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Abstract

Determining how synaptic coupling within and between regions is modulated during sensory

processing is an important topic in neuroscience. Electrophysiological recordings provide

detailed information about neural spiking but have traditionally been confined to a particular

region or layer of cortex. Here we develop new theoretical methods to study interactions

between and within two brain regions, based on experimental measurements of spiking

activity simultaneously recorded from the two regions. By systematically comparing experi-

mentally-obtained spiking statistics to (efficiently computed) model spike rate statistics, we

identify regions in model parameter space that are consistent with the experimental data.

We apply our new technique to dual micro-electrode array in vivo recordings from two dis-

tinct regions: olfactory bulb (OB) and anterior piriform cortex (PC). Our analysis predicts

that: i) inhibition within the afferent region (OB) has to be weaker than the inhibition within

PC, ii) excitation from PC to OB is generally stronger than excitation from OB to PC, iii) exci-

tation from PC to OB and inhibition within PC have to both be relatively strong compared to

presynaptic inputs from OB. These predictions are validated in a spiking neural network

model of the OB–PC pathway that satisfies the many constraints from our experimental

data. We find when the derived relationships are violated, the spiking statistics no longer sat-

isfy the constraints from the data. In principle this modeling framework can be adapted to

other systems and be used to investigate relationships between other neural attributes

besides network connection strengths. Thus, this work can serve as a guide to further inves-

tigations into the relationships of various neural attributes within and across different regions

during sensory processing.

Author summary

Sensory processing is known to span multiple regions of the nervous system. However,

electrophysiological recordings during sensory processing have traditionally been limited

to a single region or brain layer. With recent advances in experimental techniques,
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recorded spiking activity from multiple regions simultaneously is feasible. However, other

important quantities— such as inter-region connection strengths—cannot yet be mea-

sured. Here, we develop new theoretical tools to leverage data obtained by recording from

two different brain regions simultaneously. We address the following questions: what are

the crucial neural network attributes that enable sensory processing across different

regions, and how are these attributes related to one another? With a novel theoretical

framework to efficiently calculate spiking statistics, we can characterize a high dimen-

sional parameter space that satisfies data constraints. We apply our results to the olfactory

system to make specific predictions about effective network connectivity. Our framework

relies on incorporating relatively easy-to-measure quantities to predict hard-to-measure

interactions across multiple brain regions. Because this work is adaptable to other systems,

we anticipate it will be a valuable tool for analysis of other larger scale brain recordings.

Introduction

As experimental tools advance, measuring whole-brain dynamics with single-neuron resolu-

tion becomes closer to reality [1–4]. However, a task that remains technically elusive is to mea-

sure the interactions within and across brain regions that govern such system-wide dynamics.

Here we develop a theoretical approach to elucidate such interactions based on easily-recorded

properties such as mean and (co-)variance of firing rates, when they can be measured in multi-

ple regions and in multiple activity states. Although previous theoretical studies have

addressed how spiking statistics depend on various mechanisms [5–8], these studies have typi-

cally been limited to a single region, leaving open the challenge of how inter-regional interac-

tions impact the system dynamics, and ultimately the coding of sensory signals [9–13].

As a test case for our new theoretical tools, we studied interactions in the olfactory system.

We used two micro-electrode arrays to simultaneously record from olfactory bulb (OB) and

anterior piriform cortex (PC). Constrained by these experimental data, we developed compu-

tational models and theory to investigate interactions within and between OB and PC. The

modeling framework includes two distinct regions: a network that receives direct sensory sti-

muli (here, the OB), and a second neural network (PC) that is reciprocally coupled to the affer-

ent region. Each region contains multiple individual populations, each of which is modeled

with a firing rate model [14]; thus even this minimal model involves several coupled stochastic

differential equations (here, six) and has a large-dimensional parameter space. Analysis of this

system would be unwieldy in general; we address this by developing a novel method to com-

pute firing statistics that is computationally efficient, captures the results of Monte Carlo simu-

lations, and can provide analytic insight.

Thorough analysis of experimental data in both the spontaneous and stimulus-evoked

states leads to a number of constraints on first- and second-order spiking statistics— many of

which could not be observed using data from just one micro-electrode array. In particular, we

find twelve (12) constraints that are consistent across different odorant stimuli. We use our

theory and modeling to study an important subset of neural attributes (synaptic strengths) and

investigate what relationships, if any, must be satisfied in order to robustly capture the many

constraints observed in the data. We find that: i) inhibition within OB has to be weaker than

the inhibition in PC, ii) excitation from PC to OB is generally stronger than excitation from

OB to PC, iii) excitation from PC to OB and inhibition within PC have to both be relatively

strong compared to inputs originating in OB (inhibition within OB and excitation from OB to

PC). We validate these guiding principles in a large spiking neural network (leaky integrate-
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and-fire, or LIF) model, by showing that the many constraints from the experimental data are

all satisfied. Finally, we demonstrate that violating these relationships in the LIF model results

in spiking statistics that do not satisfy all of the data constraints.

Our predictions provide insights into interactions in the olfactory system that are difficult

to directly measure experimentally. Importantly, these predictions were inferred from spike

rates and variability, which are relatively easy to measure. We believe that the general

approach we have developed—using easy-to-measure quantities to predict hard-to-measure

interactions—will be valuable in diverse future investigations of how whole-brain function

emerges from interactions among its constituent components.

Results

Our main result is the development of a theoretical framework to infer hard-to-measure con-

nection strengths in a minimal firing rate model, constrained by spike count statistics from

simultaneous array recordings.

We performed simultaneous dual micro-electrode recordings in the olfactory bulb (OB)

and the anterior piriform cortex (PC) (see Materials and methods). First, we use the experi-

mental data to compute population-averaged (across cells or cell pairs) first and second order

spike count statistics, comparing across regions (OB or PC) and activity states (spontaneous or

stimulus-evoked). We use these statistics to constrain a minimal firing rate model of the cou-

pled OB-PC system, aided by a quick and efficient method for calculating firing statistics with-

out Monte Carlo simulations.

As a test case for our methods, we investigate the structure of four important parameters:

within-region inhibitory connection strengths and between-region excitatory connection

strengths. We find several relationships that must hold, in order to satisfy all constraints from

the experimental data. These results are then validated with a large spiking network of leaky

integrate-and-fire (LIF) model neurons.

Consistent trends in the experimental data

We first present our data from simultaneous dual micro-electrode array recordings in anesthe-

tized rats. During each 30-second trial an odor was presented for roughly one second; record-

ings continued for a total of 30 seconds. This sequence was repeated for 10 trials with 2-3

minutes in between trials; the protocol was repeated for another odor. Recordings were pro-

cessed to extract single-unit activity; the number of units identified was: 23 in OB and 38 in PC

(first recording, two odors), 18 in OB and 35 in PC (second recording, another two odors). In

total, there were four different odors presented.

In this paper, we focus on the spike count statistics rather than the detailed temporal struc-

ture of the neural activity (Fig 1A and 1B). We divided each 30 s trial into two segments, repre-

senting the odor-evoked state (first 2 seconds) and the spontaneous state (remaining 28

seconds). We computed first- and second-order statistics for identified units; i.e., firing rate νk,
spike count variance, and spike count covariance (we also computed two derived statistics,

Fano Factor and Pearson’s correlation coefficient, for each cell or cell pair). Spike count vari-

ances, covariances and correlations were computed using time windows Twin ranging between

5 ms and 2 s. In computing population statistics we distinguished between different odors

(four total), different regions (OB vs. PC), and different activity states (spontaneous vs.

evoked); otherwise, we assumed statistics were stationary over time.

We then sought to identify relationships among these standard measures of spiking activity.

For example, we found that mean firing rate of OB cells in the evoked state was higher than

the mean firing rate in the spontaneous state, or nEvOB > n
Sp
OB (although there is significant
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Fig 1. Population firing rates in anterior piriform cortex (PC) and olfactory bulb (OB) from simultaneous dual array recordings. (A)

Trial-averaged population firing rate in time from 73 PC cells (38 and 35 cells from two recordings). The inset shows a closeup view, to

highlight the distinction between spontaneous and evoked states. (B) Trial-averaged population firing rate in time from 41 OB cells (23 and 18

cells from two recordings). Inset as in (A); both (A) and (B) use 5 ms time bins. (C) The PC firing rate (averaged in time and over trials) of

individual cells in the spontaneous (black) and evoked states (red). The arrows indicate the mean across 73 cells; the mean±std. dev. in the

spontaneous state is: 0.75 ± 0.93 Hz, in the evoked state is: 1.5 ± 1.6 Hz. (D) Similar to (C), but for the OB cells described in (B). The mean

±std. dev. in the spontaneous state is: 2 ± 3.3 Hz, in the evoked state is: 4.7 ± 7.1 Hz.

https://doi.org/10.1371/journal.pcbi.1005780.g001
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variability across the population, we focus on population-averaged statistics here). We found

twelve (12) robust relationships that held across all odors. Table 1 summarizes the consistent

relationships we found in our data, and Figs 1C and 1D, 2 and 3 show the data exhibiting these

relationships when combining all odorant stimuli (see S1 Text for statistics plotted by distinct

odors). Throughout the paper, when comparing activity states the spontaneous state is in black

and the evoked state in red; when comparing regions the OB cells are in blue and PC cells in

green.

A common observation across different animals and sensory systems, is that firing rates

increase in the evoked state (see, for example, Figure 3 in [15]). Indeed, we observed that aver-

age firing rates in both the OB and PC were higher in the evoked state than in the spontaneous

state (Fig 1C and 1D). Furthermore, the firing rate in the OB was larger than the firing rate in

the PC, in both spontaneous and evoked states (see mean values in Fig 1C and 1D).

Stimulus-induced decorrelation appears to be a widespread phenomena in many sensory sys-

tems and in many animals [7]; stimulus-induced decorrelation was previously reported in PC

cells under different experimental conditions [16]. Here, we found that in the PC, the average

spike count correlation is lower in the evoked state (red) than in the spontaneous state (black),

at least for time windows of 0.5 s and above (Fig 2A). Although we show a range of time win-

dows for completeness, we focus on the larger time windows because in our experiments the

odors are held for 1 s; furthermore, our theoretical methods only address long time-averaged

spiking statistics. Note that stimulus-induced decorrelation in the OB cells was not consistently

observed across odors.

