parameters a, A, C; 
16 Calculate individual fitness and update the head wolf; 
17 endif 
18 for j = 1:D 
19 Boundary condition treatment; 
20 endfor 
21 orderInfo = getOrder(x(i,:)); 
22 pathInfo = getPath(x(i,:)); 
23 fit(i) = fitness(X(i,:),orderInfo(i,:),pathInfo(i,:)); 
24 endfor  

%%%%%%%%%%%%%%%% Algorithm ends %%%%%%%%%%%%%%% 
25 Output  

3.2.6. Algorithm flowchart 
The overall flow chart of the algorithm is shown in Fig. 5. 

4. Benchmark function test 

In this paper, MATLAB R2022a is utilized as a programming tool for function testing of the algorithm as well as simulation solution 
of the model. The simulations were run on a computer with Win11 operating system, 16 GB RAM, AMD Ryzen 7 5800U CPU and 
NVIDIA GeForce RTX 3050 Laptop GPU. To demonstrate the superior optimization capability of the designed OLC-GWO compared to 
other state-of-the-art optimization algorithms, it is compared against traditional GWO, PSO, Harris Hawk Optimization (HHO), Honey 
Bee Algorithm (HBA), and Multi-Verse Optimizer (MVO) through benchmark function testing and simulation experiments. 

Furthermore, in other relevant literature, various variants and improvements of GWO can be observed. In this study, we compare 
our algorithm with the advanced Grey Wolf Optimization Algorithm (AGWO) proposed by Ahmadi et al. [19] to demonstrate the 
effectiveness and practical value of the modifications made to GWO in this paper. 

The parameters of each comparison algorithm are set as follows: in OLC-GWO the reverse learning factor ρ = 1; in AGWO the 
parameters are the same as in the original paper; in PSO the learning factor c1 = c2 = 1.5, the upper speed limit Vmax = 10 and the 
lower limit Vmin = − 10; in HBA the ability to get food beta = 6 and the constant C = 2; in MVO the upper and lower bounds on the WEP 
probability of the existence of wormholes are 1 and 0.2, respectively. 

The selected Benchmarking mathematical functions for testing are as presented in Table 1. These include Unimodal benchmark 
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functions, Multimodal benchmark functions, and Fixed-dimension multimodal benchmark functions, each depicted graphically in 
Fig. 6. To ensure a more illustrative comparison of results due to varying search difficulty and convergence speed among different 
functions, this experiment employs diverse settings for the maximum iteration count Tmax_iter for each test function. Ensuring fairness, 
all algorithms run with equal maximum iteration counts on the same function, with a population size N of 100. Each algorithm is 
independently executed 10 times on each test function set, and their average iteration curves are demonstrated in Fig. 7, while their 
average performance metrics are summarized in Table 2. 

From a qualitative perspective, as observed from the average iteration curves in Fig. 7, OLC-GWO demonstrates a faster conver
gence rate. It exhibits strong convergence capability both in the early and later stages of iteration. The optimal fitness of the population 
decreases with an increase in iteration count, and the oscillation amplitude inversely diminishes as iterations progress. In other words, 

Fig. 6. The function image of each benchmark test function used. 
(f1(x) – f12(x) in the graph correspond to each function in Table 1, respectively.). 
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throughout the optimization process, the algorithm transitions from a broad global search to a more refined local search, leading to a 
gradual flattening of the curve. 

From a quantitative analysis perspective, as evident from the 12 sets of test results in Table 2, the algorithm designed in this study 

Fig. 7. Average iteration curve of OLC-GWO on each test function. 
(f1(x) – f12(x) in the graph correspond to each function in Table 1, respectively.). 
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consistently achieves the best performance across most test functions. This demonstrates that OLC-GWO excels in various optimization 
problems. Particularly, when solving Fixed-dimension multimodal benchmark functions, OLC-GWO displays enhanced competitive
ness compared to other similar algorithms, indicating its greater advantage in solving the large-scale scheduling model proposed in this 
paper. 

