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Purpose: The study is conducted to identify the best corpus callosum (CC) sub-region
that corresponds to highest callosal tissue alteration occurred due to Parkinsonism.
In this regard the efficacy of local binary pattern (LBP) based texture analysis (TA) of
CC is performed to quantify the changes in topographical distribution of callosal fiber
connected to different regions of cortex. The extent of highest texture alteration in CC is
used for differential diagnosis.

Materials and Methods: Study included subjects with Parkinson’s disease (PD)
(n = 20), and atypical Parkinsonian disorders – multiple system atrophy (MSA) (n = 20),
Progressive supranuclear palsy (PSP) (n = 20), and healthy controls (n = 20). For each
subject, we have automated the ROI extraction within mid-sagittal CC, followed by
LBP TA. Two-class support vector machine (SVM) classification for each disorder as
against HC is performed using extracted LBP features like energy and entropy. Correct
classification ratio (CCR) is computed as the fraction of correctly classified ROIs at each
of the CC sub-regions based on well-known Witelson and Hofer schemes. Based on
CCR values, the “Scatter Index (SI)” is proposed to capture how localized (closer to 0)
or scattered (closer to 1) the textural changes are among the CC sub-regions, across all
subjects per class. The CCR values are further utilized to classify the disease groups.

Results: Highest alteration of texture is observed in mid-body of CC. The consistency
of this finding is quantified using SI for all subjects in a specific class that results more
localized textural changes in PSP (15%) and MSA (25%), in comparison to PD (47%).
Classification among disease groups results maximum classification accuracy of 90% in
classifying PSP from PD-NC.

Conclusion: Our result demonstrates the efficacy of proposed methodology in
analyzing tissue alteration in MRI of Parkinsonian disorders and thus has potential to
become valuable tool in computer aided differential diagnosis.
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INTRODUCTION

Parkinsonian disorders are chronic progressive
neurodegenerative movement disorders, which are classically
categorized into Parkinson’s disease (PD) and atypical
Parkinsonian disorders such as Progressive supranuclear
palsy (PSP), multiple system atrophy (MSA), etc. (Williams
and Litvan, 2013). PD is typically characterized by levodopa
responsive rigidity, bradykinesia, and tremor, whereas atypical
Parkinsonian disorders present with several other motor
systems and tend to be poorly responsive to levodopa. These
disorders have been extensively studied using a multitude of
structural neuroimaging sequences and modalities of analysis
(Paviour et al., 2006; Heim et al., 2018; Rispoli et al., 2018);
however, texture analysis (TA), which is a quantitative method
of characterizing tissue types based on texture, has seldom been
performed for Parkinsonian disorders.

In image processing, TA refers to the characterization of
regions in an image by their texture content. The term “texture”
can be defined as a set of primitive texels (texture elements)
arranged in a particular spatial relationship. Thus TA aims
to derive an effective quantitative description of textures by
extracting various texture features. For analyzing medical images
TA is highly significant especially when tissue alteration cannot
be visually perceived, making it a powerful tool for computer
aided medical image diagnosis. Several studies have reported the
diagnostic utility of TA for different types of neurological diseases
like Alzheimer’s disease and other Dementia (Freeborough and
Fox, 1998; Kodama et al., 2009; Sivapriya et al., 2011). In
diseases such as non-Hodgkin lymphoma, mild traumatic brain
injury, and multiple sclerosis, TA has been able to identify
lesions which are not easily identifiable by the naked eye
(Harrison, 2011).

The corpus callosum (CC) is the principal white matter
fiber tract which connects the two cerebral hemispheres and is
relatively resistant to age-related changes in healthy individuals
(Bishop and Wahlsten, 1997). The integrity of callosal fibers is
associated with the communication of nerve signals between
the two cerebral hemispheres. This communication can be
potentially disrupted due to neurodegeneration leading to
cognitive impairments. Studies on CC morphometry (Luders
et al., 2018), volumetric and diffusion abnormalities of the
CC have been previously reported in Parkinsonian disorders
(Lenka et al., 2017). Furthering these advancements, our study
characterizes CC sub-regions based on its texture content.

The primary aim of the current study is to isolate that CC
sub-region which manifests to highest callosal tissue alteration
occurred due to Parkinsonism. In this regard we perform
local binary pattern (LBP) based TA of the CC in patients
with Parkinsonian disorders. This enlists information about
the integrity of the CC. Subsequently in order to check the
consistency of findings across all subjects, we derive a novel
statistical framework. This framework answers “how localized
or scattered the maximum tissue alteration is within CC” across
all subjects belonging to a specific class. The results show
that significant differences exist between Parkinsonian disorders.
This can be exploited to develop potential tools for differential

diagnosis of Parkinsonian disorders. The block schematic of the
proposed methodology is shown in Figure 1.