Another common observation in cortex, is for variability to decrease at the onset of stimu-

lus [15]: in Fig 2B we see that the Fano Factor of spike counts in PC cells decreases in the

evoked state (red) compared to the spontaneous state (black); note that other experimental

labs have also observed this decrease in the Fano factor of PC cells (see supplemental figure

S6D in [16]). Fig 2C and 2D shows a comparison of PC and OB spike count correlation in the

spontaneous state and evoked state, respectively. Spike count correlation in PC (green) is

larger than correlation in OB (blue) in the spontaneous state, but in the evoked state the rela-

tionship switches, at least for time windows larger than 0.5 sec.

Fig 3 shows the four remaining constraints that are consistent for all odors and for all time

windows. The Fano Factor in PC (green) is larger than in OB (blue), in the spontaneous state

(Fig 3A); spike count variance in PC (green) is smaller than in OB (blue) in the evoked state

(Fig 3B); spike count covariance in PC (green) is smaller than in OB (blue) in the evoked state

(Fig 3C); and in OB the spike count variance in the evoked state (red) is larger than

Table 1. The 12 relationships (constraints) that hold in the experimental data across all odors.

Spont. Evoked Spon. to Evoked

Firing Rate nPC < nOB nPC < nOB n
Sp
PC < nEn

PC

n
Sp
OB < nEn

OB

Variability VarPC < VarOB VarSpOB < VarEn

OB

FFPC > FFOB FFSpPC > FF
En
PC

Co-variability CovPC < CovOB

ρPC > ρOB ρPC < ρOB r
Sp
PC > rEn

PC

Relationships between population-averaged statistics (averages are across all cells or cell pairs) that were consistent across all odors. Other possible

relationships were left out because they were ambiguous and/or odor dependent.

https://doi.org/10.1371/journal.pcbi.1005780.t001
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spontaneous (black, Fig 3D). Throughout the paper, we scale the spike count variance and

covariance by time window for aesthetic reasons; this does not affect the relative relationships.

A minimal firing rate model to capture data constraints

We model two distinct regions (OB and PC) with a system of six (6) stochastic differential

equations, each representing the averaged activity of a neural population [14] or representative

cell (see Fig 4 for a schematic of the network). For simplicity, in this section we use the word

Fig 2. A subset of the important relationships between the spiking statistics in spontaneous and evoked states. Consistent trends that hold for

all 4 odorant stimuli in the experimental data. Each panel shows two spike count statistics, as a function of the time window. The shaded error bars show

the standard error of the mean above and below the mean statistic. (A) Stimulus-induced decorrelation of PC cell pairs (red) compared to the

spontaneous state (black). (B) The variability in PC (measured by Fano Factor) is lower in the evoked state (red) than in the spontaneous state (black).

(C) In the spontaneous state, the average correlation of PC pairs (green) is higher than that of OB pairs (blue). (D) In the evoked state, the average

correlation of PC pairs (green) is lower than that of OB pairs (blue), for long time windows. There were 406 total OB pairs and 1298 total PC pairs.

(Although the trends reverse in (A) and (D) for smaller time windows, our focus is on the larger time windows because stimuli were held for 1 s; smaller

time windows are shown for completeness).

https://doi.org/10.1371/journal.pcbi.1005780.g002

A framework for analyzing coupled neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005780 October 2, 2017 6 / 37

https://doi.org/10.1371/journal.pcbi.1005780.g002
https://doi.org/10.1371/journal.pcbi.1005780


“cell” to refer to one of these populations. Each region has two excitatory (E) and one inhibi-

tory (I) cell to account for a variety of spiking correlations.

We chose to include two E cells for two reasons: first, excitatory cells are the dominant

source of projections between regions; we need at least two E cells to compute an E-to-E corre-

lation. Moreover, in our experimental data, we are most likely recording from excitatory mitral

and tufted cells (we do not distinguish between mitral vs tufted here, and therefore refer to

them as M/T cells); therefore, the experimental measurements of correlations are likely to have

many E-to-E correlations. The arrays likely record from I cell spiking activity as well, and the

inclusion of the I cell is also important for capturing the stimulus-induced decreases in

Fig 3. Showing the other trends from the experimental data that are consistent with all odors and for all time windows. The shaded error bars

show the standard error of the mean above and below the mean statistic. (A) Fano Factor of spontaneous activity is larger in PC (green) than in OB

(blue). (B) The spike count variance in the evoked state is smaller in PC (green) than in OB (blue). (C) Spike count covariance in the evoked state is

smaller in PC (green) than in OB (blue). (D) In OB cells, the evoked spike count variance (red) is larger than the spontaneous (black). The number of

cells and number of pairs are the same as in Fig 2. Throughout we scale spike count variance and covariance by time window T for aesthetic reasons.

https://doi.org/10.1371/journal.pcbi.1005780.g003

A framework for analyzing coupled neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005780 October 2, 2017 7 / 37

https://doi.org/10.1371/journal.pcbi.1005780.g003
https://doi.org/10.1371/journal.pcbi.1005780


Fig 4. Minimal firing rate model to analyze important synaptic conductance strengths. A firing rate model (Wilson-Cowan) with

background correlated noisy inputs is analyzed to derive principles relating these network attributes (see Eq 1 and Materials and

methods section). This model only incorporates some of the anatomical connections that are known to exist and are important for

modulation of statistics of firing (see main text for further discussion). Each neuron within a region (OB or PC) receives correlated

background noisy input with cOB < cPC. Each plot shows parameter sets (4-tuples) that satisfy all 12 data constraints in Table 1,

projected into a two-dimensional plane in parameter space. The blue dots show the result of the fast analytic method that satisfy all
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correlation and Fano factor [7, 15] (also see [17] who similarly used these same cell types to

analyze spiking correlations in larger spiking network models).

We use j 2 {1, 2, 3} to denote three OB “cells” and j 2 {4, 5, 6} for three PC cells, with j = 1

as the inhibitory OB granule cell and j = 4 as the inhibitory PC cell. The equations are:

t
dxj
dt

¼ � xj þ mj þ sjZj þ
X

k

gjkFðxkÞ ð1Þ

where F(xk) is a transfer function mapping activity to firing rate. Thus, the firing rate is:

nj ¼ FðxjÞ: ð2Þ

We set the transfer function to FðXÞ ¼ 1

2
1þ tanh X � 0:5ð Þ=0:1ð Þð Þ, a commonly used sig-

moidal function [14] for all cells; experimental recordings of this function demonstrate it can

be sigmoidal [18–20]. All cells receive noise ηj, the increment of a Weiner process, uncorre-

lated in time but correlated within a region: i.e. hηj(t)i = 0, hηj(t)ηj(t + s)i = δ(s), and

hηj(t)ηk(t + s)i = cjk δ(s). We set cjk to:

cjk ¼

(
0; if j 2 f1; 2; 3g; k 2 f4; 5; 6g

1; if j ¼ k

cOB if j 6¼ k; j; k 2 f1; 2; 3g

cPC if j 6¼ k; j; k 2 f4; 5; 6g

ð3Þ

The parameters μj and σj are constants that give the input mean and input standard deviation,

respectively. Within a particular region (OB or PC), all three cells receive correlated back-

ground noisy input, but there is no correlated background input provided to both PC and OB

cells. This is justified by the experimental data (see Fig S9 in S2 Text); average pairwise OB-to-

PC correlations are all relatively small, and in particular, less than pairwise correlations within
the OB and PC. Furthermore, anatomically there are no known common inputs to both

regions that are active at the same time.

We also set the background correlations to be higher in PC than in OB: i.e.,

cPC > cOB:

This is justified in part by our array recordings, where correlated local field potential fluctua-

tions are larger in PC than in OB. Furthermore, one source of background correlation is global

synchronous activity; Murakami et al. [21] has demonstrated that state changes (i.e., slow or

fast waves as measured by EEG) strongly affect odorant responses in piriform cortex but only

minimally effect olfactory bulb cells. Finally, PC has more recurrent activity than the olfactory

bulb; this could lead to more recurrent common input, if not cancelled by inhibition [22].

We constructed our model to have two distinct activity states, spontaneous and evoked. We

modeled the evoked state by increasing the three parameters μ1, μ2, μ3, representing mean

constraints; the red dots show the Monte Carlo simulations that satisfy all of the constraints. For computational purposes, we only

tested the Monte Carlo on parameter sets that first satisfied the constraints in the fast analytic method. (A) The magnitude of the

inhibition within PC (|gIP|) is greater than the magnitude of the inhibition within OB (|gIO|); all dots are above the diagonal line. (B) The

excitation from PC to OB (gEP) is generally (but not always) larger than the excitation from OB to PC (gEO). (C) The inhibition within

OB is generally weak; dots are to the left of the vertical line. (D) The inhibition within PC is generally strong; dots are to the right of the

vertical line. Table 2 shows the parameter values.

https://doi.org/10.1371/journal.pcbi.1005780.g004
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input to the olfactory bulb (values given in Table 2). All other parameters were the same for

both states. While increasing the input to the I cells in OB in the evoked state (μ1) is not

anatomically accurate because granule cells do not receive direct sensory input [23], overall

this captures the net effect of stimulus input to granule cells (see section Generality of Firing

Rate Model Predictions for how we apply this method to a specific olfactory system).

The model we have described is less realistic than a large network of spiking models (such

as Hodgkin-Huxley or leaky integrate-and-fire neurons). However, its simplicity permits fast

and efficient evaluation of firing rate statistics, a necessity in exploring a large parameter space.

Specifically, we calculate the statistics of the coupled network by solving a system of transcen-

dental equations Eqs 28–45, rather than using Monte Carlo simulations. These equations were

derived using an approximation based on asymptotic expansions (see Materials and methods:

Approximation of Firing Statistics in the Firing Rate Model for details).

This fast method allowed us to evaluate many parameter combinations, and therefore con-

strain the unknown coupling parameters, gjk, which would otherwise be an intractable prob-

lem. Comparisons of the firing statistics computed from our method and Monte Carlo

simulations show that the mean activity and firing rates are very accurate; variance and covari-

ance (and thus correlation) are not as accurate, for larger coupling strengths (see Fig S10 in

S2 Text comparing 100 random parameter sets). Nonetheless, we will find that these reduced

model results are replicated by more realistic and larger spiking network models.

In principle, there can be up to 36 coupling strengths, which is intractable to explore in

detail. We make the following assumptions:

• No cross-region inhibitory projections: g41 = g51 = g61 = g14 = g24 = g34 = 0.