5. Simulation analysis 

This paper conducts a case study on the centralized distribution of electricity meters by a provincial metrology center. An optimal 
scheduling scheme for meter rotation and distribution is solved using a sample of electricity meter orders from a specific time period. 
Initially, each power substation reports the electricity meter demands to their respective power supply bureau on schedule. These 
power supply bureaus then consolidate their needs along with the demands of their subordinate substations and report to the metering 
center. Finally, the metering center conducts unified distribution. The distance matrix for the provincial metering center-power supply 
bureau-power substation is presented in Table 3. The hierarchical relationship between power supply bureaus and power substations is 
illustrated in Fig. 8. The demand for orders from power supply bureaus to substations is shown in Table 4. 

The types of electricity meters and related parameters are shown in Table 5, and the parameters of outsourced vehicles are shown in 
Table 6. 

The parameters of each algorithm are set as above. Set the model parameters as follows: labor distribution cost to reach a single site 
Cp = 20(CNY), labor cost per unit time of a vehicle transport G = 50(CNY). 

Each algorithm was executed 50 times. The comparative evolution iteration curves of average fitness for each algorithm across 
different hierarchical distribution networks are shown in Figs. 9–12. The obtained optimized scheduling schemes are presented in 
Table 7. The average fitness values for each hierarchical distribution network are provided in Table 8. 

As observed from Figs. 9–12, after incorporating improvements like Opposition-based Learning and Levy flight, OLC-GWO 

Table 2 
Average objective function value for each algorithm.  

Function f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

T_iter 1000 1000 1000 1000 1000 1000 

OLC-GWO 0 1.5031e-172 1.9567e-07 2.6677e-12 1.475e-05 − 6.74046e+30 
AGWO 8.6325e-86 1.0249e-106 0.015719 6.0534e-06 0.00024356 ¡2.44080 þ 129 
GWO 2.9832e-11 3.4035e-49 0.20215 0.10049 0.0026012 − 5988.2667 
PSO 1.6569 7.1542 954.2735 1.868 0.1443 − 7347.4405 
HHO 2.5832e-207 5.4707e-07 0.11274 1.1148e-06 0.0031096 − 12569.4767 
HBA 1.4314e-67 2.3810e-33 18.5178 0.0056124 5.8801e-05 − 10048.429 
MVO 0.09203 0.21264 109.6747 0.099237 0.0058303 − 7768.8798 

Function f7(x) f8(x) f9(x) f10(x) f11(x) f12(x)
T_iter 1000 200 500 20 1000 1000 

OLC-GWO 0 0 0.998 − 1.0316 ¡1.89950 ¡10.1530 
AGWO 0 0.0023481 0.998 − 1.0316 − 1.60040 − 9.6433 
GWO 0 0.051423 3.165 − 1.0316 − 0.30048 − 9.1381 
PSO 55.2827 0.29596 1.2958 − 1.0297 − 0.24445 − 6.1448 
HHO 0 0 1.0974 − 1.0316 − 0.30048 − 5.5650 
HBA 0 0.011803 0.998 − 1.0316 − 0.30048 − 7.8964 
MVO 92.1794 1.0054 0.998 − 1.0315 − 0.30048 − 7.8806  

Table 3 
Distance matrix for each node.  

Position two Position one 

Yunnan Power Grid 
Corporation Metering Center 

Yunnan Power Grid Dali 
Power Supply Bureau 

… Jianchuan Power 
Supply Bureau 

… Shuifu City Power 
Supply Bureau 

China Southern Power Grid Qujing 
Power Supply Bureau 

142 447 … 480 … 514 

Yunnan Power Grid Corporation 
Kylin Power Supply Bureau 

153 457 … 489 … 516 

… … … … … … … 
China Southern Power Grid 

Xuanwei Power Supply Branch 
236 544 … 576 … 422 

Zhaotong Power Supply Bureau 346 655 … 689 … 220 
… … … … … … … 
Zhaotong Ludian County Power 

Supply Bureau 
331 640 … 672 … 252 

Yanjin County Power Supply 
Company 

487 795 … 828 … 116  
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demonstrates superior optimization capability and convergence speed compared to traditional GWO and similar optimization algo
rithms. It maintains excellent convergence performance throughout the entire search process. As evident from Table 8, in the first-tier 
distribution from the central measurement center, OLC-GWO’s average fitness value is reduced by 15.36%, 12.72%, 14.70%, 17.74%, 
and 17.93% compared to GWO, PSO, HHO, HBA, and MVO, respectively. In the second-tier distribution to substations, it is reduced by 
11.32%, 7.88%, 10.03%, 7.75%, and 24.43%. This indicates the superior solution quality of the proposed algorithm over the 

Fig. 8. The affiliations of metering center - power supply bureau -power supply substation in the simulation experiment.  