MATERIALS AND METHODS

Subject Recruitment and Clinical
Evaluation
Twenty patients with cognitively normal PD (PD-NC),
20 patients with clinically probable PSP, 20 patients with
probable MSA, and 20 healthy controls were recruited from
the general outpatient clinic and movement disorder services
at the Department of Neurology. The diagnosis of PD-NC was
based on the UK Parkinson’s Disease Society Brain Bank criteria
(Hughes et al., 1993), the diagnosis of MSA was based on the
criteria by Gilman et al. (2008), and PSP was diagnosed based on
the National Institute of Neurological Disorders and Stroke and
Society for PSP criteria (Litvan et al., 1996), and confirmed by
a trained movement disorder specialist (author PKP). Age and
gender matched HCs with no family history of Parkinsonism
or other movement disorder were recruited. Mid-sagittal MR
images of brain for one subject of each class are shown in
Figure 2. The study is approved by local ethics committee of
the National Institute of Mental Health and Neuro Science. The
demographic and clinical details of study groups are tabulated
in Table 1.

Imaging
MR images were acquired on 3T Philips Achieva scanner
with a 32-channel head coil at NIMHANS, Bangalore, India.
T1 weighted Magnetization Prepared Rapid Gradient Echo
(MPRAGE) sequence covering the whole brain with TR = 8.1 ms;
TE = 3.7 ms; flip angle = 8◦; sense factor = 3.5; field
of view (FOV) = 256 mm × 256 mm × 155 mm; voxel
size = 1 mm× 1 mm× 1 mm; slice thickness = 1 mm; acquisition
matrix = 256× 256.

Extraction of Region of Interests
Within CC
The entire CC is manually cropped from mid-sagittal MR
images of brain for each subject. This is done using MATLAB
(MathWorks), which is multi-paradigm numerical computing
software in C++, java programming environment. A region of
interest (ROI) is defined as a sub-image patch of CC that can
capture the local callosal texture information. Hence in order to
get information about the texture of entire CC, we have extracted
all possible ROIs within CC. The execution of ROI extraction
is automated for all subjects. ROIs are extracted carefully so
that it does not include any pixels outside the boundary of the
CC structure. The size of these ROIs is fixed and limited to
5 × 5 pixels in case of HC shown in Figure 2. It was empirically
observed that ROIs larger than 5 × 5 could not cover the entire
CC, without spilling out. Likewise for three disease groups the
size of ROIs is fixed to 4× 4 pixels due to thickness reduction that
occurred in disease group. Changes in callosal mean thickness in
Parkinsonian disorder with respect to control group are shown
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FIGURE 1 | Block schematic of our proposed methodology.

in Figure 2 where callosal thickness is measured at 100 points
spaced by equal angles from a specified centroid located half way
between the most anterior and posterior extents of the callosum
and along the inferior–superior axis at the most inferior extent of
the splenium. The mean thickness profile of CC for all groups is
plotted using C8 toolbox (Timothy et al., 2012).

TA Using LBP
TA using LBP is first mentioned by Harwood et al. (1993),
and introduced by Ojala (1996). LBP (Ojala et al., 2001) is
a widely used TA method that has been found very efficient
in discriminating textures of MR images (Oppedal et al.,
2015). The evidence obtained from the literature suggests that
the local texture information obtained from LBP-based TA
can be utilized to detect disease related abnormalities that
may not be perceptually visible. This makes LBP a powerful
tool in computer aided diagnosis for patients suffering from
Parkinsonian disorders. The explanation of LBP-based TA is
described in section “LBP Methodology.”

LBP Methodology
Local binary pattern operator encodes a local texture pattern
from an image patch. Here, the texture “T” is defined as joint
distribution of “P” number of gray levels of local neighborhood
around an image pixel: T = t(gc, g0, . . . , gP−1) where gc denote

the gray level of an arbitrary pixel (x, y) of image I, i.e., gc = I (x, y)
and gP denote the gray value of a sampling point in an evenly
spaced circular neighborhood of P sampling points and radius
R around point (x, y) and is calculated as gP = I(xP, yP) where
xP = x+ Rcos

(
2πp/P

)
and yP = y− Rsin

(
2πp/P

)
for p = 0 to

P-1. The function “t” eventually defined the texture of the image.
In order to obtain a robust texture classification, LBP uses a
local circular window. In a circular neighborhood, the intensity
values of diagonal pixels, having non-integer pixel coordinates,
are estimated by bilinear interpolation.

To achieve gray level invariance, the center pixel value is
subtracted from all gray values of the circular neighborhood: T =
t(gc, g0, . . . , gP−1-gc) Assuming the center pixel to be statistically
independent of the differences, we can factorize the above
as: T ≈ t

(
gc
)

t(g0 − gc, . . . , gP−1 − gc) where t
(
gc
)

defines
the intensity distribution of I(x, y) that contains no useful
information in order to describe local texture pattern. Hence only
the joint distributions of differences are used to model the local
texture: T ≈ t(g0 − gc, . . . , gP−1 − gc). By considering the signs
of the differences, invariance with respect to gray-scale shifts
is achieved: T ≈ t(s(g0 − gc), . . . , s(gP−1 − gc)) where s (X) ={

1, X ≥ 0
0, else
This is transformed into a unique P-bit pattern LBP code using

Eq. 1. Thus the LBP code is computed by summing the threshold
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FIGURE 2 | Comparison of CC region in brain across samples taken from HC. PD, PSP, and MSA (A) MR image of HC. (B–D) MRI scans of subjects with PD. PSP
and MSA respectively. Panel (F) shows the CC thickness centile profile for all study groups: HC (blue)-blue, PD-NC (black). MSA (red), PSP (green). The centiles are
plotted along x-axis. The thickness profile clearly shows the thickness reduction in CC occurred in Parkinsonian disorders compared to HC. The zoomed version of
(i) manually extracted CC from mid-sagittal MRI and (ii) the extracted ROIs within CC are also shown in the left most column. ROI (the overlapping rectangular boxes
of size 5 × 5 shown in red all through the CC) automation with window size 5 × 5 ensures the entire CC is exhaustively covered. Some sample ROIs are highlighted
in blue.

