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Abstract: Nucleotide sugars (NSs) serve as substrates for glycosylation reactions. The majority
of these compounds are synthesized in the cytoplasm, whereas glycosylation occurs in the endo-
plasmic reticulum (ER) and Golgi lumens, where catalytic domains of glycosyltransferases (GTs)
are located. Therefore, translocation of NS across the organelle membranes is a prerequisite. This
process is thought to be mediated by a group of multi-transmembrane proteins from the SLC35
family, i.e., nucleotide sugar transporters (NSTs). Despite many years of research, some uncertain-
ties/inconsistencies related with the mechanisms of NS transport and the substrate specificities of
NSTs remain. Here we present a comprehensive review of the NS import into the mammalian Golgi,
which consists of three major parts. In the first part, we provide a historical view of the experimental
approaches used to study NS transport and evaluate the most important achievements. The second
part summarizes various aspects of knowledge concerning NSTs, ranging from subcellular local-
ization up to the pathologies related with their defective function. In the third part, we present the
outcomes of our research performed using mammalian cell-based models and discuss its relevance in
relation to the general context.

Keywords: nucleotide sugar transporter; glycosylation; SLC35A1; SLC35A2; SLC35A3; SLC35C1;
SLC35B4

1. Introduction to Glycosylation

Glycosylation is a process of enzymatic attachment of sugar residues to macro-
molecules [1]. This process occurs due to the sequential action of glycosyltransferases [2].
Glycosylation takes place mainly inside the endoplasmic reticulum (ER) and the Golgi
apparatus of eukaryotic cells. The phenomenon of cytoplasmic and nuclear glycosylation
has also been described [3] and involves the attachment of a single N-acetylglucosamine
(GlcNAc) residue to proteins (protein O-GlcNAcylation).

The main classes of glycoconjugates are distinguished by the type of macromolecule
to which carbohydrate moieties are attached and include glycoproteins, proteoglycans, and
glycolipids. Glycoproteins are proteins with one or more covalently attached oligosaccha-
ride chains; proteoglycans are proteins with one or more covalently linked glycosaminogly-
can (GAG) chains; glycolipids are lipids with one covalently attached oligosaccharide chain.

In glycoproteins, carbohydrate moieties, i.e., glycans, can be attached to a polypeptide
chain in two main ways. N-glycans are attached to the amide nitrogen of an asparagine
residue found within the characteristic amino acid triplet Asn-X-Ser/Thr (where X stands
for any amino acid residue except proline), while O-glycans are attached to the oxygen
atom of serine or threonine.

N-glycan biosynthesis begins on the cytoplasmic side of the ER membrane with the
formation of an oligosaccharide precursor composed of fourteen sugar residues (GlcNAc2-
Man9-Glc3) attached to dolichol phosphate [4]. Dolichol phosphate enables the transfer of
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the oligosaccharide precursor to the ER lumen, where it is subsequently transferred onto the
asparagine residue of the nascent polypeptide chain. Several further modifications in the ER
and Golgi apparatus, made by the appropriate glycosidases and glycosyltransferases, lead
to the formation of mature N-glycans. Based on the type of predominating sugars, three
types of N-glycans, i.e., high mannose (Man), complex and hybrid, can be distinguished,
all of which share a common pentasaccharide (Man3-GlcNAc2) core.

Biosynthesis of mucin-type O-glycans begins with the addition of an N-acetylgalactosa
mine (GalNAc) to a serine or threonine residue of the protein [5]. This reaction takes place in
the Golgi apparatus [6]. As a result, the simplest mucin-type O-glycan is formed which can
be further extended, eventually leading to the formation of several types of core structures
composed of a few to a dozen or so monosaccharides. In addition to GalNAc, typical
mucin-type O-glycans contain galactose (Gal), GlcNAc, fucose (Fuc), and sialic acid (Sia).

Proteoglycans are composed of core proteins and GAG chains. Most GAGs are linear
polysaccharides made of several repeats of disaccharide units formed by hexosamine and
uronic acid. The polymerization of the GAG chains takes place in the Golgi apparatus,
where they subsequently undergo several modifications including sulfation.

Glycosphingolipids (GSLs) are glycolipids composed of a ceramide and an oligosaccha-
ride. Glycosphingolipids are essential components of the plasma membranes of mammalian
cells. The precursor of the majority of GSL species is glucosylceramide (GlcCer) which is
synthesized on the cytoplasmic side of the Golgi membrane [7]. Glucosylceramide can
be subsequently extended in the Golgi lumen by a series of glycosyltransferases. The
resulting GSLs may contain Gal, GalNAc, GlcNAc and Sia residues. A small subset of GSLs
is derived from galactosylceramide (GalCer) which is synthesized in the ER lumen [8].

The biosynthesis of glycoconjugates is mediated by glycosyltransferases. These are
usually type II membrane proteins with a short N-terminal cytoplasmic tail, a single
transmembrane domain (TMD) followed by a so-called stem region and a C-terminal
catalytic domain located in the ER/Golgi lumen [9]. However, soluble as well as multi-
transmembrane glycosyltransferases have also been identified [10,11].

Glycosylation plays many fundamental roles, especially in higher multicellular or-
ganisms. It mediates a wide range of biological recognition events of both intrinsic (e.g.,
interactions of selectins with their ligands during the leukocyte adhesion cascade) and ex-
trinsic (e.g., binding and adhering of pathogens to host cells) origin. Moreover, it regulates
signal transduction pathways and intracellular trafficking events. In many cases, the pres-
ence of the carbohydrate moiety increases stability of the modified protein (glycosylated
proteins are usually more resistant to denaturing factors and proteolysis).

The donors of sugar residues for the majority of glycosylation reactions are activated
forms of monosaccharides, i.e., nucleotide sugars (NSs). Activation of monosaccharides
involves the conversion of a respective sugar with either a mono- (CMP) or diphospho-
nucleotide (GDP/ UDP). Nucleotide sugars are synthesized in mammalian cells and their
commonly used abbreviations are listed in Table 1.

Table 1. A list of nucleotide sugars synthesized in mammalian cells and their commonly
used abbreviations.