• Excitatory PC! OB output will synapse only onto the inhibitory population: g25 = g26 = g35

= g36 = 0 (see [23]). This reflects experimental evidence that the feedback projections from

PC to OB are dominated by inhibition [24, 25].

• Excitatory OB! PC output will synapse only onto the inhibitory population: g52 = g62 = g53

= g63 = 0. Although this is not anatomically accurate because the mitral/tufted cells also proj-

ect to the E cells in PC, our goal is to (heuristically) model the prominent role of I cells in

PC. Recent work has shown that within PC the recurrent activity is dominated by inhibition

[26]. Previous work has also shown that inhibitory synaptic events are much more common

in PC and are much easier to elicit [27]. Thus, the connections from excitatory OB to inhibi-

tory PC (Fig 4) should be thought of as the net effect of OB-to-PC connections.

Table 2. Parameters of the rate model (Eq 1). The only difference between the spontaneous and evoked states, is that the mean input to OB increased in

the evoked state. We set τ = 1 throughout.

Parameter Definition Spontaneous Value Evoked Value

Olfactory Bulb μ1 Mean Input 13/60 26/60

μ2 9/60 18/60

μ3 7/60 14/60

σOB Background Noise Level 1.4 1.4

cOB OB Background Correlation 0.3 0.3

Piriform Cortex μ4 Mean Input 9/60 9/60

μ5 5/60 5/60

μ6 3/60 3/60

σPC Background Noise Level 2 2

cPC PC Background Correlation 0.35 0.35

https://doi.org/10.1371/journal.pcbi.1005780.t002
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Within OB, there is also excitatory (M/T) input to the inhibitory (granule) cells: g12 = g13 =

0.1—these values are small because feedforward inhibition is known to be a significant compo-

nent in this circuit [28]. Within PC, we also include similar connections from E to I cells:

g45 = g46 = 0.1. Recurrent E to E connections in PC are omitted; such connections can cause

problems for our reduction method, resulting in oscillatory firing rates that cannot be effi-

ciently captured.

We also make the following simplifying assumptions to limit the dimension of the parame-

ter space of interest:

• Feedforward inhibitory connections within a population were identical: gIO� g21 = g31 and

gIP� g54 = g64.

• Excitatory connections projecting outward from each region to the other region were identi-

cal: gEO� g42 = g43 and gEP� g15 = g16.

• No within-region excitatory connections; g23 = g32 = g56 = g65 = 0.

The resulting network model is illustrated in Fig 4. Here we use non-standard notation for

the 4 main connections of interest; instead of subscripts, we use two indicative capital letters

(e.g., gIP) so that readers can easily distinguish the connections we explore, vs. unexplored

connections.

Thus, we were left with four undetermined coupling strengths: gIO, gIP, gEO and gEP. We

comprehensively surveyed a four-dimensional parameter space in which each coupling

strength |gIO|, |gIP|, gEO, gEP was chosen between 0.1 and 2, with a interval of 0.1, giving

us 204 = 1.6 × 105 total models. Given each choice of 4-tuple {gIO, gIP, gEO, gEP}, we

computed first- and second-order statistics of both activity xk and firing rates F(xk) using the

formulas given in Eqs 28–45, and checked whether the results satisfied the constraints listed in

Table 1—comparing the mean statistic across all 3 cells or all 3 possible pairs in various states

and regions. We found that approximately 1.1% of all 4-tuples satisfied the constraints; we dis-

play them in Fig 4, by projecting all constraint-satisfying 4-tuples onto a two-dimensional

plane where the axes are two of the four coupling parameters. We show four out of six possible

pairs (the other two show qualitatively similar patterns, see Fig S11 in S2 Text): |gIO| vs. |gIP|

(Fig 4A), gEO vs. gEP (Fig 4B), |gIO| vs. gEP (Fig 4C), and |gIP| vs. gEO (Fig 4D).

The results from the minimal firing rate model are:

• The magnitude of the inhibition within PC, |gIP|, is greater than the magnitude of the inhibi-

tion within OB, |gIO| (Fig 4A: all dots are above the diagonal line).

• The excitation from PC to OB, gEP, is generally larger than the excitation from OB to PC,

gEO (Fig 4B).

• The inhibition within OB is generally weak (Fig 4C: dots are to the left of the vertical line).

• The inhibition within PC is generally strong (Fig 4D: dots are to the right of the vertical

line).

The statistics computed in Eqs 28–45 rely on the assumption that the activity distributions

xk are only weakly perturbed from a normal distribution; this may be violated for larger cou-

pling strengths. Thus, we used Monte Carlo simulations of Eq 1 to check the accuracy of this

approximation; specifically we performed Monte Carlo simulations only on each 4-tuple of

parameters for which the analytic approximation met our constraints. The resulting parameter

sets that satisfied all 12 constraints are included as red dots in Fig 4A–4D (therefore a red dot

indicates that all 12 constraints were satisfied both for the analytic approximation and for the
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Monte Carlo simulations). The result was a smaller set of parameters, but it is evident that the

qualitative results derived from the fast analytic solver hold for the Monte Carlo simulations.

Moreover, these results were robust to the choice of transfer function: in Fig. S12 of S2 Text,

we show that the same constraints are obtained when using a “square root” transfer function,

rather than a sigmoid.

Admissible firing rate model parameters

How do each of the 12 data constraints (Table 1) restrict the set of possible model parameters?

Fig 5 addresses this question in two ways. In Fig 5A, we show, for each constraint, the fraction

(as a percent) of all 204 parameter sets for which that constraint is satisfied, when statistics are

computed via the reduction method (see Materials and methods, Approximation of Firing

Statistics in the Firing Rate Model). Constraints have varying levels of restrictions, but the

second order firing statistics in the evoked state appear more restrictive than the others.

Together, only 1.1% of the values in parameter space satisfy all 12 constraints.

In Fig 5B, we show, for each constraint, the fraction of all 204 parameter sets for which that

constraint is satisfied, in both the reduction method and in Monte Carlo simulations (recall

that we took the relatively conservative approach of only testing the Monte Carlo simulations

on the admissible set from the reduction method (1.1%); this yielded only 0.13% of parameter

space. The constraint that r
Sp
OB < r

Sp
PC has the smallest percent by far in Fig 5B. We attribute this

“mismatch” to inaccuracies in our method with stronger coupling (note that gIP and gEP are

both relatively strong in the admissible set); the smaller percentages in Fig 5B compared to

Fig 5A are likely due to errors in the Cov and Var calculations (see Fig S10 in S2 Text), as well

as possible amplification of these errors when dividing by Var in the ρ calculation.

Another way to succinctly examine the structure of the four neural attributes: gIO, gEO, gIP,

gEP is to consider a matrix:

Aðj; :Þ ¼ ½gIOðjÞ; gEOðjÞ; gIPðjÞ; gEPðjÞ� ð4Þ

where the jth row of A corresponds to a parameter set where all 12 constraints are satisfied. We

first subtract the mean, finding that [gIO, gEO, gIP, gEP]T = [−0.62, 1.11, −1.38, 1.29]T, which

is consistent with the results described in Fig 4. A standard singular value composition (SVD)

of the mean-corrected matrix,

A ¼ USVT ;

shows that two dimensions in the parameter space accounts for 82% of the remaining variance

(as quantified by the singular values) and thus provide an approximation to the structure of

the valid gIO, gEO, gIP, gEP values. The eigenvectors corresponding to the largest singular val-

ues are: [gIO, gEO, gIP, gEP]T = [−0.05, 0.60, −0.07, 0.79]T and [gIO, gEO, gIP, gEP]T = [0.56,

0.05, 0.82, 0.08]T; that is, they reflect high positive correlations between the two inhibitory

strengths gIP and gIO, and between the two excitatory strengths gEP and gEO. Therefore, with

the minimal firing rate model we predict the connectivity strengths generally satisfy:

jgIOj < gEO < gEP < jgIPj:

We next asked whether the full set of data constraints were necessary; would we have seen a

similar relationship between connectivity strengths, while using only a subset of the con-

straints outlined in Table 1? Because the admissible set is defined as the intersection over all

constraints, removing any constraint would likely result in a different and (if different) larger

parameter space. We considered i) keeping 8 of the 12 constraints in Table 1, neglecting the

constraints on the Co-variability row, and ii) keeping only 4 of the 12 constraints in Table 1,
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Fig 5. Each constraint limits the set of admissible models. (A) The percentage of all 204 parameter sets that satisfy each

particular constraint (for each of the 12 constraints in Table 1) in the minimal firing rate model. See Eq 1 and Materials and

methods. We see that some constraints are more restrictive than others (e.g., second-order firing statistics comparing OB

and PC in the evoked state—flagged in (A) above—are particularly restrictive). Only 1.1% of all parameter sets satisfy all 12

constraints. (B) The percentage of models that satisfy each particular constraint, in both the reduction method and Monte
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neglecting both the Variability and Co-variability rows (i.e., only with the firing rate). Briefly,

the result is that i) 21.5% of parameters in the analytic method satisfy the constraints; ii) 33.4%

of parameters in the analytic method satisfy the constraints; compare this to 1.1% (and 0.13%

Monte Carlo) with all 12 constraints. The relationships of the connection strengths are differ-

ent than when all 12 constraints are included: for example, it is no longer true that gEP> gEO,

once the covariance constraints are omitted.

Generality of firing rate model predictions

In general, we should expect that if we change the wiring diagram of our simple firing rate

model (Fig 4), then the same experimental constraints might result in different predictions.

This could be a concern since our simple firing rate model is lacking many connections and

cell types that exist in the real olfactory system [23]. However, we tested one alternative wiring

diagram with different neurons receiving stimulus input, no E-to-I connections within OB,

and no E-to-I connections within PC. Our predictions were robust to these changes. Second

and most importantly, we tested whether our predictions held in a larger network of leaky

integrate-and-fire neurons. This spiking network model also had more realistic network con-

nectivity, more closely mimicking known anatomy of real olfactory systems.

The following highlight the differences between the spiking model and the firing rate

model:

• Include E-to-E connections from OB to PC (lateral olfactory tract). Also include strong

E-to-I drive within PC because input from OB results in balanced excitation and inhibition

in PC [26];

• Remove the E-to-I connections from OB to PC (gEO in the firing rate model) so that the

recurrent activity in PC is driven by E inputs along the lateral olfactory tract;

• Remove the direct sensory input to I cells in OB since granule cells do not receive direct sen-

sory input [23];

• Include substantial recurrent E-to-E connections within PC (see below for parameter

values).