Table 4 
Demand orders from power supply bureaus/substations.  

Metrology Center Dali Power Supply Bureau Midu Power Supply Bureau … Luliang Power Supply Bureau 

type quantity type quantity type quantity … type quantity 

… … … … … … … … … 
3 50 1 44 1 50 … 3 38 
3 50 2 50 1 44 … 4 40 
3 39 2 46 2 50 … 4 40 
4 40 3 50 2 46 … 4 14 
4 40 3 38 3 50 … 1 50 
4 40 4 40 3 38 … 1 41 
4 23 4 40 4 40 … 2 50 
1 43 4 14 4 40 … 2 31 
2 39 1 50 4 14 … 3 50 
3 34 1 41 1 50 … 3 30 
4 37 2 50 1 41 … 4 40 
1 32 2 31 2 50 … 4 40 
2 43 3 50 2 31 … 4 13 
3 37 3 30 3 50 … 1 50 
4 32 4 40 3 30 … 1 48 
… … … … … … … … …  
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Table 5 
Types and specifications of smart meters.  

Mp Type Turnover box specifications β1 Dimensions (L × W × H) Weight Turnover Pallet Specifications β2 

M1 Single-phase energy meter 12/box 720 × 450 × 120(mm) 18 kg/box 5 boxes/stack 
M2 Three-phase energy meter 4/box 
M3 Metering automation terminal 4/box 
M4 Low voltage transformer 12/box 720 × 450 × 200(mm) 45 kg/box 2 boxes/stack  

Table 6 
Outsourced vehicle information parameter table.  

Vehicle model Volume (m3) Load limit (t) The average daily mileage of the vehicle (km) Quantity Price per kilometer [CNY/(Ton • km)] 

1 15 2 725 55 0.25 
2 15 4 668 50 0.28 
3 25 5 648 55 0.30  

Fig. 9. The evolution curve of each algorithm in the first-level distribution network.  

Fig. 10. The evolution curve of each algorithm in the distribution network of each power supply bureau at the second level. 
(a: Power supply bureau 1; b: Power supply bureau 2). 
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comparative methods, highlighting its strong applicability to solving large-scale logistics scheduling optimization problems. 
In summary, the improved algorithm proposed in this paper outperforms other algorithms in terms of optimization capability and 

convergence speed. It maintains superior fitness values and convergence ability throughout the search process in various levels of 
scheduling networks, thanks to the Opposition-based Learning mechanism. This mechanism enhances the even distribution of in
dividuals in the initial population, effectively improving the algorithm’s solving efficiency. Meanwhile, the Levy flight mechanism and 
Cauchy mutation mechanism enable OLC-GWO to swiftly escape local optima without losing the optimal solution, enhancing the 
algorithm’s precision in solving. 

6. Conclusions 

This paper investigates the vehicle scheduling problem for large-scale smart meter rotation, addressing vehicle cost, time cost, and 
transportation distribution cost by establishing a multi-level optimization model for distribution vehicle scheduling. An improved Grey 
Wolf algorithm is proposed using Opposition-based Learning, Levy flight strategy, and Cauchy mutation for solution. Opposition-based 
Learning enhances population diversity and obtains high-quality initial feasible solutions. The incorporation of Levy flight strategy and 
Cauchy mutation broadens the algorithm’s optimization scope and global optimization capability. Feasibility is verified through early- 

Fig. 11. The evolution curve of each algorithm in the distribution network of each power supply bureau at the second level. 
(a: Power supply bureau 3; b: Power supply bureau 4). 

Fig. 12. The evolution curve of each algorithm in the distribution network of each power supply bureau at the second level. 
(a: Power supply bureau 5; b: Power supply bureau 6). 
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stage work using Benchmarking mathematical functions, and simulation experiments compare it with other state-of-the-art swarm 
intelligence algorithms, demonstrating the feasibility and practicality of the proposed model and algorithm in the field of smart grid 
logistics scheduling. In conclusion, the main contributions of this paper are as follows:  

● Constructs a multi-level distribution network scheduling model for large-scale smart meter batch rotation scenarios, accounting for 
multidimensional constraints in real-world meter distribution contexts, providing practicality and generalizability.  

