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Abstract: Methylcyclohexane-toluene system is one of the most promising methods for hydrogen
transport/storage. The methylcyclohexane dehydrogenation can be exceeded by the equilibrium con-
version using membrane reactor. However, the modularization of the membrane reactor and manu-
facturing longer silica membranes than 100 mm are little developed. Herein, we have developed silica
membrane with practical length by a counter-diffusion chemical vapor deposition method, and mem-
brane reactor module bundled multiple silica membranes. The developed 500 mm-length silica mem-
brane had high hydrogen permselective performance (H2 permeance > 1 × 10−6 mol m−2 s−1 Pa−1,
H2/SF6 selectivity > 10,000). In addition, we successfully demonstrated effective methylcyclohexane
dehydrogenation using a flange-type membrane reactor module, which was installed with 6 silica
membranes. The results indicated that conversion of methylcyclohexane was around 85% at 573 K,
whereas the equilibrium conversion was 42%.

Keywords: methylcyclohexane dehydrogenation; silica membrane; counter-diffusion chemical vapor
deposition; membrane reactor module

1. Introduction

In order to create a hydrogen energy–based society, transport and storage of hydro-
gen in one of the most important issues. Recently, the development of liquid hydrogen,
ammonia, and organic chemical hydrides methods for hydrogen transport/storage have
progressed in the world. Above all, organic chemical hydride methods such as the methyl-
cyclohexane (MCH)–toluene system can be expected as the most practical ones, because
they are liquid at normal temperature and pressure, and the existing infrastructure can
be utilized.

The dehydrogenation of MCH is the equilibrium reaction. Its conversion ratio can ex-
ceed the equilibrium by removing hydrogen from the reaction system using the membrane
reactor with hydrogen permselective membrane. Palladium-based or silica membranes
which show hydrogen selective permeation performance are developed for MCH dehy-
drogenation membrane reactors. Palladium-based membranes are mainly prepared by
electroless plating [1,2] and electroplating [3,4]. Because the reaction temperature of MCH
dehydrogenation is operated at 573–673 K, Pd–Ag alloy membrane was usually applied to
the membrane reactor owing to the suppression of hydrogen embrittlement [5,6]. On the
other hand, the palladium-based membranes have the disadvantage that membrane costs
are high. Amorphous silica membranes are prepared by sol–gel [7–9] or chemical vapor
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deposition [10–12] method. Hydrogen permeation performance of membranes greatly
affects the reaction efficiency when we use membrane reactors; therefore, higher hydrogen
permeance is desirable for the practical application of membrane reactors for the MCH
dehydrogenation. It is possible to obtain high hydrogen permeance by loosely tuning the
pore diameter. For both preparation methods, pore size of the silica membrane can be con-
trolled relatively easily by changing silica precursor [13–15]; therefore, these membranes
can be applied to the membrane reactor for MCH dehydrogenation [16,17]. Durability
of silica membranes is also important. Durability of the membrane reactor using silica
membranes was already evaluated by Akamatsu et al. [18]. These results show promising
possibility of membrane reactors; however, they are all results at laboratory scale level.

From the view point of practical use of membrane reactors, developing silica mem-
branes with practical length, approximately 500 mm, and modular structures of the mem-
branes, are very important. However, there are very few researchers who have attempted
to develop such silica membranes or module structures. Since MCH dehydrogenation is an
endothermic reaction, a method and module structure for efficiently supplying the reaction
heat is important.

In this study, to advance social implementation, we have developed long-scale
DMDPS–derived silica membrane having high H2 permselective performance prepared by
counter-diffusion chemical vapor deposition method, and module of six silica membranes.
We also evaluated the performance of bench–scale membrane reactor including multiple
silica membranes for methylcyclohexane dehydrogenation. In addition, improvement of
heat transfer to catalyst layer was also investigated.

2. Materials and Methods
2.1. Preparation and Permeation Perfomance Measurement of DMDPS-Derived Silica Membranes

Longer silica membranes having practical length were prepared and evaluated. We
employed counter–diffusion chemical vapor deposition method for silica membranes
preparation up to 500 mm long.