The parameter gEO will now refer to the strength of E-to-E connections, rather than E-to-I

connections, from OB to PC. The next two sections demonstrate that our predictions hold for

this LIF network model (also see S3 Text).

Results are validated in a spiking LIF network

Here we show that a general leaky integrate-and-fire (LIF) spiking neuron model of the cou-

pled OB-PC system can satisfy all 12 data constraints. Rather than try to model the exact

underlying physiological details of the olfactory bulb or anterior piriform cortex, our goal is to

demonstrate that the results from the minimal firing rate model can be used as a guiding prin-

ciple in a more realistic coupled spiking model with conductance-based synaptic input. The

LIF model does not contain all of the attributes and cell types of the olfactory system, but is a

plausible model that contains: i) more granule than M/T cells in OB (a 4-to-1 ratio, compara-

ble to the 3-to-1 ratio used in [29]); ii) E-to-E connections from OB to PC that drive the entire

Carlo simulations. Recall that we take the relatively conservative approach of only testing the Monte Carlo simulations on the

admissible set (1.1%), thus resulting in a small fraction (0.13%) of the total sets that satisfy all constraints.

https://doi.org/10.1371/journal.pcbi.1005780.g005
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network within PC; iii) E-to-I (granule cell) feedback from PC to OB; iv) lack of sensory input

to granule I cells in OB.

We also show that the minimal firing rate model results can be applied to a generic cortical-

cortical coupled population (see S3 Text).

We set the four conductance strength values to:

gIO ¼ 7

gEO ¼ 10

gIP ¼ 20

gEP ¼ 15;

ð5Þ

See Fig 6 or Eqs 65–67 for exact definitions of gXY; these conductance strength values are

dimensionless scale factors. These values were selected to satisfy the relationships derived from

the analysis of the rate model (see Fig 4). In contrast to the minimal firing rate model, here the

conductance values are all necessarily positive; an inhibitory reversal potential is used to cap-

ture the hyperpolarization that occurs upon receiving synaptic input.

With the conductance strengths in Eq 5, and other standard parameter values in a typical

LIF model, we were able to easily satisfy all 12 constraints: see Table 3 and Fig 6 (Table 4 for

LIF parameter values).

While the firing rates in the LIF network (Table 3) do not quantitatively match with the fir-

ing rates from the experimental data, a few qualitative trends are apparent: (i) the ratio of

mean spontaneous to evoked firing rates are similar to that observed in experimental data, for

both OB and PC, (ii) the same is true of the standard deviation, (iii) the ratio of the mean OB

firing rate to PC firing rate is similar to what is observed in the experimental data, in both

spontaneous and evoked states. Therefore, the LIF network captures the mean firing rates rea-

sonably well.

One difference between the LIF spiking network and the minimal firing rate model is that

in the evoked state, mean background input to both the OB and PC cells is increased, com-

pared to the spontaneous state (recall that in the minimal firing rate model, only the mean

input to the OB cells increased in the evoked state; this ensured that stimulus-induced changes

in PC were due to network activity). When the mean input to the PC cells is the same in the

spontaneous and evoked states, 10 of the 12 constraints were satisfied—the exception was the

correlation of PC in the evoked state, which decreased but is still larger than the spontaneous

correlation (see Fig. S13 in S2 Text). The reason is that as firing rates increase, the OB spiking

is more variable and the synaptic input from OB to PC is noisier, so the input to PC activity is

diffused.

To capture the final two constraints, we allowed mean input drive to PC to increase in the

evoked state. This has also been used in previous theoretical studies to achieve stimulus-

induced decreases in spiking variability and co-variability [30]. Churchland et al. [15] used an

extra source of variability in the spike generating mechanism, a doubly stochastic model,

which was simply removed with stimulus onset. Thus, the mechanism we employ (increased

mean input with lower input variability) is consistent with other studies that analyzed stimu-

lus-induced changes in variability [15, 30].

Results of violating derived relationships between conductance strengths. What hap-

pens in the full LIF spiking network when the derived relationships between the conductance

strengths are violated? Since the minimal firing rate model is different than the detailed spiking

model in many ways, we do not expect the relationships between the conductance strengths to

hold precisely. However, the minimal firing rate model is still useful in providing intuition for

what would otherwise be a complicated network with a high-dimensional parameter space.
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We now demonstrate that when the relationships derived in firing rate model are violated, a

subset of the constraints in the experimental data (Table 1) will no longer be satisfied in the

large spiking network.

Because our network is heterogeneous, our ability to subsample cell pairs is limited, relative

to a homogeneous network of the same size. Also, computation for even a single parameter set

in the spiking network require enormous computing resources. Thus, we cannot exhaustively

Fig 6. Detailed spiking LIF model confirms the results from analytic rate model. Schematic of the LIF model with 2 sets of recurrently

coupled E and I cells. There are 12 types of synaptic connections. (A) Pairwise correlations in PC, spontaneous vs. evoked: r
Sp
PC > rEn

PC. (B)

Variability (Fano factor) in PC, spontaneous vs evoked: FFSpPC > FF
En
PC. (C) Correlations in the spontaneous state, PC vs. OB: r

Sp
PC > r

Sp
OB. (D)

Correlations in the evoked state, PC vs. OB: rEn
PC < rEn

OB. (E) Variability (Fano factor) in the spontaneous state, PC vs. OB: FFSpPC > FF
Sp
OB. (F)

Variability (Fano factor) in the evoked state, PC vs. OB: VarEn

PC < VarEn

OB in evoked state. (G) Covariances in the evoked state, PC vs. OB:

CovEn

PC < CovEn

OB. (H) Variability (spike count variance) in OB, spontaneous vs. evoked: VarSpOB < VarEn

OB. The curves show the average statistics

over all NOB/PC cells or over a large random sample of all possible pairs. See Materials and methods for model details, and Table 4 and Eq 5

for parameter values.

https://doi.org/10.1371/journal.pcbi.1005780.g006

Table 3. Population firing rate statistics from an LIF model of the OB–PC pathway.

Mean Firing Rate (Hz) Std. Dev. (Hz)

n
Sp
OB

5.5 4.6

nEvOB 6.2 4.8

n
Sp
PC

2.1 2.6

nEvPC 4.1 5.8

See Materials and methods for model details, and Table 4 and Eq 5 for parameter values. The mean and

standard deviations are across the heterogeneous population.

https://doi.org/10.1371/journal.pcbi.1005780.t003
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explore the parameter space; indeed, the purpose of the reduction method of the firing rate

model is to probe large dimensions quickly. Instead, we perform three tests that violate the fir-

ing rate model results:

1. Make gIO> gIP by setting gIO = 20 and gIP = 7.

2. Make gEO> gEP by setting gEO = 15 and gEP = 1

3. Make gEP and gIP relatively smaller by setting gEP = 10 and gIP = 10

The original values (used in Fig 6) for these parameters were given in Eq 5.

The result of Test 1 is that 2 of the 12 constraints are violated (see Fig S14 in S2 Text); most

importantly stimulus-induced decorrelation of the PC cells, which is particularly important in

the context of coding, was not present. In addition, the evoked PC correlation is larger than

evoked OB correlation, violating another constraint.

The result of Test 2 is that 3 of the 12 constraints are violated (see Fig S15 in S2 Text). The

evoked PC correlation is larger than evoked OB correlation, and both the variance and covari-

ance in PC are larger than the corresponding quantities in OB in the evoked state, which is not

consistent with our data.

The result of Test 3 is that 3 of the 12 constraints are violated: they are the same constraints

that are violated in Test 2, despite quantitative differences in the statistics (see Fig S16 in S2

Text). The stimulus-induced decorrelation of the PC cells does not hold for small windows,

but this is also observed in our data (Fig 2A), so we do not formally count this as a clear viola-

tion of data constraints. However, Test 1 and Test 3 show that strong PC inhibition is key for

stimulus-induced decorrelation [7, 17, 22, 31–34].

Discussion

As electrophysiological recording technology advances, there will be more datasets with simul-

taneous recordings of neurons, spanning larger regions of the nervous system. Such networks

are inherently high-dimensional, making mechanistic analyses generally intractable without

fast and reasonably accurate approximation methods. We have developed a computational

reduction method for a multi-population firing rate model [14] that enables analysis of the

spiking statistics. Our work specifically enables theoretical characterizations of an important,

yet hard-to-measure quantity—synaptic connection strength—using easy-to-measure spiking

statistics. The method is computationally efficient, is validated with Monte Carlo simulations

of spiking neural networks, and can provide insight into network structure.

Table 4. Fixed parameters for the LIF OB–PC model, see Eqs 65–67.

Same for both OB and PC

Parameter τm τref E I EE τd,I τr,I τd,E τr,E αI αE

20 ms 2 ms -2.5 6.5 10 ms 2 ms 5 ms 1 ms 2 Hz 1 Hz

Parameter N Spont. μ Evoked μ σ ~c γEE γIE γII τΔ,PC/OB

OB 100 0.6 0.9* 0.05 0.5 2 4 2 10 ms

PC 100 0 0.4 0.1 0.8 5 8 6 5 ms

All 12 probabilities of connections are set to pXY = 0.30; otherwise connections were chosen randomly and independently (Erdős-Rényi graphs). The

synaptic time delay from OB to PC is τΔ,OB = 10 ms, and from PC to OB is τΔ,PC = 5 ms. The scaled voltages in mV are: (V+Vreset)/(Vth+Vreset),

corresponding to Vreset = Vleak = -65 mV, Vth = -55 mV (on average), excitatory reversal potential of 0 mV and inhibitory reversal potential of -90 mV.

*Note: in the evoked state, only the M/T (E-cells) in OB receive a larger μ input from 0.6 to 0.9; the granule cells in OB have μ = 0.6 even in the evoked state.

https://doi.org/10.1371/journal.pcbi.1005780.t004
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We applied our computational methods to simultaneous dual-array recordings in two dis-

tinct regions of the olfactory system: the olfactory bulb (OB) and anterior piriform cortex (PC).