TABLE 1 | Demographic details of patients and controls.

PD-NC (n = 20) MSA (n = 20) PSP (n = 20) HC (n = 20)

Male: female 13:7 12:8 16:4 15:5

Mean age (in years) 59.15 ± 8.15 53.90 ± 5.53 63.50 ± 7.36 55.3 ± 2

Mean age at onset 52.07 ± 8.24 51.05 ± 5.60 61.32 ± 7.10 NA

Duration of illness 7.57 ± 4.30 2.85 ± 1.50 2.17 ± 0.79 NA

Mini Mental State Examination score (MMSE) 28.71 ± 0.84 27.52 ± 1.20 26.20 ± 2.30 NA

differences weighted by powers of 2. This gives a label for the
center pixel that describes the local texture information.

LBPP,R =

P−1∑
p=0

s
(
gp − gc

)
2p (1)

Eq. 1 characterizes the spatial structure of the local image
texture. The LBP histogram that describes the distribution of
LBP values of a particular image patch is treated as its texture in
classification problem.

It has been shown that the fundamental properties of texture
can be captured by using only certain LBPs. These patterns are
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termed as “uniform patterns.” In our study also we observed
that most of the LBPs present in a specific region of CC were
uniform in nature. Uniformity “U” is measured by number
bitwise transitions in the pattern. Patterns that have a “U” value
of at most two are designated as “uniform.” The uniform LBP
histogram is formed by considering separate output label for
each uniform pattern whereas all the non-uniform patterns are
allocated to a single label.

LBP Texture Feature Extraction
For the 2D TA approach, the uniform LBP values are calculated
from each selected ROI for all subjects in the data set using
MATLAB R2018a. As the sizes of ROIs are very small, we
choose only one combination of neighborhood pixels: P = 8 with
radius R = 1. Our previous study on TA of PSP has proved
LBP energy and entropy as the best features as they contribute
highest statistically significant textural difference in entire CC
than all other extracted first order LBP histogram features like
skewness, kurtosis, mean, variance, and mean absolute deviation
(MAD) (Bhattacharya et al., 2019). Based on this observation, in
the current study, we have computed gray level LBP histogram
features Entropy and Energy in all ROIs which are considered as
a descriptor of the distributions of the LBP texture values.

(A) Entropy: Entropy is a measure of randomness of gray level
distribution. Images with larger number of gray levels have larger
Entropy. It is calculated using Eq. 2 as:

H = −
n−1∑
i=0

filog2
(
fi
)
; fi 6= 0 (2)

where i denote the number of gray levels in each ROI and fi is the
frequency of occurrence of the sample values of LBP histogram.

(B) Energy: Energy measures the intensity variation in an
image patch and is calculated using Eq. 3 as:

E =
n−1∑
i=0

(xi)
2fi (3)

where the sample values of LBP histogram is denoted by xi .

Support Vector Machine Classification
The computed LBP texture features (on average 3,500 features
for Energy and 3,500 for Entropy) are fed for training to off-the-
shelf two-class classifier for the following scenarios: (a) PD-NC
Vs. HC, (b) MSA Vs. HC, and (c) PSP Vs. HC. The purpose
of this two class classification of each disease groups and HC
group was to test the study hypothesis that there is anatomically
coherent tissue loss in CC as a result of Parkinsonism. Sections
“CC Sub-Region Ranking Based on Classification Performance”
and “Scatter Index: Quantification of Dispersion in AI” of this
paper describe how the result of this classification is utilized
to form a new statistical framework that could be useful for
differential diagnosis. Classification is performed for each ROI
separately in order to detect the region of texture alteration within
CC. In this regard we have used support vector machine (SVM),
which is considered as a subfield of artificial intelligence.

Support vector machine is the supervised machine learning
model where a model is learnt from known classes (labeled

FIGURE 3 | Illustration of SVM hyperplane.

training data) and able to perform discriminative classification
tasks by constructing hyperplanes (decision surface) in a
multidimensional space that separates cases of different class
labels. Support vectors are the data points that lie closest to the
hyperplane and hence most difficult to classify. SVMs maximize
the margin around the separating hyperplane. So, the hyperplane
that has the largest distance to the nearest training-data point
of any class will achieve good separation, as larger margin yields
low generalization error of the classifier. The illustration of SVM
hyperplane is shown in Figure 3.