Figure 1 shows a schematic diagram of apparatus for longer membrane preparation
and their permeation performance measurement. The silica membrane derived from
dimethoxydiphenylsilane was formed on a porous alumina tube. An α–alumina tubular
support was purchased from Nikkato corporation, Osaka, Japan, and a γ–alumina layer
was coated on the support by sol–gel method. Saturated dimehoxydiphenylsilane (DMDPS,
Shin-Estu Chemical Co., Ltd., Tokyo, Japan) vapor was fed to the exterior of the γ–alumina
coated support with N2, as carrier gas, and the vapor concentration was regulated at
0.1 mol/m3 by controlling the temperature of a bubbler. O2, at rate of 250 mL/min, was
introduced to the interior of the support. An amorphous silica layer derived from DMDPS
was deposited into the pores and surface of the support. Reaction temperature and time
for CVD were 873 K and 60 min, respectively. Permeation performance of obtained silica
membrane was evaluated at 573, 473, 373, and 298 K, using single component H2, N2 and
SF6 gases. Flow rate of H2 and N2 in permeation side was measured by soap film flow
meter, and permeances were calculated from these rates. Determination of SF6 permeance
was performed with a pressure difference method.

2.2. Bench–Scale Membrane Reactor Test for Methylcyclohexane Dehydrogenation

Bench–scale membrane reactor tests using a module in which multiple silica mem-
branes are bundled were conducted. The experimental apparatus for methylcyclohexane
dehydrogenation membrane reactor is shown in Figure 2. Pt catalysts were placed outside
of the membranes, and the reactor module included silica membranes was heated using
hot oil to reaction temperature. Before the reaction tests, the catalysts were reduced under
hydrogen atmosphere. Methylcyclohexane, which is a reaction raw material, was fed to
the exterior of the membranes through a vaporizer, and the dehydrogenation reaction was
conducted at 573 K. The pressure of the reaction and permeation sides were maintained
at 0.4 MPaA and 0.1 MPaA, respectively. To calculate methylcyclohexane conversion, the
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concentrations of methylcyclohexane, toluene, and hydrogen in the retentate and permeate
side were measured by a gas chromatograph (7820A, Agilent Technologies Japan, Ltd.,
Tokyo, Japan). During membrane reactor tests, no sweep gas was flowing to the permeation
side. In addition, the overall heat transfer coefficient was calculated using temperature of
the inlet and outlet.
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3. Results and Discussion
3.1. Permeation Performance of 500 mm-length DMDPS-Derived Silica Membrane

Comparative permselective performances of DMDPS–derived silica membranes formed
on different effective membrane lengths as 70, 200, and 500 mm–length are shown in
Figure 3. Permeation measurement of these membranes was conducted at 573 K. H2 per-
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meances of 70, 200, and 500 mm-length membranes were 1.20 × 10−6, 1.00 × 10−6, and
1.30 × 10−6 mol m−2 s−1 Pa−1, respectively. H2/SF6 selectivity of these membranes was
12,000, 10,000, and 12,000, respectively. Here, the H2/SF6 selectivity is used as an indica-
tor for H2/toluene selectivity, because the kinetic diameter of toluene is similar to that
of SF6. All membranes showed approximately the same H2 permselective performance
despite different membrane lengths. From these results, we successfully formed long–scale
silica membrane.
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effective membrane lengths at 573 K.

Figure 4 shows temperature dependence of H2, N2, and SF6 permeation through
500 mm–length silica membrane in the temperature range of 573–298 K. Permeances of
H2, N2, and SF6 showed an approximately constant value regardless of this temperature
range. At 573 K, the permeances of H2, N2, and SF6 were 1.30 × 10−6 mol m−2 s−1 Pa−1,
1.31 × 10−7 mol m−2 s−1 Pa−1, and 1.07 × 10−10 mol m−2 s−1 Pa−1, respectively. The se-
lectivity of H2/N2 was 10, and that of H2/SF6 was 12,000 at 573 K. The temperature depen-
dence and permselectivity of this 500 mm-length silica membrane showed approximately
similar performance as in a previous report of developed 100 mm-length DMDPS–derived
silica membrane [19,20].