Our unique experimental dataset enables a detailed analysis of the first- and second-order

spike count statistics in two activity states, and a comparison of how these statistics are related

between OB and PC cells. We found twelve (12) consistent trends that held across four odors

in the dataset (Table 1), and sought to identify what neural network attributes would account

for these trends. We focused on four important network attributes, specifically the conductance

strengths in the following connections: feedforward inhibition within OB and within PC, excit-

atory projections from OB to PC neurons, and finally excitatory projections from PC to OB.

Our reduced firing rate model predicts several relationships that are then verified with a more

detailed spiking network model, specifically: i) inhibition within the OB has to be weaker than

the inhibition in PC, ii) excitation from PC to OB is generally stronger than excitation from

OB to PC, iii) connections that originate within PC have to relatively strong compared to con-

nections that originate within OB. These results make a strong prediction that to the best of

our knowledge is new and might be testable with simultaneous patch-clamp recordings.

In principle our theory could be used to study the structure of other network features such

as background correlation, noise level, transfer function, etc.. It is straightforward mathemati-

cally to incorporate other desired neural attributes (with the caveat of perhaps increasing the

overall number of equations and terms in the approximations) without changing the basic

structure of the framework. Here we have focused on the role of the strength of synaptic cou-

pling; of course, other neural attributes can affect spike statistics (in particular, spike count

correlation [7, 35]), some of which can conceivably change with stimuli. Spike count correla-

tions can depend on intrinsic neural properties [36–41], network architecture [30, 42, 43] and

synaptic inputs [17, 22, 31–34] (or combinations of these [8, 44–46]), plasticity [47], as well as

top-down mechanisms [48–50]. Thus, correlation modulation is a rich and deep field of study,

and we do not presume our result is the only plausible explanation for spike statistics

modulation.

Although the minimal firing rate model did not include certain anatomical connections

that are known to exist (e.g., recurrent excitation in the PC), the model is meant for deriving

qualitative principles rather than precise quantitative modeling of the pathway. We based our

simplifications on insights from recent experimental work: recent slice physiology work has

shown that within PC, recurrent activity is dominated by inhibition [26]; previous work has

also shown that inhibitory synaptic events are much more common (than excitatory synaptic

events) in PC and are much easier to elicit [27]. Thus, the connection from excitatory OB cells

to inhibitory PC cells (gEO in Fig 4) should be thought of as the net effect of these connections

along the lateral olfactory tract. Other theoretical analyses of effective feedforward inhibitory

networks have also neglected anatomical E-to-E connections [17, 32]. Furthermore, this mini-

mal model was validated with a more realistic, recurrently coupled spiking network, which did

include within-region excitatory connections (see Fig 6 and Fig S14–S16 in S2 Text, as well as

S3 Text).

We have only focused on first- and second-order firing statistics, even though in principle

other, higher-order statistics may be important [51–53]. If downstream neurons use a linear

decoding scheme, then first- and second-order spiking statistics are sufficient in quantitative

measures of neural coding [54, 55]. It is currently unknown whether downstream neurons

decode olfactory signals with a nonlinear decoder, but there is evidence in other sensory sys-

tems that second-order statistics are sufficient [13]. Recent work has shown conflicting results

for coding in olfactory bulb; one study found that decoding an odor in the presence of other

odors might be more efficient using nonlinear decoding [29], but another has shown that lin-

ear decoding is still plausible [56].
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A second reason to neglect higher-order statistics is suggested by Fig 5, where we show how

the various data constraints narrow the scope of plausible models. Here, we saw that even with

first and second- order statistics, only 1% of the parameter sets satisfy the data constraints;

including more constraints would limit the space further. In order to usefully include higher-

order constraints, we would need to use a more detailed model and/or larger parameter

spaces.

As a test case for our method, we used recordings from anesthetized animals. The absence

of breathing in tracheotomized rats in these experiments is only an approximation to olfactory

processing in awake animals. However, there is a benefit to tracheotomized animals: the com-

plex temporal firing patterns are removed, so that firing statistics are closer to stationarity. In

principle, we can incorporate breathing dynamics into our framework by including an oscil-

latory forcing term in Eq 1; this will be the subject of future work. In support of this simplifica-

tion, we note that there is evidence that in the anterior piriform cortex, spike count—rather

than the timing—is most consequential for odor discrimination [16]. However, other studies

have reported that timing of the stimuli in the olfactory bulb is important: [29, 57, 58] showed

decoding performance is best at the onset of odors in mammals and worsens as time proceeds,

whereas [59] found that decoding performance improved with time in zebrafish. These impor-

tant issues are beyond the scope of this current study.

Relationship to other reduction methods

In computing statistics for the minimal firing rate model, we only considered equilibrium fir-

ing statistics, in which a set of stationary statistics can be solved self-consistently. More sophis-

ticated methods might be used to address oscillatory firing statistics (see [60] where the

adaptive quadratic integrate-and-fire model was successfully analyzed with a reduced method);

capturing the firing statistics in these other regimes is a potentially interesting direction of

research. The limitation to steady-state statistics is not unique, but is shared by other approxi-

mation methods. Some methods are known to have issues when the system bifurcates [61, 62]

because truncation methods can fail [63].

Several authors have proposed procedures to derive population-averaged first- and second-

order spiking statistics from the dynamics of single neurons. The microscopic dynamics in

question may be given by a master equation [61, 62, 64–66], a generalized linear model [67, 68],

or the theta model [69, 70]. (Other authors have derived rate equations at the single-neuron

level, by starting with a spike response model [74] or by taking the limit of slow synapses [73].)

While we would ideally use a similar procedure to derive our rate equations, none of the

approaches we note here is yet adapted to deal with our setting, a heterogeneous network of

leaky integrate-and-fire neurons. Instead, we focused here on perturbing from a background

state in which several populations (each population modeled by a single equation) receive cor-

related background input but are otherwise uncoupled. This allows us to narrow our focus to

how spike count co-variability from common input is modulated by recurrent connections.

We also note that other recent works have used firing rate models to explain observed pat-

terns of correlated spiking activity in response to stimuli. Rosenbaum et al. [43] have studied

the spatial structure of correlation in primate visual cortex with balanced networks [71]; Keane

& Gong [72] studied wave propagation in balanced network models.

Conclusion

Designing a spiking neural network model of two different regions that satisfies the many

experimental data constraints we have outlined is a difficult problem that would often be

addressed via undirected simulations. We have shown that systematic analysis of a minimal
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firing rate model can yield valuable insights into the relative strength of unmeasured network

connections. Furthermore, these insights are transferable to a more complex, physiologically

realistic spiking model of the OB–PC pathway. Indeed, incorporating the relative relationships

of the four conductance strengths resulted in spiking network models that satisfied the con-

straints. Strongly violating the relative relationships of these conductance strengths led to mul-

tiple violations of the data constraints. Because our approach can be extended to other

network features, we are hopeful that the general approach we have developed—using easy-to-

measure quantities to predict hard-to-measure interactions—will be valuable in future investi-

gations into how whole-brain function emerges from interactions among its constituent

components.

Materials and methods

Ethics statement

All procedures were carried out in accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health and approved by Uni-

versity of Arkansas Institutional Animal Care and Use Committee (protocol #14049). Isoflur-

ane and urethane anesthesia were used and urethane overdose was used for euthanasia.

Electrophysiological recordings

Subjects. Experimental data was obtained from one adult male rat (289 g; Rattus Norvegi-
cus, Sprague-Dawley outbred, Harlan Laboratories, TX, USA) housed in an environment of

controlled humidity (60%) and temperature (23˚C) with 12 h light-dark cycles. The experi-

ments were performed in the light phase.

Anesthesia. Anesthesia was induced with isoflurane inhalation and maintained with ure-

thane (1.5 g/kg body weight (bw) dissolved in saline, intraperitoneal injection (ip)). Dexa-

methasone (2 mg/kg bw, ip) and atropine sulphate (0.4 mg/kg bw, ip) were administered

before performing surgical procedures.

Double tracheotomy surgery. To facilitate ortho- and retronasal delivery of the odorants

a double tracheotomy surgery was performed as described previously [75]. This allowed for

the rat to sniff artificially while breathing naturally through the trachea bypassing the nose. A

Teflon tube (OD 2.1 mm, upper tracheotomy tube) was inserted 10 mm into the nasopharynx

through the rostral end of the tracheal cut. Another Teflon tube (OD 2.3 mm, lower tracheot-

omy tube) was inserted in to the caudal end of the tracheal cut to allow breathing. Both tubes

were fixed and sealed to the tissues using surgical thread. Local anesthetic (2% Lidocaine) was

applied at all pressure points and incisions. Throughout the surgery and electrophysiological

recordings rats’ core body temperature was maintained at 37˚C with a thermostatically con-

trolled heating pad.

Craniotomy surgery. Subsequently, a craniotomy surgery was performed on the dorsal

surface of the skull at two locations, one over the right Olfactory Bulb (2 mm × 2 mm, centered

8.5 mm rostral to bregma and 1.5 mm lateral from midline) and the other over the right ante-

rior Pyriform Cortex (2 mm × 2 mm, centered 1.5ṁm caudal to bregma and 5.5 mm lateral

from midline).

Presentation of ortho- and retronasal odorants. The bidirectional artificial sniffing par-

adigm previously used for the presentation of ortho- and retronasal odorants [75] were slightly

modified such that instead of a nose mask a Teflon tube was inserted into the right nostril and

the left nostril was sealed by suturing. The upper tracheotomy tube inserted into the nasophar-

ynx was used to deliver odor stimuli retronasally (Fig 1. We used two different odorants, Hexa-

nal (Hexa) and Ethyl Butyrate (EB) by both ortho- and retronasal routes, there by constituting
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4 different odor stimuli. Each trial consisted of 10 one-second pulse presentations of an odor

with 30 second interval in between two pulses, and 2-3 min in between two trials.

Electrophysiology. Extracellular voltage was recorded simultaneously from OB and aPC

using two different sets of 32-channel microelectrode arrays (MEAs). (OB: A4x2tet, 4 shanks x

2 iridium tetrodes per shank, inserted 400 μm deep from dorsal surface; aPC: Buzsaki 32L, 4

shanks x 8 iridium electrode sites per shank, 6.5 mm deep from dorsal surface; NeuroNexus,

MI, USA). Voltages were measured with respect to an AgCl ground pellet placed in the saline-

soaked gel foams covering the exposed brain surface around the inserted MEAs. Voltages were

digitized with 30 kHz sample rate as described previously [76] using Cereplex + Cerebus,

Blackrock Microsystems (UT, USA).