Nucleotide Sugar Full Name Abbreviation

cytidine monophosphate sialic acid CMP-Sia
guanosine diphosphate mannose GDP-Man

guanosine diphosphate fucose GDP-Fuc
uridine diphosphate galactose UDP-Gal
uridine diphosphate glucose UDP-Glc

uridine diphosphate glucuronic acid UDP-GlcA
uridine diphosphate N-acetylglucosamine UDP-GlcNAc

uridine diphosphate N-acetylgalactosamine UDP-GalNAc
uridine diphosphate xylose UDP-Xyl
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Activation of the majority of monosaccharides takes place in the cytoplasm [12]. The
exception is CMP-Sia, the biosynthesis of which takes place in the nucleus [13]. Nucleotide
sugars are relatively large (~550–650 Da), hydrophilic and double negatively charged
molecules. Therefore, they cannot diffuse freely across the membranes of organelles where
glycosylation takes place, which requires the existence of specific carriers in the ER and
Golgi membranes. This role is thought to be played by multi-transmembrane proteins from
the solute carrier 35 (SLC35) family, i.e., nucleotide sugar transporters (NSTs).

As already mentioned, the vast majority of glycosylation-related events take place
in the ER/Golgi lumens. However, a subset of glycosylation reactions occurs in the
cytoplasm with no requirement for NS transport across the organelle membranes. One of
such examples is the O-GlcNAc modification of cytoplasmic and nuclear proteins [3]. In
addition, GlcCer is synthesized on the cytoplasmic side of the Golgi membrane with the
involvement of UDP-glucose ceramide glucosyltransferase (UGCG) [7]. Finally, the first
stages of N-glycan assembly, i.e., the synthesis of the so-called lipid-linked oligosaccharide,
occur on the cytoplasmic side of the ER membrane [4]. Thus, it must be kept in mind that
not all glycosylation reactions require translocation of NS across the organelle membranes.

2. Methodological Approaches to the Nucleotide Sugar Transport
2.1. Glycosylation-Deficient Mutants

The way to understand the biology of glycosylation has been long and bumpy. In
1970s, when the family of NSTs had yet to be identified, two groups working with Chinese
hamster ovary (CHO) cells reported isolation of several clones resistant to the toxic effects
of plant lectins.

An important piece of research was accomplished by Stanley et al. who isolated eight
different clones (referred to as CHO-LecR lines) for their ability to thrive in the presence of
lethal concentrations of phytohemagglutinin, wheat germ agglutinin (WGA), ricin or the
agglutinin(s) from Lens culinaris [14,15]. Subsequently, as most of these mutants behaved
recessively in somatic cell hybrids, the CHO-LecR phenotypes could be classified into seven
complementation groups, I-VII [15]. To increase the rate of genetic alterations, the parental
CHO cell line was initially pre-treated with a mutagen, ethylmethanesulfonate, prior to
seeding onto lectin-containing media for selection [14], but later it was demonstrated
that mutations leading to the same phenotypes occur in unmutagenized CHO popula-
tions spontaneously [16]. Over the next few years, additional CHO-LecR phenotypes and
complementation groups joined the pool [16,17].

Independently of the above, and without usage of any mutagenic factors, Briles et al.
selected three clones for their ability to tolerate lethal dosages of WGA [18]. Further
experiments led to the observations, that in comparison to the parental cell line, two of the
surviving clones, i.e., clones 1 and 1021, exhibited increased binding of Ricinus communis
agglutinin I (RCA), ricin and soybean agglutinin, whereas clone 13 showed a decreased
binding of RCA. Subsequent analysis of the total membrane carbohydrate composition
revealed that clones 1 and 1021 had a selective reduction of Sia content, while clone 13 was
deficient in both Sia and Gal, which rationalized the altered lectin binding. Although, the
mutations were not directly associated with non-functional NSTs, the mutated clones were
unable to perform glycosylation reactions despite the presence of appropriate glycosyl
donors, acceptors, and glycosyltransferases.

In parallel to the work in CHO cells, glycosylation-impaired mutants were also found
in yeast. Smith et al. reported two clones of Kluyveromyces lactis with GlcNAc-deficient
cell surface determinants, one of which, referred to as mnn2-2, was defective in attaching
GlcNAc to polymannose [19]. The mutant was initially interpreted to have compromised
glycosyltransferase membrane orientation or defective substrate compartmentation [20],
however, it was later proven that mnn2-2 had impaired transport of UDP-GlcNAc [21].

Glycosylation mutants were also generated in Schizosaccharomyces pombe [22]. Here,
the parental strain was exposed to ethylmethanesulfonate mutagen, recovered overnight,
and agglutinated with Gal-specific peanut (Arachis hypogaea) lectin. Cells with deficiency
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in cell surface galactosylation remained in the supernatant after centrifugation and were
subsequently selected based on staining with peroxidase-conjugated lectins. The gms1
mutant that was generated had over 6-fold reduced Man:Gal ratio in N-linked polysaccha-
rides. The Gal-deficient mutation rendered gms1 mutant vanadate-sensitive and allowed
a convenient screening for complementing genes using the S. pombe genomic library [23].
Sequencing revealed that all four vanadate-resistant transformants harboured an open
reading frame (ORF) with 63% similarity to the human UDP-Gal transporter, later known
as SLC35A2.

Further, glycosylation-deficient mutants were also generated in Saccharomyces cere-
visiae [24]. By spreading haploid yeast cultures onto plates containing sodium orthovana-
date and allowing the growth for several days, several spontaneous vanadate-resistant
clones were obtained. The mutants, referred to as Vrg, were all associated with glycosyla-
tion defects as demonstrated by changes in gel mobility of external invertase protein. It was
later shown that one of the mutated genes, i.e., vrg4, is required for the GDP-Man uptake
and it is homologous to the aforementioned K. lactis mnn2 and other putative NST-encoding
genes [25].

In an alternative approach, mouse mammary carcinoma FM3A cells were mutage-
nized with N-methyl-N’-nitro-N-nitrosoguanidine, recovered and infected with Newcastle
disease virus [26]. Cells prone to the infection displayed hemagglutinin-neuraminidase
glycoproteins and stained positive in hemadsorption test. The mutant, Newcastle disease
virus-resistant colonies were significantly less hemadsorptive and were shown to produce
incomplete N-linked glycans and to have altered lectin cross-reactivity like that of the CHO-
Lec8 mutant. Increased sensitivity to a Griffonia simplicifolia lectin, GS-II, is characteristic for
GlcNAc exposure, which suggested that the mutants, designated as Had-1, were incapable
of transferring Gal.