3.2. Bench–Scale Membrane Reactor including Multiple Silica Membranes for Methylcyclohexane
Dehydrogenation Reaction

First, dehydrogenation membrane reactor, which was included a single silica mem-
brane having 70 mm–length, was evaluated under 0.2 MPaA to compare between per-
formance of packed-bed reactor and membrane reactor, as shown in Figure 5. The MCH
conversion ratio with membrane reactor was much larger than that with packed-bed reactor
in all temperature range, owing to the hydrogen extraction by the silica membrane. In order
to obtain the MCH conversion of 90%, the reaction temperature required was 583 K in the
packed-bed reactor; however, it was experimentally shown that the reaction temperature
could be reduced to 553 K by using the membrane reactor.
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A novel membrane module in which 6 silica membranes having 200 mm–length
were directly bonded with glass sealant to a metal flat plate was developed as one of
the modularization technologies with mass production possibility, as shown in Table 1.
Permselective performances of 6 silica membranes derived from DMDPS at 573 K are
shown in Table 1. These membranes were prepared using the same conditions. All
the membranes had over 1 × 10−6 mol m−2 s−1 Pa−1 of hydrogen permeance. On the
other hand, the H2/SF6 selectivity of 6 silica membranes was slightly different. The SF6
permeance showed an extremely low value (around 1 × 10−10 mol m−2 s−1 Pa−1), which is
closed to the measurement limit; therefore, it was considered that there are few significant
differences in the H2/SF6 selectivity between 6 silica membranes. Table 2 shows the
permselective performances of our previous silica membranes for MCH dehydrogenation.
Compared with previous works, H2 permeance was around 2 times higher because of
changing to tubular alumina support having relatively high gas permeation performance.
These membranes were applied to the flange–type membrane module. In addition, this
membrane module structure had confirmed hydrogen tightness under 573 K, 0.5 MPa.

Table 1. Hydrogen permselective performances of silica membranes for membrane reactor module.

No. H2 Permeance [mol m−2 s−1 Pa−1] Selectivity (H2/SF6) [–]

1 2.84 × 10−6 21,300
2 2.00 × 10−6 15,100
3 1.94 × 10−6 13,100
4 2.09 × 10−6 9930
5 2.04 × 10−6 39,300
6 1.87 × 10−6 10,300

Picture of a novel
module using

No.1 ~ 6 membranes
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Table 2. Hydrogen permselective performances of our previous silica membranes for MCH
dehydrogenation.

Ref. H2 Permeance [mol m−2 s−1 Pa−1] Selectivity (H2/SF6) [–]

[18] 1.2 × 10−6 9300
[19] 1.17 × 10−6 4980
[20] 1.09 × 10−6 19,300

The MCH dehydrogenation is an endothermic reaction. When the reaction is con-
ducted with a membrane reactor, the conversion ratio is decreased owing to reaction
temperature reduction. Therefore, we evaluated the effect of heat conductive fins to im-
prove the temperature uniformity of catalyst layer. We tried two different structures of
heat conductive fins, as shown in Figure 6.

Results of bench–scale membrane reactor tests using different structure of heat con-
ductive fins are shown in Figure 7, and the overall heat transfer coefficient calculated from
temperature of the inlet and outlet is shown in Figure 8. In both cases, the MCH conversion
ratio exceeded the equilibrium conversion; however the reactors with heat conductive fins
were performed relatively high MCH conversion ratio to compared with that without heat
conductive fin. In addition, the reactor using Fin B showed higher conversion than that
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using Fin A under relatively high LHSV condition. The overall heat transfer coefficients
of the reactor without fin, with Fin A, and with Fin B were 80, 90, and 110 W m−2 K−1,
respectively. These results suggested that the installation of heat conductive fins effectively
transferred heat to the catalyst layer, and promoted the MCH dehydrogenation reaction.
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