Given the input features xi = {x1, x2, . . . , xn}, the output for
SVM will be the weights wi, one for each feature whose linear
combination predicts decision boundary. The hyperplane H is
defined using the straight line equation wTx+ b = 0, where w
is the weight vector, x is the input vector and b is the bias. This
will allow computing two planes H1 and H2 such that:

H1 : wTx+ b ≥ 0, if di = +1

H2 : wTx+ b ≺ 0, if di = −1

where d is the margin of separation between the hyperplane and
the closest data point for a given weight vector w and bias b. The
optimal hyperplane is the particular hyperplane for which the
margin of separation d is maximized. The distance from a data
point that lies on H1 or H2 to the hyperplane H is computed
as
∣∣wTx+ b

∣∣ / |w|. Hence in order to maximize the margin of
separation “d” one needs to minimize |w| so that there are no data
points between H1 and H2. The problem of finding the optimal
hyperplane can be solved by optimization techniques. In addition
to performing linear classification, SVMs can also efficiently
execute a non-linear classification problem where cluster analysis
might not be a good choice. Non-linear SVM classification
is performed using the kernel function that indirectly maps
the data points into high-dimensional feature spaces. In this
study the well-known sequential minimal optimization (SMO)
algorithm with a polynomial kernel is used. As the principle
of SVM lies in maximizing the margin to separate classes, the
trained SVM model generalizes best on unseen data compared
to other classifiers, making it a powerful tool at recognizing
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subtle patterns in complex biological datasets where feature
patterns may represent the disease subtypes. Moreover SVM-
based classification has the flexibility in choice of diverse kernels
so as to optimize the performance even when target classes are
overlapping. In problems with limited data instances, where deep
neural networks cannot be utilized, SVM would be a best choice.
To address the possibility of overfitting due to smaller number
of subjects, our study considers leave-one-out cross validation
where at each iteration the SVM model is trained on all subjects
expect one subject and test error or prediction is computed for
this held out subject.

CC Sub-Region Ranking Based on
Classification Performance
CC Sub-Division
Characterization of CC sub-regions is performed in order to
check the degree of mid-sagittal callosal tissue alteration. Hence
five well-defined anatomical sub-regions are generated by well-
known Witelson and Hofer-Frahm CC vertical sub-division
scheme (Hofer and Frahm, 2006) for each subject. In this study
these five sub-regions denoted as R1, R2, R3, R4, and R5.
Witelson’s CC sub-division scheme is based on primate data that
divides the entire CC into five sub-regions which are as follows:

(a) Anterior third (R1): It consists of first one-third of entire
CC. Rostrum, genu, and rostral body are assigned to pre-
frontal, pre motor, and supplementary motor cortical areas.

(b) Anterior mid-body (R2): It consists of one-sixth of entire
CC. Fibers originating in motor cortex are assumed to cross
CC through anterior mid-body.

(c) Posterior mid-body (R3): It consists of one-sixth of entire
CC. Somaesthetic and posterior parietal fiber bundles cross
CC through this area.

(d) Posterior third (R4): It is two-fifteenth of entire CC
that consist of posterior parietal and superior temporal
fiber projection.

(e) Posterior one-fifth (R5): It is one-fifth of entire CC that
consists of occipital and inferior temporal fiber projection.

However Witelson’s classification schemes could not able to
reflect CC texture at the cellular level. Hence most of the current
studies on CC prefer Hofer-Frahm scheme where parcelation
of CC is done with respect to the outcome of the DTI fiber
tractography that address cortical interconnectivity information
of CC. According to Hofer-Frahm scheme the five vertical sub-
regions of are as follows:

(a) Region1 (R1): It consists of the first one-sixth
of entire CC and comprises fiber projecting into
prefrontal area of cortex.

(b) Region-2 (R2): It consists of one-third of entire CC
and comprises fibers that projects to premotor and
supplementary motor areas.

(c) Region-3 (R3): In consists of one-sixth of entire CC and
contains fibers projecting into the primary motor cortex.
Hence in this particular region remarkable difference
compared to Witelson’s classification was recognized

which postulates that primary motor fiber cross CC
in anterior half.

(d) Region-4 (R4): It is one-twelfth of entire CC. Primary
sensory fibers cross CC through this region.

(e) Region-5 (R5): It is defined as posterior one-fourth.
Parietal, temporal, occipital fiber cross CC through this
region.

The five distinct CC sub-divisions according to Witelson’s and
Hofer scheme are shown in Figure 4.

Correct Classification Ratio
We utilize a measure “correct classification ratio” (CCR) for
each of the classes based on SVM classification performance
on the individual extracted ROIs as described in section
“Support Vector Machine classification.” The CCR values
in each disease group quantify the extent of callosal tissue
alteration that occurred due to Parkinsonism. This enables
one to identify the CC sub-regions that are most affected by
texture alteration in Parkinsonian disorders. CCR is defined
as the ratio of number of correctly classified ROIs to the
total number of ROIs for a specific sub-region. Hence for a
particular subject, in a specific class, CCR depicts the fraction
of ROIs that are correctly classified. Using both Witleson and
Hofer schemes, in each sub-region, CCR values are calculated
for each subject.

Detection of Key Callosal Sub-Regions With Highest
Tissue Alteration
CCR values are used in order to identify best distinguishing
callosal sub-region that corresponds to highest texture alteration.
The following steps are performed separately for each of the
classes to detect key callosal sub-regions with highest texture
alteration:

Step 1: For each subject in the given class, the CCR value
for every sub-region is sorted in descending order. This will
result in an array of five components for five callosal sub-
regions, where the first element contain CC sub-region index
having highest CCR value and the last element contain CC sub-
region index having least CCR. Hence we obtain a sorted array
for each subject.