Aside from CHO cells, yeast and mouse, lectin-resistant mutants were also generated
in Madin–Darby canine kidney cells (MDCK). Following pre-incubation with N-methyl-N’-
nitro-N-nitrosoguanidine mutagen, parental MDCK cells were selected for resistance to
concanavalin A and RCA [27]. The R. communis agglutinin-resistant mutant, MDCK-RCAR,
was shown to expose surface glycoproteins and glycolipids affected by Gal deficiency and
to resemble CHO clone 13 in its properties [28].

In summary, thanks to several accompanying side-effects such as altered lectin sen-
sitivity, increased vanadate/viral resistance, etc., glycosylation-deficient mutants were
isolated in multiple different organisms. Although in most of the studies a direct link
to a particular transport mechanism was not clearly established, the effects have been
associated with a deficiency in nucleotide sugar transport based on variety of indirect
evidence such as: (i) unaffected glycosyltransferase activity, (ii) insufficient translocation
of NSs in the mutant-derived microsomes, (iii) restoration of the wild-type phenotype by
transformation with a sequence encoding for homo- or heterologous (putative) NST, (iv)
sequence homology to the (putative) NST gene from another organism, etc. Mutants with
impaired glycosylation prepared the ground and became an invaluable tool for identifying
and studying NSTs’ functions.

2.2. Functional Genetic Complementation

Glycosylation-deficient mutants created by spontaneous or induced mutagenesis do
not identify the specific genetic defects that underly the altered phenotypes. Hence, to link
the observed deficiencies and the affected gene(s), a strategy of genetic complementation
was used. In this method glycosylation mutant is transformed with a wild-type genomic
library and selected for the wild-type phenotype features (e.g., antibody or lectin bind-
ing). Subsequently, the genetic fragments that corrected (complemented) the mutation are
sequenced and mapped to specific ORFs.

In this way the Leishmania donovani C3P0 clone with a defect in lipophosphoglycan
(LPG) synthesis was found to harbour a deletion in a gene termed Lpg2 encoding an ORF
homologous to yeast Vrg4 [29]. Using the same approach, the K. lactis MNN2-2 ORF was
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demonstrated to encode a multi-transmembrane protein, which corrected the ability to
transport UDP-GlcNAc into Golgi-enriched vesicles [30].

Genetic complementation can also be achieved not by transformation but because of
the fusion of two cells, one of which is devoid of glycosylation while the other brings a
functional copy of the responsible gene. In this way it is possible to check whether two
glycosylation-deficient mutants of unknown genotype are defective with respect to the
same (lack of complementation) or different (positive complementation) genes. In the
case of mammalian cells, fusion is typically induced by incubation of both species in the
presence of polyethylene glycol.

In this manner ethylmethanesulfonate was used to generate the CHO-6B2 mutant
that was found via cell fusion experiments to belong to the CHO-Lec2 complementation
group [31]. The mutant was complemented with a murine cDNA library and the resulting
ORF encoded a multi-transmembrane protein, by sequence analysis, that localized to the
Golgi and showed high sequence similarity to the plant ammonium transporters.

A complementation approach was also used for more evolutionarily distant pairs of
organisms. Two isoforms of a putative human UDP-Gal transporter (UGT1 and UGT2) were
identified by complementation of the genetic defect of murine Had-1 cells by human cDNA
library [32,33]. The ORFs identified in this way were able to reverse Had-1 lectin-resistance
spectrum to that of the parental FM3A cells.

Phenotypic complementation was also reported between kingdoms. Yeast genes were
able to correct NS transport deficiencies in canine or hamster cell lines. The Kluyveromyces
lactis mnn2-2 mutant regained ability to bind GS-II lectin when transformed with cDNA
library of MDCK cells even though the putative mammalian UDP-GlcNAc transporter
shared very little amino acid sequence identity to its yeast kin [34].

A gene, referred later as gms1+, was amplified from S. pombe genome and was shown to
restore cell wall galactosylation of the gms1 mutant [23]. The product of this gene was also
demonstrated to complement CHO-Lec8 cells deficient in UDP-Gal transport activity [35].
Similarly, putative human CMP-Sia could complement CHO-Lec2 as demonstrated by a
restored lectin sensitivity pattern and NS transport into microsomal vesicles [36].

The multi-transmembrane protein Sqv-7 from Caenorhabditis elegans was shown to
complement the MDCK-RCAr phenotype, suggesting that heterologous over-expression of
Sqv-7 can restore UDP-Gal translocation into the canine Golgi.

Nematode sequences homologous to known NSTs were able to complement glycocon-
jugate fucosylation impaired in the LADII patient fibroblasts [37]. As no mutations were
found in LADII fucosyltransferases, it suggested a defect in NS translocation. Subsequently,
based on sequence homology, a putative GDP-Fuc transporter was identified in Drosophila
melanogaster [38]. The LADII cells complemented with D. melanogaster CG9620 cDNA
showed a partial reversion to the wild-type fucosylation phenotype as demonstrated by
Pisum sativum agglutinin staining of the cell lysates.

More examples of the applications of functional genetic correction in the NST studies
include complementation of: (i) CHO-Lec8 with D. melanogaster UDP-Gal/UDP-GalNAc
transporter [39], (ii) S. cerevisiae vrg4 mutant with a Candida glabrata homologue, termed
CgVRG4 [40], (iii) CHO-Lec2 with human CMP-Sia transporter sequence, SLC35A1 [41], (iv)
CHO-Lec8 with two isoforms of putative UDP-Gal transporter from Arabidopsis thaliana [42],
and others.

In summary, functional genetic complementation has been widely used to demonstrate
the ability of an unknown gene to substitute for a certain deficiency of a previously identi-
fied glycosylation-impaired mutant and using this approach multiple NSTs from different
organisms were identified. Although a positive genetic complementation with respect to
a single phenotypic parameter is not yet sufficient to comprehensively define function of
a newly studied ORF, it is certainly a good starting point for further experiments such as
electrophoretic mobility analysis of cell surface glycoconjugates, lectin staining/sensitivity
panel or vesicle-based in vitro transport assay. The robustness of the method seems to be
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due the extraordinary versatility of the NSTs, which function appears essentially insensitive
to changes in their molecular environments across different species and kingdoms.

2.3. Microsome Penetration Assays

In parallel to the phenotypic observations made using glycosylation-deficient mu-
tant cells, NS transport was investigated more directly using in vitro transport/vesicle
penetration assays. The first speculation about a specific transport of NSs into the Golgi
lumen dates to 1975 when Kuhn and White showed evidence that Golgi vesicles exhibited
selective permeability towards different UDP-sugars [43].