Recordings were filtered between 300 and 3000 Hz and semiautomatic spike sorting was

performed using Klustakwik software, which is optimized for the types of electode arrays

used here [77]. After automatic sorting, each unit was visually inspected to ensure quality of

sorting.

Data processing

After the array recordings were spike sorted to identify activity from distinct cells, we further

processed the data as follows:

• We computed average firing rate for each cell, where the average was taken over all trials and

over the entire trial length (i.e., not distinguishing between spontaneous and evoked peri-

ods); units with firing rates below 0.008 Hz and above 49 Hz were excluded.

• When spike times from the same unit were within 0.1 ms of each other, only the first

(smaller) of the spike time was used and the subsequent spike times were discarded

We divided each 30 s trial into two segments, representing the odor-evoked state (first 2

seconds) and the spontaneous state (remaining 28 seconds). In each state, we are interested in

the random spike counts of the population in a particular window of size Twin. For a particular

time window, the jth neuron has a spike count instance Nj in the time interval [t, t + Twin):

Nj ¼
X

k

Z tþTwin

t
dðt � tkÞ dt ð6Þ

The spike count correlation between cells j and k is given by:

rT ¼
CovðNj;NkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðNjÞVarðNkÞ

q ; ð7Þ

where the covariance of spike counts is:

CovðNj;NkÞ ¼
1

n � 1

X
Nj � mðNjÞ
� �

Nk � mðNkÞ
� �

: ð8Þ

Here n is the total number of observations of Nj/k, and mðNjÞ :¼ 1

n

P
Nj is the mean spike

count across Twin-windows and trials. The correlation ρT is a normalized measure of the the

trial-to-trial variability (i.e., noise correlation), satisfying ρT 2 [−1, 1]; it is also referred to as

the Pearson’s correlation coefficient. For each cell pair, the covariance Cov(Nj, Nk) and variance

Var(Nj) are empirically calculated by averaging across different time windows within a trial

and different trials.
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A standard measure of variability is the Fano Factor of spike counts, which is the variance

scaled by the mean:

FFk ¼
VarðNkÞ

mðNkÞ
: ð9Þ

In principle, any of the statistics defined here might depend on the time t as well as time

window size Twin; here, we assume that Var, Cov, FF, and ρT are stationary in time, and thus

separate time windows based only on whether they occur in the evoked (first 2 seconds) or

spontaneous (last 28 seconds) state.

Each trial of experimental data has many time windows (an exception is when Twin = 2s; in

the evoked state, there is only 1 window per trial); the exact number depends on the state, the

value of Twin, and whether disjoint or overlapping windows are used. In this paper we use over-

lapping windows by half the length of Twin to calculate the spiking statistics (e.g., if the trial

length is 2 s and Twin = 1s, then there are 3 total windows per trial: [0s, 1s], [0.5s, 1.5s], and [1s,

2s]). The results are qualitatively similar for disjoint windows and importantly, the relation-

ships/constraints are the same with disjoint windows. We limit the size of Twin� 2s because

this is the maximum duration of the evoked state, within each trial.

The average spike count μ(Nj) of the jth neuron with a particular time window Twin is related

to the average firing rate νj of that neuron:

nj :¼
mðNjÞ

Twin

ð10Þ

Firing rate model

Recall that the activity in each representative cell is modeled by:

t
dxj
dt
¼ � xj þ mj þ sjZj þ

X

k

gjkFðxkÞ ð11Þ

where F(xk) is a transfer function mapping activity to firing rate. Thus, the firing rate is:

nj ¼ FðxjÞ: ð12Þ

The index of each region is denoted as follows: j 2 {1, 2, 3} for the 3 OB cells, and j 2 {4, 5,

6} for the 3 PC cells, with j = 1 as the inhibitory granule OB cell and j = 4 as the inhibitory PC

cell (see Fig 4). In this paper, we set σ1 = σ2 = σ3 = σOB and σ4 = σ5 = σ6 = σPC (see Table 2).

In the absence of coupling (i.e. gjk = 0), any pair of activity variables, (xj, xk), are bivariate

normally distributed because the equations:

t
dxj
dt

¼ � xj þ mj þ sjð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cjk

p
xjðtÞ þ

ffiffiffiffifficjk
p

xcðtÞÞ ð13Þ

t
dxk
dt

¼ � xk þ mk þ skð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cjk

p
xkðtÞ þ

ffiffiffiffifficjk
p

xcðtÞÞ ð14Þ

describe a multi-dimensional Ornstein-Uhlenbeck process [78]. Note that we have re-written

ηj/k(t) as sums of independent white noise processes ξ(t), which is always possible for Gaussian

white noise. Since xjðtÞ ¼ 1

t

Z t

0

e� ðt� uÞ=t mj þ sjZjðuÞ
h i

du, we calculate marginal statistics as
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follows:

mðjÞ � hxji ¼ mj þ 0 ð15Þ

s2ðjÞ � hðxj � mðjÞÞ2i

¼
s2
j

t2

Z t

0

Z t

0

e� ðt� uÞ=tZjðuÞe
� ðt� vÞ=tZjðvÞ du dv

� �

¼
s2
j

t2
lim
t!1

Z t

0

e� 2ðt� uÞ=t du ¼
s2
j

2t

A similar calculation shows that in general we have:

Covðj; kÞ ¼
cjk
2t

sjsk ð16Þ

Thus, ðxj; xkÞ � N
mj

mk

 !

; 1

2t

s2
j sjskcjk

sjskcjk s2
k

 ! !

.

To simplify notation, we define:

rSNðyÞ :¼
1
ffiffiffiffiffiffi
2p
p e� y2=2; the standard normal PDF ð17Þ

r2Dðy1; y2Þ :¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

jk

q exp �
1

2
~yT

1 cjk
cjk 1

 !� 1

~y

 !

; bivariate standard normal ð18Þ

With coupling, an exact expression for a joint distribution for (x1, x2, x3, x4, x5, x6) is not

explicitly known. However, we can estimate this distribution (and any derived statistics,

such as means and variances) using Monte Carlo simulations. All Monte Carlo simulations

of the six (6) coupled SDEs were performed using a time step of 0.01 with a standard Euler-

Maruyama method, for a time of 500 units (arbitrary, but relative to the characteristic time

scale τ = 1) for each of the 3000 realizations. The activity xj was sampled at each time step after

an equilibration period.

Furthermore, we can approximate moments of the joint distribution under the assumption

of weak coupling, as described in the next section.

Approximation of firing statistics in the firing rate model

We will now show how to compute approximate first and second order statistics for the firing

rate model with coupling; i.e., we aim to compute the mean activity hxji, mean firing rate

hF(xj)i, variance and covariances of both: hxj xki and hF(xj)F(xk)i. For a simpler exposition, we

have only included twelve synaptic connections; we have excluded self (autaptic) connections

and E!E connections.

An equation for each statistic can be derived by first writing Eq 11 as a low-pass filter of the

right-hand-side:

xjðtÞ ¼
1

t

Z t

0

e� ðt� uÞ=t mj þ sjZjðuÞ þ
X

k

gjkFðxkÞ

" #

du ð19Þ
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We then take expectations, letting t!1, we have:

mðjÞ :¼ hxji ¼ mj þ h
X

k

gjkFðxkÞi ¼ mj þ
X

k

gjkhFðxkÞi ð20Þ

We assume the stochastic processes are ergodic, which is generally true for these types of sto-

chastic differential equations, so that averaging over time is equivalent to averaging over the

invariant measure.

We will make several assumptions for computational efficiency. First, we only account for

direct connections in the formulas for the first and second order statistics, assuming the terms

from the indirect connections are either small or already accounted for in the direct connec-

tions. We further make the following assumptions to simplify the calculations:

Z t

0

FðxkðuÞÞe
� ðt� uÞ=t du

Z t

0

FðxkðvÞÞe
� ðt� vÞ=t dv

� �

�
t

2
E F2ðxkÞ½ � þ ðtE½FðxkÞ�Þ

2
ð21Þ

where E½FnðxkÞ� :¼
Z

FnðsðkÞy þ mðkÞÞrSNðyÞ dy ð22Þ

Z t

0

sjZjðuÞe
� ðt� uÞ=t du

Z t

0

FðxkðvÞÞe
� ðt� vÞ=t dv

� �

�
t

2
E NjFðxkÞ
h i

; if j 6¼ k ð23Þ

where E NjFðxkÞ
h i

:¼
sj
ffiffiffi
2
p

Z Z

y1FðsðkÞy2 þ mðkÞÞ r2Dðy1; y2Þ dy1dy2 ð24Þ

Z t

0

sjZjðuÞe
� ðt� uÞ=tdu

Z t

0

FðxkðvÞÞe
� ðt� vÞ=tdv

� �

�
t

2

skffiffiffi
2
p

Z

yFðsðkÞy þ mðkÞÞrSNðyÞdy; if j ¼ k
ð25Þ

Z t

0

FðxjðuÞÞe
� ðt� uÞ=tdu

Z t

0

FðxkðvÞÞe
� ðt� vÞ=tdv

� �

�
t

2
E½FðxjÞFðxkÞ� þ t2E½FðxjÞ�E½FðxkÞ�

ð26Þ

whereE½FðxjÞFðxkÞ� :¼
ZZ

FðsðjÞy1 þ mðjÞÞFðsðkÞy2 þ mðkÞÞr2Dðy1; y2Þdy1dy2

ð27Þ

and Nj denotes the random variable

Z t

0

sjZjðuÞe
� ðt� uÞ=t du, which is by itself normally distrib-

uted with mean 0 and variance s2
j t=2.

The first assumption, Eq 21, states that time-average of F(xj(t)) multiplied by an exponential

function (low-pass filter) is equal to the expected value scaled by τ/2; the second and third,

Eqs 23 and 25, address Nj and F(xk(t)), for j 6¼ k and j = k respectively (similarly for Eq 26).

In all of the definitions for the expected values with ρ2D, note that the underlying correlation

cjk depend on the pair of interest (j, k). Finally, we assume that the activity variables (xj, xk) are

pairwise normally distributed with the subsequent statistics; this is sufficient to “close” our
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model and solve for the statistical quantities self-consistently. This is implicitly a weak cou-

pling assumption because with no coupling, (xj, xk) are bivariate normal random variables.