Step 2: These subject-specific sorted arrays are stacked
together to form a matrix, of size 20 × 5, called the “CCR-
Rank Matrix” (CCR-RM). Thus CC sub-region index of first
column of the CCR-RM will contain the best-performing sub-
region having highest texture alteration. We name this column
as “Array of Importance (AI),” reflecting the CC sub-regions with
highest texture alteration.

Hence we defined the key callosal sub-regions as the sub-
regions with highest number of occurrences in AI. The CCR
values in AI are utilized to differentiate the disease groups.

Scatter Index: Quantification of
Dispersion in AI
The AI as defined in section “Detection of Key Callosal Sub-
Regions With Highest Tissue Alteration” is utilized to capture the
variation in distribution of CC sub-regions, across all subjects,
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FIGURE 4 | Five anatomical sub-regions of CC using Witelson’s (A) and Hofer-Frahm (B) scheme is shown. Visualization of the local texture alteration using Energy
(C) and Entropy (D) is shown for one representative subject of PD-NC (yellow), MSA (red), PSP (green) and HC (blue). The colored region showed the ROIs that were
correctly classified based on LBP texture features.

for each disease group. For a given class, the frequency of
occurrence of CC sub-regions across all subjects is used to
measure the Frequency Standard Deviation (FSD) and Frequency
Coefficient of Variation (FCV) using Eq. 4. If a certain CC sub-
region index (say, sub-region – “x”) performs best classification
across all subjects, in a given disorder; it would mean that
the texture alteration is highly localized within that sub-region
for the considered disorder. Conversely, if the sub-regions that
performed best in classification vary among subjects it would
mean that the texture alteration is spread over several sub-regions
for that class. This leads to the notion of “Scatter index (SI),”
which we propose to measure the degree of spread in texture
alteration for a disorder. SI is computed using Eq. 5. Significance
of SI lies in predicting the consistency in texture alteration
in a particular sub-region for a particular disorder. Table 2
illustrates difference between the SI values of the two extreme
cases: when (a) all sub-regions in AI appear equal number of
times or (b) only one sub-region appears, for all subjects in
AI. Considering these two ideal cases, it has to be noted from
Table 2 that the ideal values of SI ranges from 0.135 to 1 if
frequencies are distributed in five sub-regions, as is the case with
the CC. Hence for our study we can infer that in a specific
class if SI is close to 0.135, the tissue alteration is more localized
for the given disorder. Similarly in a specific class if SI is close
to 1, the tissue alteration is more scattered for that disorder.

FSD =

√∑N
k=1(fk − f̄ )2

N
where f̄ =

∑N
k=1 fk
N

(4)

SI = e−FCV where FCV = FSD/f̄ (5)

Here, “N” is the total number of CC sub-region (N = 5) and fk
is the frequency of occurrence of CC sub-regions.

Thus the percentage deviation from minimum value of SI in
ideal case (here, SIIdealMin = 0.135) will reflect how localized the
texture alteration is across all CC-sub-regions.

% SI = (SICalculated − SIIdealMin)× 100 (6)

Hence the smaller value of %SI will indicate more localized
texture alteration within a particular sub-region.

RESULTS

The entire code was written in MATLAB R2018a and run on a
machine with Intel R© CoreTM i3 4005U CPU 1.70 GHz processor
with 4.0GB RAM. Figures 4C,D showed the visualization of ROIs
which are correctly classified based on SVM classification using
LBP-based features, Entropy and Energy. The mean CCR value in
each callosal sub-region according to well-known Witelson’s and
Hofer-Frahm’s scheme is calculated for extracted features and
tabulated in Table 3. High CCR values are obtained using Entropy
throughout CC compared to that for Energy. Using Energy the
highest CCR values are obtained in sub-region R3 and R4 of
Hofer’s CC sub-division scheme and in sub-region R2 to R4 of
Witelson’s CC sub-division scheme.

TABLE 2 | Ideal values of Frequency Standard Deviation (FSD), Frequency Coefficient of Variation (FCV), and Scatter Index (SI) values in two extreme cases when
considering five sub-regions.

Frequency of occurrence 1 2 3 4 5 FSD FCV SI Interpretation

Uniform occurrence 0.2 0.2 0.2 0.2 0.2 0 0 1 Regions with texture alteration are maximally scatter

Single occurrence 0 0 0 1 0 0.4 2 0.135 Regions with texture alterations are maximally localized
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TABLE 3 | The mean Correct Classification Ratio (CCR) values, using the two-class classification accuracies obtained on ROIs separately in each of the
five CC sub-regions.