A few years later, the radioactivity-based approach adopted by Carey et al. allowed
direct monitoring of the fate of the 3H- or 14C-labeled NS substrates added to the tissue-
derived Golgi microsomes [44]. In this method microsomes were isolated by ultracentrifuga-
tion of the rat liver homogenate supernatant and incubated in the presence of radiolabelled
CMP-Sia. The reaction was stopped by dilution, vesicles were recovered by centrifugation,
and the transport could be calculated, as the total solutes, and those outside and between
vesicles in the pellet were known. The study showed accumulation of CMP-Sia inside the
Golgi vesicles. The NS transport was also reported in this way for GDP-Fuc [45], adenosine
3′-phosphate 5′-phosphosulfate (PAPS) [46], and for the UDP-Glc, the latter into the ER
lumen of rat liver cells [47].

An analogous approach was applied to measure NS transport in other organisms. In
S. cerevisiae, over 40-fold accumulations of GDP-Man [48] and 22-fold accumulations of
UDP-Glc [49], as compared to the incubation medium, were reported. A differential translo-
cation of GDP-Fuc was observed in human fibroblasts from leukocyte adhesion deficiency
II (LADII) patient as compared to the control fibroblasts from healthy individuals [50].

A simpler approach to study translocation of NS into microsomes was presented
by Waldman and Rudnick who reported an over 20-fold concentration of UDP-GlcNAc
inside rat liver Golgi vesicles [51]. Here, after the incubation of microsomal vesicles with
radiolabelled substrates, samples were poured onto filters and the non-translocated NS was
removed by washing. The difference of this method with respect to the pioneer approach
of Perez and Hirschberg [52] was that the total transport activity was approximated by the
total radioactivity in the washed vesicle pellet that remained on the filters. This approach
was also applied to show translocation of UDP-GlcNAc [53] and UDP-GlcA [54] into ER
membranes of rat liver cells and GDP-Man uptake in L. donovani microsomal vesicles [55].

In summary, microsome penetration experiments did not reveal identities of specific
proteins capable of translocation of NSs across the Golgi/ER membranes but proved the
existence of carrier-mediated systems for which substrate specificity, Km, Vmax, tempera-
ture/inhibitor dependence, sensitivity to proteases/detergents etc. could be measured.

2.4. Heterologous Expression

Upon identification and cloning of the genes required for translocation of NSs, it
became possible to over-express these genes and study the function of the resulting protein
products in heterologous systems. Such a concept was not free of disadvantages but because
different organisms produce different glycans, it offered possibility to use a system with a
satisfactory low transport background with respect to a specific NS.

Murine CMP-Sia transporter was over-expressed in S. cerevisiae because, contrary to
mammals, yeast do not sialylate their glycoconjugates, hence should not possess CMP-Sia
transporters in the Golgi membranes [56]. The over-expression of the gene was triggered
with 2% Gal and the vesicles from the induced cells became able to transport CMP-Sia
(9-fold enrichment). Unexpectedly, induction with Gal also increased ability to transport
UDP-Gal (2.3-fold enrichment), even though normally Gal is not incorporated into yeast
cell wall proteins. The effect of Gal in culture medium on UDP-Gal transport abilities was
later described by Tiralongo et al. [57].

The long list of human NSTs that have been over-expressed and studied in S. cere-
visiae include transporters of UDP-Gal (SLC35A2) [58], UDP-GlcNAc (SLC35A3) [59],
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bispecific UDP-GlcA/UDP-GalNAc (UGTrel7/SLC35D1) [60], UDP-GlcNAc/UDP-Glc
(HFRC1/SLC35D2) [61,62] and UDP-Xyl/UDP-GlcNAc (SLC35B4) transporters [63].

Genes of human UDP-Gal transporters (both UGT1 and UGT2) were over-expressed
under strong constitutive yeast GAPDH promoter and the membrane vesicles were able to
transport radioactive UDP-[3H]-Gal but not CMP-[3H]-Sia [58]. Here, however, the effect of
Gal in the medium was not controlled for and the specificity towards other solutes was not
investigated. The same group also analysed transport after copper-induced over-expression
of the putative human UDP-GlcNAc transporter [59]. In this case a specific increase in
UDP-GlcNAc transport was observed in the absence of CMP-Sia and UDP-Gal translocation
but this time Gal was omitted from the medium. Substrate specificity was most widely
investigated for a candidate NST gene (referred to as hUGTrel7/SLC35D1) where eight
different NSs were tested and selective enrichments were observed for UDP-GlcA and
UDP-GalNAc, and maybe for UDP-GlcNAc [60]. A wide panel of substrates was also tested
for SLC35B4, which showed dual specificity for UDP-Xyl and UDP-GlcNAc in the absence
of translocation of UDP-Gal, UDP-GalNAc, UDP-GlcA and GDP-Fuc [63]. In the case of the
second UDP-GlcNAc transporter (SLC35D2), some specificity was also observed towards
UDP-Glc [62].

The yeast system was also used to study putative C. elegans NST genes. Golgi vesicles
from S. cerevisiae over-expressing SQV-7 concentrated UDP-GlcA, UDP-Gal and UDP-
GalNAc inside the lumen but not CMP-Sia, GDP-Fuc, UDP-GlcNAc [64]. The vesicles
with over-expressed SFR-3 translocated UDP-Gal and UDP-GlcNAc [65] and those with
over-expressed C. elegans C03H5.2 accumulated UDP-GlcNAc and UDP-GalNAc [66]. There
is also a case of a multi-specific transporter encoded by the gene ZK896.9 [67] which was
shown to transport UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc.

The nucleotide sugar transporters of D. melanogaster were heterologously over-expressed
in yeast too. Segawa et al. showed that the UDP-Gal transporter over-expressed from a
copper-inducible vector had dual specificity towards UDP-Gal and UDP-GalNAc and did
not transport UDP-Glc, UDP-GlcNAc, UDP-GlcA, UDP-Xyl nor CMP-Sia [39].

Aside from S. cerevisiae a heterologous expression of an NST was reported in Pichia
pastoris [68]. The murine transporter of CMP-Sia was over-expressed under a strong
methanol-induced promoter and showed functionality in phosphatidylcholine (PC) pro-
teoliposomes when solubilized and IMAC-purified in n-nonyl-β-D-maltopyranoside. Its
activity was inhibited by CMP, DIDS and was maintained in only a single detergent.