● Introduces an improved Grey Wolf algorithm for solving the model, exhibiting greater competitiveness compared to similar 
algorithms.  

● Employs simulation parameters and data derived from actual distribution business data in engineering projects, ensuring the 
experiment’s authenticity and the practicality of the solution results. 

The conclusions drawn from our study, although noteworthy, do come with certain limitations. It is acknowledged that the model 
we have developed may not comprehensively encompass the multidimensional constraints that arise in real-world distribution sce
narios. Additionally, it might struggle to dynamically adapt to the uncertainties encountered during the actual scheduling processes. 
Despite these constraints, the significance and potential for broader application of our work in the realm of logistics and scheduling 
cannot be ignored. Our study offers valuable insights and serves as a solid foundation for future research endeavors in this domain. 

In subsequent investigations, there is room for enhancing and expanding the model’s structure to augment its practical applicability 
in real-world scenarios. Moreover, the model’s generalizability could be extended to encompass a wider array of practical engineering 
projects across various domains. By addressing these limitations and pursuing these avenues for improvement, our work’s practical 
value can be further elevated. 

Table 7 
Vehicle scheduling results at all levels.  

Order The specific route Transport 
models  

First level distribution  

1 Metering Center—Xiangyun Power Supply Bureau-Heqing Power Supply Bureau-Yangbi Power Supply Bureau-Measuring Center 1 
2 Metering Center-Dali Power Supply Bureau-Yangbi Power Supply Bureau-Jianchuan Power Supply Bureau-Heqing Power Supply 

Bureau-Measuring Center 
1 

3 Metering Center-Dali Power Supply Bureau-Weishan Power Supply Bureau-Maidu Power Supply Bureau-Yunlong Power Supply 
Bureau-Metering Center 

1 

4 Metering Center-Yongping Power Supply Bureau-Qujing Power Supply Bureau-Qujing Luoping Power Supply Bureau-Metering 
Center 

2 

5 Metering Center-Weishan Power Supply Bureau-Xiangyun Power Supply Bureau-Nanjian Power Supply Bureau-Measuring Center 2 
6 Measurement Center-Qujing Power Supply Bureau-Qilin Power Supply Bureau-Weishan Power Supply Bureau-Malong Power Supply 

Bureau-Measurement Center 
3 

7 Metering Center-Jianchuan Power Supply Bureau-Weishan Power Supply Bureau-Xiangyun Power Supply Bureau-Metering Center 3 
… … …  

Second level distribution  
1 Dali Power Supply Bureau-Dali Yinqiao Power Supply Office-Maidu Yicheng Power Supply Office-Dali Power Supply Bureau 1 
2 Weishan Power Supply Bureau-Weishan Dacang Power Supply Office-Nanjian Power Supply Bureau-Weishan Power Supply Bureau 1 
3 Luliang Power Supply Bureau - Luliang Power Supply Bureau Distribution Management No.2 - Luliang Power Supply Bureau 

Distribution Management Office - Luliang Power Supply Bureau 
2 

4 Jianchuan Power Supply Bureau-Jianchuan Power Supply Bureau Distribution Management No.2-Jianchuan Power Supply Bureau 2 
5 Heqing Power Supply Bureau - Heqing Jindun Power Supply Office - Heqing Power Supply Bureau 3 
… … …  

Table 8 
Fitness comparison of each algorithm.  

Index Algorithm 

OLC-GWO GWO PSO HHO HBA MVO 

The first-layer distribution network: the average objective function value of the metering center-power supply bureau 
Average fitness (105) 3.2790 3.8742 3.7568 3.8442 3.9859 3.9954 

The second-layer distribution network: the average objective function value of each power supply bureau- power substation 
Average fitness I (104) 0.9894 1.3386 1.2310 1.2967 1.0159 1.5385 
Average fitness II (103) 4.0834 4.5274 4.2889 4.3858 4.5682 5.5379 
Average fitness III (103) 2.1940 2.2574 2.3610 2.2324 2.3126 2.5667 
Average fitness IV (103) 2.1024 2.2816 2.2735 2.2816 2.5145 2.8090 
Average fitness V (103) 2.6920 2.8832 2.9277 3.0029 2.7355 3.3590 
Average fitness VI (103) 3.9302 4.6089 3.9385 4.3506 4.3754 5.2479  
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