R1 R2 R3 R4 R5

H W H W H W H W H W

E
nt

ro
py

(a)
PD-NC 0.72 0.77 0.985 1 1 1 1 1 0.92 0.89

HC 0.85 0.81 0.87 0.84 0.87 0.85 0.95 0.97 0.97 0.96

(b)
MSA 0.56 0.6 0.96 1 1 1 1 1 0.95 0.89

HC 0.89 0.81 0.89 0.87 0.9 0.91 0.95 0.96 0.97 0.95

(c)
PSP 0.68 0.76 0.99 1 1 1 1 1 0.98 0.94

HC 0.87 0.915 0.97 0.995 1 1 0.99 0.99 0.99 0.98

E
ne

rg
y

(a)
PD-NC 0.55 0.36 0.45 0.57 0.55 0.59 0.67 0.68 0.52 0.48

HC 0.84 0.84 0.99 1 1 1 1 1 0.98 0.98

(b)
MSA 0.35 0.19 0.5 0.66 0.72 0.71 0.75 0.7 0.67 0.55

HC 0.87 0.85 0.99 1 1 1 1 1 0.95 0.98

(c)
PSP 0.43 0.39 0.55 0.56 0.75 0.81 0.84 0.82 0.79 0.59

HC 0.9 0.93 1 1 1 1 1 1 1 1

(R1–R5) based on Witelson (W) and Hofer (H) CC sub-division scheme (using Entropy and Energy features). The three classification scenarios considered are: (a) PD-NC
vs. HC, (b) MSA vs. HC, and (c) PSP vs. HC. The highlighted columns show the CC sub-regions where mean CCR is significant.

Highest Tissue Alteration Is More
Localized in Mid Callosal Region of PSP
and MSA Compared to PD-NC
As discussed earlier in section “CC Sub-Region Ranking
Based on Classification Performance,” AI of Parkinsonian
disease groups computed from CCRM are examined to
predict the sub-regions with highest texture alteration
as compared to HC. Frequency of occurrence of CC
sub-regions in AI is utilized (Table 4) to investigate the
pattern of sub-regions distribution across all subjects
in a particular disease group corresponding to highest
texture alteration.

Comparing all disease groups, it is observed that most of the
occurrences of CC sub-region in AI of PSP group are localized
into two regions: R3 and R4. The same is observed in MSA and
PD-NC. Using LBP Energy feature the frequency distribution
of CC sub-regions according to Hofer scheme for each disease
group is plotted in Figure 5. More concentration of subjects in
R3 and R4 in Figure 5 clearly depicts mid callosal regions as the

TABLE 4 | Fraction of total CC sub-region occurrences (f1–f5) computed from
Array of Interest (AI) using Witelson (W) and Hofer (H) scheme.

Region R1 R2 R3 R4 R5

Fraction of total occurrences f1 f2 f3 f4 f5

PD-NC H 0.1 0.2 0.3 0.3 0.1

W 0.05 0.30 0.35 0.2 0.1

MSA H 0 0.25 0.4 0.35 0

W 0 0.25 0.5 0.25 0

PSP H 0 0.05 0.45 0.50 0

W 0 0.1 0.35 0.55 0

FIGURE 5 | Plot of frequency of occurrence of CC sub-regions using energy
feature, based on entries in AI (X axis represents CCR values; Y-axis
represents the five distinct CC sub-regions). The vertical spread for PD-NC
(black) indicates greater spread of maximum texture altered sub-regions in AI
for all PD subjects, compared to MSA(red) and PSP (green) where for all
subjects maximum texture alteration was mostly concentrated at mid-body
(R3 and R4) for all respective subjects.

key regions with highest texture alteration for all disease groups.
Using Hofer scheme, the percentage of subjects in AI corresponds
to key sub-regions (R3 + R4) are as follows: (a) PD-NC: 60%
(12/201), (b) MSA: 75%, (15/20), and (c) PSP: 95% (19/20).
Similar result is observed using Witelson scheme. Using this
scheme, 65% PD-NC (13/20) and 75% of MSA (15/20) subjects

1No. of subjects with highest CCR obtained in key sub-regions/total no. of subjects.
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corresponds to key sub-region R2 and R3, whereas 90% of PSP
(18/20) subjects correspond to key sub-region R3 and R4. Using
Entropy it was seen that almost all subjects of each class gives
maximum tissue alteration from R2 to R5.

The observation made from Figure 5 in turn illustrates how
scattered or localized the tissue alteration is across all subjects in
a specific class. It is observed that frequency of occurrence of CC
sub-regions across all subjects are more scattered from R1 to R5
in case of PD-NC (shown in black in Figure 5) compared to MSA
(shown in red in Figure 5) and PSP (shown in green in Figure 5)
where frequency of occurrence of CC sub-regions across all
subjects are concentrated mostly in mid callosal regions. This is
further verified quantitatively using SI to check how localized
the texture alteration is in AI across all subjects for a specific
class. The computed FSD, FCV, and SI values using Energy for
each disease groups are shown in Table 5. Using Entropy the
SI is found to be 0.13 (equals to ideal value of SI) as maximum
texture alteration for all subjects using entropy was found in R3
and R4 using Hofer scheme and in each R2, R3, and R4 using
Witelson scheme.