Finally, NSTs were also over-expressed in Escherichia coli with an intention to produce
the protein in quantities sufficient for structural studies. Initial trials with murine CMP-Sia
transporter resulted in over-expression into inclusion bodies and the protein required
solubilization in 8 M urea and refolding [57]. However, after subsequent incorporation into
artificial PC-liposomes specific transport of CMP-Sia into the lumen of the vesicles was
observed. None of the tested UDP-NSs could translocate and the transport was inhibited
by CMP and Triton X-100.

To avoid insoluble expression, the murine CMP-Sia transporter was N-terminally
fused to the OmpA signal sequence and targeted to the E. coli inner membrane [69]. An
ability to transport CMP-Sia was exhibited by both spheroplasted E. coli and mixed PC-E.
coli inner membrane proteoliposomes. An attempt to produce functional NST was also
made for human GDP-Fuc transporter (SLC35C1) [70]. The prepared inside-out E. coli
membrane vesicles achieved up to 40-fold enrichment of GDP-Fuc when bacteria were
transformed with OmpA-GDP-Fuc transporter fusion protein.

In summary, heterologous expression has clearly boosted functional studies of NSTs
allowing the identification of novel types of transporters and establishing their substrate
specificities. Examples of functional expression in yeast and E. coli also proved that these
proteins can remain active in lower organisms. This in turn has paved the way for develop-
ment and refinement of purification protocols which provided pure protein samples for
the upcoming structural studies. Among multiple advances that have been brought to the
field through these studies a few uncertainties remain as, for example, to what extent the



Int. J. Mol. Sci. 2022, 23, 8648 8 of 30

characteristics of the heterologously-expressed NST can be influenced by the molecular
environments of the heterologous hosts.

2.5. Reconstitution into Liposomes

The attempts to reconstitute NS transport activity into artificial membrane systems
were undertaken already in 1980s, when it was demonstrated that CMP-Sia and PAPS
transport activities are maintained in PC-liposomes [71]. The Golgi protein extract from
rat liver was mixed with PC-liposomes and the five step freeze-thawing procedure was
used to reconstitute protein into the liposomes. The obtained mixture was sonicated and
purified using size exclusion chromatography. The characteristics of the CMP-Sia and PAPS
transport in proteoliposomes and in the intact Golgi vesicles turned out similar. In the same
manner UDP-Gal, UDP-Xyl and UDP-GlcA transport activities were successfully recon-
stituted, however, characteristics of UDP-Xyl transport in PC liposomes were perturbed
(little temperature dependence, insensitivity to the inhibitor) as compared to those in Golgi
lipids [72].

Further advancement in the method came with the work of Puglielli et al. who were
able to purify rat UDP-GalNAc transporter to apparent homogeneity using conventional
multi-step column chromatography [73]. The protein was incorporated into PC-liposomes
(by freeze-thawing) to monitor the activity of the transporter at various purifications steps
and appeared functional. The achievement was repeated with GDP-Fuc transporter [74],
which suggests that rat NSTs tolerate extraction with Triton X-100 and that depletion of
cellular lipids does not jeopardize their function.

A somewhat different approach was presented for the case of the Leishmania donovani
LPG2 GDP-Man transporter [75]. The protein’s C-terminus was fused to a hexahistidine
tag and over-expressed homologously in a L. donovani lpg2−/− knockout. In this case,
however, LPG2 could not be efficiently extracted with Triton X-100 and glycodeoxycholic
acid was used instead. Solubilized LPG2 was purified using IMAC and reconstituted into
PC-liposomes using freeze-thawing (supported by subsequent detergent depletion with
SM-2 polystyrene beads). Proteoliposomes prepared in this way incorporated radioactive
GDP-Man, GDP-arabinose (GDP-Ara) and GDP-Fuc but not UDP-Gal.

Reconstitution into artificial membranes was also used as a quality-check procedure
in the aforementioned case of the over-expression of the murine CMP-Sia transporter in
P. pastoris [68] and E. coli [57]. Here, proteoliposomes were formed either by conventional
freeze-thawing method [57] or by mixing of PC-liposomes pre-incubated with a detergent
with the protein purified in the same detergent; detergent was subsequently removed with
SM2 polystyrene beads [68].

In summary, reconstitution of NSTs into artificial membranes offered several useful
possibilities in NST studies. Liposomes enable studies of the function of putative transporter
proteins for which substrate specificity is unknown. They ensure a clear background system
to study kinetics parameters for cases, where finding a zero background host or generation
of genes knockout turns problematic. Proteoliposomes seem also a first-choice option in
the case of NST redundancy, i.e., a presence of multiple proteins capable of transporting
the same substrate. Finally, due to its defined molecular character, liposomes provide
means of understanding regulatory factors that affect NS transport. On the other hand,
proteoliposomes are still an artificial membrane environment and some discrepancies
between the characteristics of the reconstituted NSTs and those in their native molecular
context may occur.

3. Nucleotide Sugar Transporters
3.1. Current State of Structural Studies on NSTs

The identification of genes encoding nucleotide sugar transporters from different
species, initiated in the mid-1990s, revealed the existence of a group of related proteins
with a high degree of amino acid sequence similarity [76]. The degree of this similarity
does not seem to correlate with the substrate specificity of the transporters, as the amino
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acid sequences of NSTs with the same specificity coming from different species are less like
each other than the amino acid sequences of NSTs with different specificities derived from
the same species.

Nucleotide sugar transporters are relatively small proteins, composed of 320–400 amino
acid residues. Hydrophobicity profiles of the amino acid sequences of NSTs allow to classify
them as type III membrane proteins with 6–10 TMDs. Detailed topology was first experimen-
tally determined for the mouse CMP-Sia transporter (CST) [77]. In this study, CST was shown
to contain 10 TMDs with N- and C-termini facing the cytoplasm.

A major breakthrough in the studies on the NST structure was made by the crystal-
lization of the selected NSTs. In 2019, a 3-D structure of the yeast GDP-Man transporter
(Vrg4), was obtained [78]. In the same year, the mouse CMP-Sia transporter was crystal-
lized [79]. The results of these studies revealed the arrangement of TMDs, allowed for the
characterization of substrate binding sites and, in the case of Vrg4, revealed the requirement
for short-chain lipids in the membrane environment. Vrg4 was more active in the short-
than in the long-chain lipid environment (short-chain lipids were hypothesized to enable
conformational changes of Vrg4 required for the transport to occur).