The resulting approximations for the mean activity are:

mð1Þ ¼ m1 þ
X

k¼2;3;5;6

g1k

Z

FðsðkÞy þ mðkÞÞ rSNðyÞ dy ð28Þ

mð2Þ ¼ m2 þ g21

Z

Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy ð29Þ

mð3Þ ¼ m3 þ g31

Z

Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy ð30Þ

mð4Þ ¼ m4 þ
X

k¼2;3;5;6

g4k

Z

FðsðkÞy þ mðkÞÞ rSNðyÞ dy ð31Þ

mð5Þ ¼ m5 þ g54

Z

Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy ð32Þ

mð6Þ ¼ m6 þ g64

Z

Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy: ð33Þ

The resulting approximation to the variances of the mean activity are:

ts2ð1Þ ¼
s2

1

2
þ
X

k¼2;3;5;6

g2
1k

2
Var F s kð ÞY þ m kð Þð Þð Þ

þ
X

ðj;kÞ2fð2;3Þ;ð5;6Þg

g1jg1kCovðFðsðjÞY1 þ mðjÞÞ; FðsðkÞY2 þ mðkÞÞÞ
ð34Þ

ts2ð2Þ ¼
s2

2

2
þ
g2

21

2
Var F s 1ð ÞY þ m 1ð Þð Þð Þ

þs2g21

Z Z
y1ffiffiffi

2
p Fðsð1Þy2 þ mð1ÞÞ r2Dðy1; y2Þ dy1dy2

ð35Þ

ts2ð3Þ ¼
s2

3

2
þ
g2

31

2
Var F s 1ð ÞY þ m 1ð Þð Þð Þ

þs3g31

Z Z
y1ffiffiffi

2
p Fðsð1Þy2 þ mð1ÞÞ r2Dðy1; y2Þ dy1dy2

ð36Þ

ts2ð4Þ ¼
s2

4

2
þ
X

k¼2;3;5;6

g2
4k

2
Var F s kð ÞY þ m kð Þð Þð Þ

þ
X

ðj;kÞ2fð2;3Þ;ð5;6Þg

g4jg4kCovðFðsðjÞY1 þ mðjÞÞ; FðsðkÞY2 þ mðkÞÞÞ
ð37Þ

A framework for analyzing coupled neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005780 October 2, 2017 25 / 37

https://doi.org/10.1371/journal.pcbi.1005780


ts2ð5Þ ¼
s2

5

2
þ
g2

54

2
Var F s 4ð ÞY þ m 4ð Þð Þð Þ

þs5g54

Z Z
y1ffiffiffi

2
p Fðsð4Þy2 þ mð4ÞÞ r2Dðy1; y2Þ dy1dy2

ð38Þ

ts2ð6Þ ¼
s2

6

2
þ
g2

64

2
Var F s 4ð ÞY þ m 4ð Þð Þð Þ

þs6g64

Z Z
y1ffiffiffi

2
p Fðsð4Þy2 þ mð4ÞÞ r2Dðy1; y2Þ dy1dy2

ð39Þ

In Eqs 28–39, all of the variances and covariances are computed with respect to

Y � N ð0; 1Þ (for Var) and ðY1;Y2Þ � N 0
0

� �
; 1

2

1 cjk
cjk 1

� �� �

(for Cov); both are easy to calcu-

late. The value cjk depends on the pairs; for example in Eq 35, the ρ2D has cjk = cOB, the back-

ground correlation value in the olfactory bulb but in Eq 34, the Cov term is with respect to ρ2D

with cjk = cPC, the background correlation value in the piriform cortex.

Lastly, we state the formulas for the approximations to the covariances. Although there are

15 total covariance values, we are only concerned with 6 covariance values (3 within OB and 3

within PC); we neglect all covariances between regions. First, our experimental data set shows

that these covariance (and correlation) values are small (see Fig S9 in S2 Text). Second, because

there is no background correlation (i.e., common input) between PC and OB in our model,

any nonzero covariance/correlation arises strictly via direct coupling. Thus, we cannot view

OB-PC covariance from coupling as a small perturbation of the background (uncoupled) state;

we do not expect our model to yield qualitatively accurate predictions for these statistics. The

formulas for the covariances of interest are:

tCovð1; 2Þ ¼
1

2
cOBs1s2 þ s1

g21

2

Z
y
ffiffiffi
2
p Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy

þs2

g12

2

Z
y
ffiffiffi
2
p Fðsð2Þy þ mð2ÞÞ rSNðyÞ dy

þs2

g13

2

Z
y
ffiffiffi
2
p Fðsð3Þy þ mð3ÞÞ rSNðyÞ dy

þ
1

2

X

ðj;kÞ

g1jg2kCðj; kÞ

ð40Þ

tCovð1; 3Þ ¼
1

2
cOBs1s3 þ s1

g31

2

Z
y
ffiffiffi
2
p Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy

þs3

g12

2

Z
y
ffiffiffi
2
p Fðsð2Þy þ mð2ÞÞ rSNðyÞ dy

þs3

g13

2

Z
y
ffiffiffi
2
p Fðsð3Þy þ mð3ÞÞ rSNðyÞ dy

þ
1

2

X

ðj;kÞ

g1jg3kCðj; kÞ

ð41Þ
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tCovð2; 3Þ ¼
1

2
cOBs2s3 þ

g21g31

2
Var F s 1ð ÞY þ m 1ð Þð Þð Þ

þ
s3g21 þ s2g31

2

Z Z
y1ffiffiffi

2
p Fðsð1Þy2 þ mð1ÞÞ r2Dðy1; y2Þ dy1dy2

ð42Þ

tCovð4; 5Þ ¼
1

2
cPCs4s5 þ s4

g54

2

Z
y
ffiffiffi
2
p Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy

þs5

g45

2

Z
y
ffiffiffi
2
p Fðsð5Þy þ mð5ÞÞ rSNðyÞ dy

þs5

g46

2

Z
y
ffiffiffi
2
p Fðsð6Þy þ mð6ÞÞ rSNðyÞ dy

þ
1

2

X

ðj;kÞ

g4jg5kCðj; kÞ

ð43Þ

tCovð4; 6Þ ¼
1

2
cPCs4s6 þ s4

g64

2

Z
y
ffiffiffi
2
p Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy

þs6

g45

2

Z
y
ffiffiffi
2
p Fðsð5Þy þ mð5ÞÞ rSNðyÞ dy

þs6

g46

2

Z
y
ffiffiffi
2
p Fðsð6Þy þ mð6ÞÞ rSNðyÞ dy

þ
1

2

X

ðj;kÞ

g4jg6kCðj; kÞ

ð44Þ

tCovð5; 6Þ ¼
1

2
cPCs5s6 þ

g54g64

2
Var F s 4ð ÞY þ m 4ð Þð Þð Þ

þ
s6g54 þ s5g64

2

Z Z
y1ffiffiffi

2
p Fðsð4Þy2 þ mð4ÞÞ r2Dðy1; y2Þ dy1dy2

ð45Þ

where

Cðj; kÞ ¼
Z Z

FðsðjÞy1 þ mðjÞÞFðsðkÞy2 þ mðkÞÞr2Dðy1; y2Þ dy1dy2

�

Z

FðsðjÞy þ mðjÞÞrSNðyÞ dy
� � Z

FðsðkÞy þ mðkÞÞrSNðyÞ dy
� � ð46Þ

Iteration procedure to solve for the approximate statistics self-consistently. Based on

the approximations and resulting equations described in the previous section, our objective is

to solve for the statistics of xj self-consistently. Once these are determined, the statistics of the

firing rates F(xj) are approximated with the same pairwise normal assumption on (xj, xk); we

are not assuming that (F(xj), F(xk)) are bivariate normal random variables.

We use a simple iterative procedure to solve the system of coupled algebraic expression for

the statistics of xj. We first solve the system in the absence of coupling (i.e. Eqs 15 and 16), and

use these values to start the iteration; at each step, the formulas for the means (Eqs 28–33), var-

iances (Eqs 34–39), and covariances (Eqs 40–45) are recalculated numerically, using the results

of the previous step. The iteration stops once all 18 statistical quantities of the activity match
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up to a relative tolerance of 10−6 (convergence), or after 50 total iterations (non-convergence).

The result with a given parameter set can either be: i) convergence, ii) non-convergence, iii) a

pair of statistics with invalid covariance (non-positive definite covariance matrix), which is

checked after i) and ii). We only consider parameter sets where the iteration has converged

and all of the covariances are valid, after which we determine whether the constraints are

satisfied.

One subtle point is that we did not use any of the numerically calculated Cov values in the

bivariate normal distributions ρ2D; rather, the correlation value is always cjk which is either 0,

cOB, or cPC depending on the pair. In principle, one can use a fully iterative procedure where

the formulas for the Cov (Eqs 40–45) are used in ρ2D; however, we found that the resulting

covariance matrices (for ρ2D) can fail to be positive semi-definite. Handling this case requires

additional code in the program and slower calculations for each parameter set, which detracts

from the purpose of our method. We checked some parameter sets comparing the results of

the two procedures, and the results are quantitatively similar.

The standard normal ρSN and bivariate ρ2D PDFs have state variable(s) y1,2 discretized from

-3 to 3 with a mesh size of 0.01; integrals in Eqs 28–45 are computed using the trapezoidal rule.

Simplified network with four coupling parameters. To further simplify the network, we:

• set τ = 1,

• assume feedforward inhibitory connections within a region have the same strength: g21 = g31

=:gIO and g54 = g64 =:gIP,

• assume cross-region excitatory connections are equal from the presynaptic cell, i.e., g15 = g16

=:gEP and g42 = g43 =:gEO.

• assume σ1 = σ2 = σ3 =:σOB and σ4 = σ5 = σ6 =:σPC

• assume g12 = g13 = g45 = g46 =:g� = 0.1

Now there are only 4 variable coupling parameters: gIO, gEO, gIP, gEP.