CCR Values of AI Obtained Using LBP
Energy Feature Address Differential
Diagnosis
Using LBP energy texture feature, the mean CCR in AI for PD-
NC, MSA, and PSP is obtained as 0.54 ± 0.07, 0.73 ± 0.05, and
0.86 ± 0.11 respectively which represent the amount of correctly
classified ROIs corresponding to highest texture alteration. This
diversity in CCR values in AI among disease is exploited to
distinguish the disease groups, leading to differential diagnosis.
Student paired t-test is executed, confirming that the difference
in CCR values is statistically significant between the disease
groups (p = 1.5 × 10−7 for PD-NC and PSP, p = 1.78 × 10−5

for MSA and PSP, p = 0.0015 for PD-NC and MSA). Power
analysis is performed using MATLAB to compute power that
checks the probability of rejecting the null hypothesis, when
the null hypothesis is false. Given the sample size, the power
analysis results statistical power of 0.8690 between PD-NC and
MSA, 1 between PD-NC and PSP, and 0.9961 between MSA
and PSP. The high statistical power of the study indicates lower
probability of making type-II error. The power curve is plotted
in Figure 6 that also showed the minimum size of data sample
that is required to provide the obtained power. The energy CCR
values in AI are fed to SVM for two class classification of (a) PD-
NC Vs. MSA, (b) PD-NC Vs. PSP, and (c) MSA Vs. PSP using
polynomial kernel function. The performance measures of SVM
for disease classification are reported in Table 6. The receiver
operator characteristic (ROC) curves (Figure 7) plot the true-
positive rate of classification (sensitivity) against the false-positive
rate (specificity) for three disease classification scenario. The
maximum accuracy of 90% accuracy is obtained to classify PD-
NC from its atypical variant of PSP with area under the curve
(AUC) of 90% relating to both groups. The obtained classification
accuracy is 80 and 82.5% in classifying between MSA and PSP,
PD-NC, and MSA, respectively.

TABLE 5 | Scatter Index (SI) Values (using Energy) for Parkinsonian disorders
obtained from AI: using Hofer (H) and Witelson (W) schemes.

Disorders FSD FCV SI % SI

PD-NC H 0.10 0.5 0.6 47

W 0.12 0.6 0.54 41

MSA H 0.19 0.95 0.38 25.1

W 0.2 1 0.36 22.5

PSP H 0.25 1.25 0.28 15.1

W 0.24 1.2 0.3 16.6

DISCUSSION

Texture analysis of medical images is a growing research area
since the medical image texture is rich in diagnostic information
that can be exploited. There are number of literatures that
report the application of TA in the field of medical image
analysis (Freeborough and Fox, 1998; Kaeriyama et al., 2002;
Kodama et al., 2009; Harrison, 2011; Sivapriya et al., 2011;
Oppedal et al., 2015). TA of MR images is a quantitative
tool that enables characterization of different tissue types by
analyzing its textures. In this regard the statistical approaches
are widely used in medical images that utilize the spatial
distribution of gray values to derive a set of statistics from
the distributions of the local features that are defined by the
combination of intensities at specific position relative to each
pixel in image. The use of gray level co-occurrence matrices
(GLCM) and run-length matrices (Haralick, 1973; Kaeriyama
et al., 2002) are the most popular methods to study different
neurological disorders. Statistically significant GLCM texture
differences of CC was found in subjects with mild Alzheimer
disease, amnestic mild cognitive impairment (Sivapriya et al.,
2011), and also with mild traumatic brain injury (Holli et al.,
2010). Classification of dementia in AD using TA of brain
MRI with wavelets and GLCM results in 90–97% accuracy
(Sivapriya et al., 2011). GLCM and run length matrix based
texture parameters to differentiate among patients with AD, those
with Lewy bodies, and HC subjects showed an accuracy of 91.7,
70.0, and 88.0%, respectively (Kodama et al., 2009). Despite of
wide applicability the high dimensionality of GLCM and run-
length-based texture parameter is one major limitation as it
increases computational complexity. In such situation, LBP TA
is an alternate way which is computationally simple yet has been
found very efficient in the studies of medical texture classification
(Oppedal et al., 2015).

In this study, we have demonstrated the ability of MRI-based
LBP TA to characterize the CC sub-regions in different
Parkinsonian disorders, and the utility of this method lies
in the possible diagnosis of atypical Parkinsonian disorders.
All possible ROI which are well within CC are extracted,
followed by computing LBP texture features like Energy
and Entropy. For each ROI, SVM classification using these
texture parameters is performed for each disease group with
respect to HC in order to predict the texture alteration
caused due to neurodegeneration. ROIs that yield the
correct classification are visualized and quantified further
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FIGURE 6 | Power analysis curve is plotted that showed high statistical power of the analysis. The minimum number of sample size that is required (n = 17 to
classify PD-NC vs. PSP, n = 18 to classify PSP vs. MSA and n = 19 to classify PD-NC vs. MSA) to obtain the desired power is also shown.

for characterizing CC sub-regions based on highest texture
alteration. For this, AI is computed from CCRM that predicts
the sub-region where changes in callosal tissue is maximum.
AI detects the callosal mid-body as the key region with highest
texture alteration.

The proposed index SI computed from AI is intended to
measure the degree of spread of texture alteration in CC.
Percentage deviation in SI identifies how localized the texture
alteration is within a particular sub-region. Thus less the value
of percentage SI, more localized the tissue alteration is within
CC. Although using Witelson and Hofer schemes, Energy texture
features showed significant tissue alteration at mid-body of CC,
for Entropy it was significant enough from mid-anterior to
extreme posterior of CC with the value of mean CCR in the
range of 0.95 to 1. Using Energy the maximum percentage of SI is
obtained for PD-NC (47% according to Hofer scheme) indicating

that occurrence of CC sub-regions in AI and so the texture
alteration is scattered across all subjects and could be the cause
of attaining minimum mean CCR score (0.55 ± 0.07) at callosal
mid-body. However, in case of PSP and MSA, occurrences of CC
sub-regions in AI with highest tissue alteration are more localized
at mid-body region (R3 and R4) with percentage of SI at 25.1% for
MSA and 15.1% for PSP according to Hofer scheme.