3.2. Subcellular Localization of NSTs

All the NSTs identified to date are located either in the Golgi apparatus or in the
endoplasmic reticulum. So far, the only NST displaying a dual localization is one of the
SLC35A2 splicing variants, UGT2 [80]. The intracellular distribution of at least some of
these proteins is determined by the presence of certain specific sequence motifs. The
localization of UGT2 in the ER is determined by the C-terminal motif KVKGS [80]. The
presence of similar sequences (e.g., KKTSH in SLC35B1, KDSKKN in SLC35B4, KGKGAV
in SLC35D1) causes the membrane proteins to be retained in the ER [81].

The murine CMP-Sia transporter is located in the Golgi apparatus due to the presence
of the C-terminal IIGV motif, as deletion of this sequence resulted in the retention of the
NST in the ER membrane [82]. The C-terminal valine residue was shown to serve as an
export signal from the ER [83]. In the case of the yeast GDP-Man, transporter amino acids
16–44 present in the N-terminal domain were shown to be a determinant of the correct
subcellular localization [84].

Some data suggest that the intracellular distribution of NSTs is affected by their
interactions with other membrane proteins. The subcellular localization of the Golgi-
resident variant of the UDP-Gal transporter (UGT1) changed upon the association with
the galactosylceramide synthase (UGT8) [82]. When over-expressed separately, UGT1
localized to the Golgi complex [80,85] whereas UGT8 was found in the ER [8]. Upon the
simultaneous over-expression of UGT1 and UGT8, the former was shown to localize to the
ER [86].

3.3. Substrate Specificity of NSTs

For many years NSTs were considered monospecific [87]. According to this assump-
tion, each transporter would be responsible for the specific transfer of only one type of NS
into the ER/Golgi lumen. Specificity towards more than one NS was demonstrated for
some NSTs identified in lower organisms such as Leishmania sp. [88]. One of NSTs from
Leishmania, LPG2, was shown to transport GDP-Man, GDP-Ara and GDP-Fuc [55].

Studies performed on C. elegans provided more examples of multi-specific NSTs. In
the genome of C. elegans, 18 sequences coding for potential NSTs were identified, while
the glycoconjugates produced by this nematode consist of only seven types of monosac-
charides [67]. The SQV-7 transporter from C. elegans showed specificity for UDP-Gal,
UDP-GlcA and UDP-GalNAc [64]. The srf-3 gene encodes a nematode membrane trans-
porter specific for UDP-GlcNAc and UDP-Gal [65]. The protein encoded by the C. elegans
CO3H5.2 gene was shown to be specific for UDP-GlcNAc and UDP-GalNAc [66]. The
ZK896.9 transporter showed specificity for UDP-Glc, UDP-GlcNAc, UDP-GalNAc and
UDP-Gal [67].
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Multi-specific transporters were also identified in humans. An example is the UGTrel7/
SLC35D1 protein specific for UDP-GlcNAc, UDP-GalNAc and UDP-GlcA [60,89]. Segawa et al.
showed that the human UDP-Gal transporter as well as its homologue from D. melanogaster
can also translocate UDP-GalNAc [39]. The Frc transporter identified in the fruit fly was
shown to be specific for UDP-GlcA, UDP-GlcNAc, UDP-Xyl [90], UDP-Gal, UDP-GalNAc
and UDP-Glc [91]. More recently, three different UDP-sugars (UDP-GlcA, UDP-GlcNAc
and UDP-GalNAc) were shown to be transported into the Golgi lumen by the SLC35A5
protein [92].

Multi-specific NSTs were first thought to carry monosaccharides activated by only one
type of diphosphonucleotide (i.e., either UDP-sugars or GDP-sugars). However, an NST
specific for UDP-Xyl, UDP-GlcNAc and GDP-Fuc was identified in the fruit fly [93]. This is
the first and, so far, only report on an NST translocating both UDP- and GDP-sugars.

Initial reports suggested that the transport of individual NSs by multi-specific trans-
porters is a competitive process [64]. According to this view, different NSs would be
transferred via the same active site. The C. elegans NST encoded by the CO3H5.2 gene is spe-
cific for UDP-GlcNAc and UDP-GalNAc [66]. Kinetic studies on a protein over-expressed
in S. cerevisiae have shown, however, that both NSs are transferred to the Golgi lumen inde-
pendently. The deletion mutant of this NST, lacking 16 amino acid residues located within
the loop between the second and third TMDs, lost the ability to transport UDP-GalNAc but
retained the ability to carry UDP-GlcNAc. The authors concluded that different portions of
this NST were involved in transfer of distinct NSs. A similar phenomenon of independent
transport of two different NSs was observed for the UDP-GlcNAc/UDP-Gal-specific SRF-3
protein from C. elegans [94].

3.4. Oligomerization of NSTs

According to numerous studies, NSTs were shown to form dimers or higher oligomers.
In vitro dimer formation was shown for the rat UDP-GalNAc [73] and GDP-Fuc [74]
transporters and for the yeast GDP-Man transporter [78,84,95]. The GDP-Man transporter
from L. donovani was shown to form hexamers in vitro [88]. Oligomeric structures were
also formed in vitro by the canine UDP-Gal transporter [96]. Moreover, SLC35A3 [97],
SLC35A5 [92] and SLC35A1 [98] proteins were shown to dimerize in living cells.

It is not entirely clear which polypeptide fragments participate in dimerization of NSTs.
The amino acid sequences of the mammalian UDP-Gal (SLC35A2) and CMP-Sia (SLC35A1)
transporters and the yeast UDP-GlcNAc transporter contain a leucine zipper motif [99].
This motif was shown to mediate dimerization of certain proteins, but not all NSTs that
tend to dimerize contain this sequence [88,95]. Moreover, the mouse CMP-Sia transporter
lacking a leucine zipper motif was shown to be fully functional [77]. In the case of the
yeast GDP-Man transporter (Vrg4) the C-terminal TMD was shown to be indispensable for
dimerization [95].

Environmental factors were also shown to play a role in the Vrg4 dimerization. Specif-
ically, dimerization of Vrg4 was found to be mediated by lipids as their presence was
revealed at the dimer interface [78]. The effect of point mutations in the SLC35A1 gene
on the dimerization capacity of the CMP-Sia transporter was also examined [98]. This
study revealed that disease-causing mutations, Q110H and E196K, tend to impair/prevent
dimerization of this NST.