The above formulas for the statistics of xj reduce to:

mð1Þ ¼ m1 þ gEP
Z

ðFðsð5Þy þ mð5ÞÞ þ Fðsð6Þy þ mð6ÞÞÞ rSNðyÞ dy

þg�

Z

ðFðsð2Þy þ mð2ÞÞ þ Fðsð3Þy þ mð3ÞÞÞ rSNðyÞ dy
ð47Þ

mð2Þ ¼ m2 þ gIO
Z

Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy ð48Þ

mð3Þ ¼ m3 þ gIO
Z

Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy ð49Þ

mð4Þ ¼ m4 þ gEO
Z

ðFðsð2Þy þ mð2ÞÞ þ Fðsð3Þy þ mð3ÞÞÞ rSNðyÞ dy

þg�

Z

ðFðsð5Þy þ mð5ÞÞ þ Fðsð6Þy þ mð6ÞÞÞ rSNðyÞ dy
ð50Þ

mð5Þ ¼ m5 þ gIP
Z

Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy ð51Þ
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mð6Þ ¼ m6 þ gIP
Z

Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy; ð52Þ

the variances are:

s2ð1Þ ¼
s2
OB

2
þ
ðgEPÞ2

2
Var Fðsð5ÞY1 þ mð5ÞÞ þ Fðsð6ÞY2 þ mð6ÞÞð Þ

þ
g2
�

2
Var Fðsð2ÞY1 þ mð2ÞÞ þ Fðsð3ÞY2 þ mð3ÞÞð Þ

ð53Þ

s2ð2Þ ¼
s2
OB

2
þ
ðgIOÞ2

2
Var F s 1ð ÞY þ m 1ð Þð Þð Þ

þsOBgIO
Z Z

y1ffiffiffi
2
p Fðsð1Þy2 þ mð1ÞÞ r2Dðy1; y2Þ dy1dy2

ð54Þ

s2ð3Þ ¼ s2ð2Þ ð55Þ

s2ð4Þ ¼
s2
PC

2
þ
ðgEOÞ2

2
Var Fðsð2ÞY1 þ mð2ÞÞ þ Fðsð3ÞY2 þ mð3ÞÞð Þ

þ
g2
�

2
Var Fðsð5ÞY1 þ mð5ÞÞ þ Fðsð6ÞY2 þ mð6ÞÞð Þ

ð56Þ

s2ð5Þ ¼
s2
PC

2
þ
ðgIPÞ2

2
Var F s 4ð ÞY þ m 4ð Þð Þð Þ

þsPCgIP
Z Z

y1ffiffiffi
2
p Fðsð4Þy2 þ mð4ÞÞ r2Dðy1; y2Þ dy1dy2

ð57Þ

s2ð6Þ ¼ s2ð5Þ; ð58Þ

the covariances are:

Covð1; 2Þ ¼
1

2
cOBs2

OB þ sOB
gIO
2

Z
y
ffiffiffi
2
p Fðsð1Þy þ mð1ÞÞ rSNðyÞ dy

þsOB
g�
2

Z
y
ffiffiffi
2
p Fðsð2Þy þ mð2ÞÞ rSNðyÞ dy

þg�gIO � Cð1; 2Þ

ð59Þ

Covð1; 3Þ ¼ Covð1; 2Þ ð60Þ

Covð2; 3Þ ¼
1

2
cOBs2

OB þ
g2
IO

2
Var F s 1ð ÞY þ m 1ð Þð Þð Þ

þsOBgIO
Z Z

y1ffiffiffi
2
p Fðsð1Þy2 þ mð1ÞÞ r2Dðy1; y2Þ dy1dy2

ð61Þ
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Covð4; 5Þ ¼
1

2
cPCs2

PC þ sPC
gIP
2

Z
y
ffiffiffi
2
p Fðsð4Þy þ mð4ÞÞ rSNðyÞ dy

þsPC
g�
2

Z
y
ffiffiffi
2
p Fðsð5Þy þ mð5ÞÞ rSNðyÞ dy

þg�gIP � Cð4; 5Þ

ð62Þ

Covð4; 6Þ ¼ Covð4; 5Þ ð63Þ

Covð5; 6Þ ¼
1

2
cPCs2

PC þ
g2
IP

2
Var F s 4ð ÞY þ m 4ð Þð Þð Þ

þsPCgIP
Z Z

y1ffiffiffi
2
p Fðsð4Þy2 þ mð4ÞÞ r2Dðy1; y2Þ dy1dy2

ð64Þ

See Eq 46 for the definition of C.

Leaky integrate-and-fire model of the OB–PC circuit

We use a generic spiking neural network model of leaky integrate-and-fire neurons to test the

results of the theory. There were NOB = 100 total OB cells, of which we set 80% (80) to be gran-

ule (I-)cells and 20% (20) to be mitral/tufted (M/T) E-cells. There are known to be many more

granule cells than M/T cells in the OB; this ratio of 4-to-1 is similar to other models of OB (see

[29] who used 3-to-1). The equations for the OB cells are, indexed by k 2 {1, 2, . . ., NOB}:

tm
dvk
dt

¼ mOB � vk � gk;XIðtÞðvk � E IÞ � gk;XEðtÞðvk � EEÞ

� gk;XPCðt � tD;PCÞðvk � EEÞ þ sOB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ~cOB

p
ZkðtÞ þ

ffiffiffiffiffiffi
~cOB

p
xoðtÞ

� �

vkðt�Þ � yk ) vkðt� þ tref Þ ¼ 0

gk;XEðtÞ ¼
gXE

pXEð0:2NOBÞ

X

k02fpresyn OB E� cellsg

Gk0 ðtÞ

gk;XIðtÞ ¼
gXI

pXIð0:8NOBÞ

X

k02fpresyn OB I� cellsg

Gk0 ðtÞ

gk;XPCðtÞ ¼
gX;PC

pX;PCð0:8NPCÞ

X

j02fpresyn PC E� cellsg

Gj0 ðtÞ

td;X
dGk

dt
¼ � Gk þ Ak

tr;X
dAk

dt
¼ � Ak þ tr;XaX

X

l

dðt � tk;lÞ:

ð65Þ

The conductance values in the first equation gk,XI, gk,XE, and gk,XPC depend on the type of neu-

ron vk (X 2 {E, I}). The last conductance, gX;PCðt � tD;PCÞðvk � EEÞ, models the excitatory pre-

synaptic input (feedback) from the PC cells with a time delay of τΔ,PC. The conductance

variables gk,XY(t) are dimensionless because this model was derived from scaling the original

(raw) conductance variables by the leak conductance with the same dimension. The leak,

inhibitory and excitatory reversal potentials are 0, E I , and EE, respectively with E I < 0 < EE

(the voltage is scaled to be dimensionless, see Table 4). ξk(t) are uncorrelated white noise pro-

cesses and ξo(t) is the common noise term to all NOB cells.
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The second equation describes the refractory period at spike time t�: when the neuron’s

voltage crosses threshold θj (see below for distribution of thresholds), the neuron goes into a

refractory period for τref, after which we set the neuron’s voltage to 0.

The parameter γXY gives the relative weight of a connection from neuron type Y to neuron

type X; the parameter pXY is the probability that any such connection exists (X, Y 2 {E, I}). Gk

is the synaptic variable associated with each cell, and dependent only on that cell’s spike times;

its dynamics are given by the final two equations in Eq 65 and depend on whether k 2 {E, I}.
Finally, two of the parameters above can be equated with coupling parameters in the

reduced model:

gEP ¼ gE;PC; gIO ¼ gEI ð66Þ

which are dimensionless scale factors for the synaptic conductances.

The PC cells had similar functional form but with different parameters (see Table 4 for

parameter values). We modeled NPC = 100 total PC cells, of which 80% were excitatory and

20% inhibitory. The equations, indexed by j 2 {1, 2, . . ., NPC} are:

tm
dvj
dt
¼ mPC � vj � gj;XIðtÞðvj � E IÞ � gj;XEðtÞðvj � EEÞ

� gj;XOBðt � tD;OBÞðvj � EEÞ þ sPCð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ~cPC

p
ZjðtÞ þ

ffiffiffiffiffiffi
~cPC

p
xpðtÞÞ

vjðt�Þ � yj ) vjðt� þ tref Þ ¼ 0

gj;XEðtÞ ¼
gXE

pXEð0:8NPCÞ

X

j02fpresyn PC E� cellsg

Gj0 ðtÞ

gj;XIðtÞ ¼
gXI

pXIð0:2NPCÞ

X

j02fpresyn PC I� cellsg

Gj0 ðtÞ

gj;XOBðtÞ ¼
gX;OB

pX;OBð0:2NOBÞ

X

k02fpresyn OB E� cellsg

Gk0 ðtÞ

td;X
dGj

dt
¼ � Gj þ Aj

tr;X
dAj

dt
¼ � Aj þ tr;XaX

X

l

dðt � tj;lÞ:

ð67Þ

Excitatory synaptic input from the OB cells along the lateral olfactory tract is modeled by:

gX;OBðt � tD;OBÞðvj � EEÞ. The common noise term for the PC cells ξp(t) is independent of the

common noise term for the OB cells ξo(t). Two of the parameters above can be equated with

coupling parameters in the reduced model:

gEO ¼ gE;OB; gIP ¼ gEI ð68Þ

The values of the parameters that were not stated in Table 4 were varied in the paper:

gIO; gEO; gIP; gEP:

To model two activity states, we allowed mean inputs to vary (see Table 4). In contrast to

the reduced model, we increased both inputs to PC cells (from μPC = 0 in the spontaneous

state to μPC = 0.4 in the evoked state) as well as to OB cells; μOB = 0.6 in the spontaneous state

to μOB = 0.9 in the evoked state only for M/T cells (OB granule cell input is the same for spon-

taneous and evoked).
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Finally, we model heterogeneity by setting the threshold values θj in the following way.

Both OB and PC cells had the following distributions for θj:

yj � eN ð69Þ

where N is normal distribution with mean � s2
y
=2 and standard deviation σθ, so that {θj} has a

log-normal distribution with mean 1 and variance: es2
y � 1. We set σθ = 0.1, which results in fir-

ing rates ranges seen in the experimental data. Since the number of cells are modest with

regards to sampling (NOB = 100, NPC = 100), we evenly sampled the log-normal distribution

from the 5th to 95th percentiles (inclusive).

We remark that the synaptic delays of τΔ,PC and τΔ,OB were set to modest values to capture

the appreciable distances between OB and PC. This is a reasonable choice based on evidence

that stimulation in PC elicit a response in OB 5-10 ms later [79].

In all Monte Carlo simulations of the coupled LIF network, we used a time step of 0.1 ms,

with 2 s of biology time for each of the 50,000 realizations (i.e., over 27.7 hours of biology

time), enough simulated statistics to effectively have convergence.
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