In comparing the three disease groups, it is found that the
texture alteration becomes significant with disease severity. This
is evident from the mean CCR values of AI that indicate the
extent of callosal tissue loss due to Parkinsonism. The varied
range of mean CCR of AI for the disease groups makes our study a
potential tool, leading to differential diagnosis. Highest accuracy
of 90% is obtained while distinguishing PSP and PD-NC. The
accuracy reduced to 82.5% when differentiating MSA from PD-
NC. This could be attributed to the fact that microstructural

TABLE 6 | Performance measures of Support Vector Machine (SVM) for differential diagnosis using Correct Classification Ratio (CCR) values that reflects the extent of
callosal tissue alteration in Parkinsonian disorders.

Sensitivitya Specificityb Precisionc Recalld F-scoree Accuracy (%)

PD-NC 0.8 0.85 0.84 0.8 0.82 82.5

MSA 0.85 0.8 0.81 0.85 0.83

PD-NC 0.85 0.95 0.94 0.85 0.89 90

PSP 0.95 0.85 0.86 0.95 0.9

MSA 0.85 0.75 0.77 0.85 0.81 80

PSP 0.75 0.85 0.84 0.75 0.79

aSensitivity = tp/(tp + fn), bSpecificity = tn/(tn + fp), cPrecision = tp/(tp + fp), dRecall = tp/(tp + fn), eF-score, a measure of classification
performance, = 2*precision*recall/precision + recall, where tp = true positive, fp = false positive, tn = true negative, and fn = false negative.
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FIGURE 7 | Illustration of result of differential diagnosis using Receiver
operator characteristics (ROC) curve. SVM with leave-one-out two-class
classification was performed to classify the disease groups to check the
potential of our technique to perform differential diagnosis. The two-class
classification scenarios were: (A) PD-NC Vs. MSA, (B) PD-NC Vs. PSP, and
(C) PSP Vs. MSA. The ROC curve pertaining to the classification into each
group is shown here with the obtained result as tabulated in Table 6. The area
under the curve (AUC) is obtained as 0.825, 0.90, and 0.8 relating to both
groups in each of the classification scenarios respectively. Comparing all
disease groups, the highest accuracy with AUC over 0.9 was obtained when
classifying typical PD (PD-NC) with respect to PSP.

callosal tissue alteration is more pronounced in PSP compared to
MSA and PD-NC. This is further verified from the callosal centile
thickness profile which is plotted in Figure 2 that clearly depicts
reduction in callosal thickness is more prominent in PSP than
MSA when they are compared with the thickness profile of PD-
NC. The classification of PSP and MSA results accuracy of 80%.

The CC is the main white-matter fiber bundle and has
several critical connections with cortical regions. The current
knowledge of callosal involvement in neurodegenerative
disorders suggest that the changes in motor cortical activation
are more pronounced in case of Parkinsonian disorders
(Defebvre et al., 1999; Halliday et al., 2005; Jennifer, 2011;
Worker et al., 2014; Fichera et al., 2016). Axonal degeneration
in the CC specifically in the axons in the mid body of the
CC interconnect areas of the motor cortex that is responsible
for preparation and sensory guidance of movement and
abnormalities in this segment are proposed to be secondary
to damage in cortical neurons, i.e., due to Wallerian
degeneration (Hellier, 2014). The findings of this study
demonstrate the presence abnormalities in the CC of PD and
atypical Parkinsonian disorders, and the possible utility in
automated diagnosis.

The novelty of the paper lies in deriving SI as a measure
in order to detect the most-distinguishing CC sub-regions with
highest tissue alteration based on LBP texture. The proposed
method showed callosal texture alteration is more localized at
callosal mid-body for atypical variants of PD. Using SI, the
quantification of changes in callosal tissue at its mid-body
could be used as a possible biomarker tool in computer aided
diagnosis of Parkinsonian disorders. The study is limited by data
availability and needs to be conducted on a much larger dataset
for generalization. Nevertheless the inference from the current
study offers a basis for practical clinical applications that could
address differential diagnosis. However it is to be noted that CC
is not a primary site of pathology in Parkinsonian syndromes as it
is involved at advanced stages of disease. Therefore, the proposed
study highlights the potential of the technique but future studies
need adaptation to anatomical structures that are subject to
degeneration at earlier stages of Parkinsonian syndromes.

CONCLUSION

In this study we estimated the proficiency of LBP TA for
characterizing CC sub-region based on its textural alteration
that occurred in patients with Parkinsonian disorders. We
hypothesized that these neurodegenerative diseases may cause
loss in tissue structure of CC which is not perceptible visually.
A new measure, “SI index,” is proposed to predict the CC sub-
regions that are best classified across all subjects for a particular
class using LBP TA. Our proposed methodology showed mid-
body of CC as the key region with significant texture deviations
in case of Parkinsonian disorder compared to HC. Hence, the
study of LBP with mid-body CC TA showed its potential to
become a new additional tool, to aid in the detection of CC
texture alterations in Parkinsonian disorders for the diagnosis
and understanding of this pathology.
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