3.5. Antiport Mechanism of NS Translocation

To explain the mechanism of NS transport, a model of electroneutral antiport was
proposed, during which the NS is transferred to the ER and/or Golgi lumen and the corre-
sponding nucleotide monophosphate (NMP) is transferred to the cytoplasm [51,100–102]. It
was proposed that the nucleotide diphosphates (NDPs) formed after the transfer of the sugar
residues onto the acceptors are degraded by organellar nucleotide diphosphatases (NDPases)
to NMP and inorganic phosphate [48,101,103,104]. This reaction is important not only because
it generates the compounds to be antiported but also due to the fact that NDPs are inhibitors
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of glycosyltransferases [105]. The transport constant Km for the majority of NSTs is in the
range of 1–10 µM. The antiport model was recently supported by the crystal structures of
yeast GDP-Man [78], mouse CMP-Sia [79] and Zea mays CMP-Sia [106] transporters.

It was proposed that NS transport results in the accumulation of NSs in the Golgi
lumen [45,48,51]. However, the concept of accumulation appears to be challenged by the
1:1 antiport model as the former does not explain how transport into the lumen of the Golgi
vesicles can be sustained without stoichiometric production of the corresponding NMP.

Several reports suggests that exchange for the corresponding NMP is not an absolute
prerequisite for NS transport to occur. Deletion of a gene encoding the yeast guanosine
diphosphatase resulted in a reduction in the amount of mannosylated N-glycans [107].
However, a different study showed that the biosynthesis of mannosylated N-glycans in
yeast lacking functional guanosine diphosphatase was not significantly inhibited [108].

The results of some studies suggest that the transport of selected NSs is facilitated
by an exchange of the corresponding NDP [51,89] or, alternatively, another type of
NS [51,53,54,89]. The data obtained by Bossuyt and Blanckaert suggest the possibility
that NSs can be transported in both directions. Specifically, pre-incubation of rat
microsomes with UDP-GlcNAc stimulated UDP-GlcA import [54]. Based on these
results the presence of a conjugated system of two transporters in the ER membrane
was proposed, one of which would import UDP-GlcA with simultaneous export of
UDP-GlcNAc and the other would import UDP-GlcNAc with concomitant export of
UMP molecule formed upon incorporation of GlcA into glycoconjugates followed by
UDP breakdown [109]. This phenomenon would be restricted to the ER as it was not
observed for the Golgi apparatus [110].

3.6. Pathologies Related with Defective NSTs

Defective function of several NSTs leads to some disorders in humans. Several mu-
tations in the gene encoding the GDP-Fuc transporter result in a disease termed CDGIIc
(congenital disorder of glycosylation type IIc) or LADII [50,111]. This disease is manifested
by decreased fucosylation of many glycans, including blood group antigens and selectin
ligands [112–114]. The level of α-1,6-fucosylation of N-glycans (the so-called core fucosy-
lation) is particularly reduced in CDGIIc/LADII patients [115]. The affected individuals
suffer from dysfunctions of the immune system and exhibit developmental delay [116].
Surprisingly, some of the symptoms become alleviated in response to oral administration
of Fuc, which is one of the GDP-Fuc precursors [113,117–119]. This effect suggests either
the partial activity of the mutant transporters or the existence of alternative mechanisms of
GDP-Fuc transport into the Golgi apparatus.

In 2005, a mutation in the gene encoding the CMP-Sia transporter was identified
and the resulting disorder was termed CDGIIf [41,120]. Nowadays, the corresponding
conditions are classified as SLC35A1-CDG because the CMP-Sia transporter is encoded by
the SLC35A1 gene. At the molecular level, the lack of sialyl Lewis X antigen, a selectin lig-
and, on the surface of the patient-derived multinucleated granulocytes was demonstrated.
Subsequently, more cases of SLC35A1-CDG were characterized [121–123]. The affected
individuals displayed neurological symptoms such as intellectual disability, hypotonia,
ataxia and seizures as well as macrothrombocytopenia.

In 2006, a disease related with a point mutation in the SLC35A3 gene, encoding the
UDP-GlcNAc transporter, was characterized in cattle [124]. The disease was termed CVM
(Complex Vertebral Malformation) as the main symptoms included severe spine and rib
anomalies. In 2017, a compound heterozygous mutation in the human SLC35A3 gene was
linked to severe epileptic encephalopathy with skeletal abnormalities [125]. Mutations in
this gene have also been linked to autism [126].

The human ER-resident UGTrel7/SLC35D1 transporter was shown to be specific for
UDP-GlcA and UDP-GalNAc [60]. In mice, the knockout of the corresponding gene leads
to a lethal form of skeletal dysplasia [127]. In the affected animals the presence of truncated
chains of chondroitin sulphate in proteoglycans was observed. In humans, mutations in
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the SLC35D1 gene cause a severe form of skeletal development abnormality, known as
Schneckenbecken dysplasia [127,128].

Mutations in the SLC35A2 gene encoding the UDP-Gal transporter have also been
linked to several pathologies including SLC35A2-CDG e.g., [129–134]. The affected indi-
viduals display neurological symptoms such as epilepsy, encephalopathy and hypotonia,
dysfunctions of the liver, spleen, and kidneys as well as skeletal abnormalities.

4. Studies of Nucleotide Sugar Transporters in Mammalian Cells

Nearly 50 years of research on translocation of NSs has provided multiple pieces
of information that need to be consolidated in order to fully understand the process
of glycosylation in mammals. The current general picture proposes several different
NSTs supplying major glycosylation substrates in mammals. If valid and complete, the
knowledge gathered using multiple different systems and approaches should allow to
make hypotheses and predictions in vivo.

The main research efforts of our laboratory are dedicated to understand the process of
glycosylation in mammalian cells with an emphasis on the role of the solute transporters
from the SLC35 subfamily. We also aim to understand molecular bases of the monosugar
supplementation therapies that are often successfully applied to slow down progression of
certain CDG types.

Our leading strategy is to use the CRISPR-Cas9-assisted gene inactivation system,
to generate mammalian knockout cell lines deficient in individual SLC35 genes. In some
cases, double knockouts, such as SLC35A2/SLC35A3 or SLC35C1/SLC35C2, have also been
generated. Subsequently, the glycophenotypic effects of the SLC35 knockouts have been
studied using a variety of techniques ranging from lectin staining, through transport of ra-
diolabelled NSs up to mass spectrometry analysis of cellular (surface and secreted) glycans.

In addition, fluorescence- and luminescence-based techniques including in situ PLA,
FLIM-FRET, BIFC-based FRET and NanoBiT as well as conventional co-immunoprecipitation
are applied to study formation of complexes. Using these strategies, we investigated several
NSTs in a set of mammalian cell lines including HepG2, HEK293T, PC-3, MDCK-RCAr

and COS-7.
Below we describe our most important observations regarding transport of selected

NSs, including UDP-Gal, UDP-GlcNAc, CMP-Sia, GDP-Fuc and UDP-Xyl, and summarize
our findings with respect to the complexes formed by several selected NSTs. The results
are also collectively presented in Figure 1, which provides a graphical summary of the
postulated NS transport routes in the mammalian Golgi. Aside from our results, we also
provide a chapter summarizing the complexity and some inconsistencies concerning the
generally accepted antiport mechanism of NS translocation.

4.1. UDP-Galactose Supply

To date, the only UDP-Gal transporter identified in mammalian cells is SLC35A2
(UGT) [32,33,96,135]. A detailed functional characterization of SLC35A2 was possible after
respective mutant cell lines, such as MDCK-RCAr [28] or CHO-Lec8 [17,135], had been
generated. Mutations identified in these cells abolish production of the functional protein,
giving rise to glycoconjugates deficient in Gal and Sia.

The expression of the SLC35A2 gene results in two splice variants: Golgi-resident UGT1
and UGT2, which localizes both to the ER and Golgi [136]. Our team showed that both
UGT1 and UGT2 were able to restore wild-type glycophenotype in MDCK-RCAr and CHO-
Lec8 cells with impaired UDP-Gal transport [137]. Using a CRISPR/Cas9 approach, we
also generated human cell lines (HepG2 and HEK293T) deficient in SLC35A2 activity [138].
Both studies revealed that a subset of N-glycans synthesized by the SLC35A2-deficient cells
contains Gal. This suggests that there may be a different transport route for UDP-Gal than
via SLC35A2.
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Figure 1. Translocation of selected NSs into the mammalian Golgi—a postulated view. (A) GDP-Fuc
is transported in more than one route. SLC35C1 transporter carries the majority of the GDP-Fuc
pool produced from GDP-Man in the de novo biosynthetic pathway but does not utilize the pool
of the GDP-Fuc formed in the salvage biosynthetic pathway. The latter can be translocated by
another carrier(s), including a potential one with a very low Km able to utilize physiological GDP-Fuc
concentrations. (B) The identity of the major transporter of UDP-GlcNAc is unclear. The involvement
of SLC35A3 in the process of transport of UDP-GlcNAc for the formation of antennae in complex-
type N-glycans cannot be excluded but it seems to be redundant for the wild-type glycosylation
phenotype. (C) SLC35A1 is a major transporter of CMP-Sia but a minor portion of CMP-Sia can
translocate to the Golgi in its absence through an unknown route. (D) UDP-Gal likely has an
alternative transporter to SLC35A2. The latter forms a binary complex with SLC35A3 and both
can interact with multiple other proteins including GlcNAc transferases (Mgats) and other proteins
(ATPases e.g., ATP2A2 or pH regulators e.g., GPR89B, etc.). In addition, SLC35A2 associates with Gal
transferases (B4GalTs), B4GalT1 and B4GalT4. (E) SLC35B4 is resident to the ER, not to the Golgi.
Its correct localization is dependent on the presence of the native C-terminal sequence including a
conserved dilysine motif. The perturbation of this motif including attachment of C-terminal tags
results in protein mislocalization.

Interestingly, as judged by lectin staining and MALDI-TOF analysis of the cellular
N-glycan structures, a galactosylation defect in the MDCK-RCAr and CHO-Lec8 cells could
be partially restored by the over-expression of the canine SLC35A3 [139]. This implies that
SLC35A2 and SLC35A3 may be functionally connected and that SLC35A3 may play some
role in the transport of UDP-Gal.

We have also produced a human chimeric protein composed of the amino acids 1–224
of the SLC35A2 C-terminally fused to the amino acids 198–325 of the SLC35A3 [140]. Such a
construct was over-expressed in the MDCK-RCAr and CHO-Lec8 cells and, to our surprise,
it was not only functional, but also was targeted to the Golgi apparatus and appeared to
fully restore the wild-type galactosylation phenotype of both cellular N- and O-glycans.

To map the minimal fragment of the SLC35A2 protein sufficient to ensure the wild-
type glycosylation phenotype, four additional SLC35A2/SLC35A3 chimeric proteins were
investigated [141]. The constructs were prepared such that the contribution of the SLC35A2
transporter was successively reduced up to only 35 N-terminal amino acids, while the
contribution of the SLC35A3 was gradually increased. Over-expression of these chimeras
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in the MDCK-RCAr and CHO-Lec8 showed that already the construct with the smallest
contribution of the SLC35A2 was sufficient to correct the galactosylation phenotype. Im-
portantly, analogous chimera composed of amino acids 1–35 of the SLC35A2 and amino
acids 12–337 of another homologous SLC35A family member, SLC35A1, failed to restore
the wild-type phenotype. This suggests that the fragment of the SLC35A3 may play a role
in the translocation of UDP-Gal.

Further evidence that SLC35A3 may be involved in the transport of UDP-Gal came
from gene silencing experiments with siRNA against SLC35A3 sequence performed in
the CHO cells [142]. Unexpectedly, transport of the radiolabelled UDP-Gal into the Golgi
vesicles was more severely affected than the uptake of UDP-GlcNAc, which is considered
the main substrate for SLC35A3. However, this outcome could not be reproduced in the
SLC35A3 knockout CHO cells. Here, a decrease of transport of UDP-Gal into Golgi vesicles
upon disruption of the SLC35A3 gene was not observed [138].

The effect of the SLC35A2/SLC35A3 double knockout on the galactosylation phenotype
is even more complicated. Mass spectrometry (MS) analysis of the N-glycans from the
double knockout HEK293T cells confirmed the absence of Gal residues in the cellular
glycans, while the N-glycans released from the secreted reporter glycoprotein, SEAP,
were galactosylated [138]. The aforementioned observations could be rationalized by an
alternative UDP-Gal delivery system for galactosylation of the secreted acceptors. However,
it cannot be excluded that the secreted glycoproteins obtained Gal residues after leaving
Golgi, e.g., in the secretory vesicles or even in the medium. Alternatively, the presence
of Gal residues in SEAP-derived N-glycans may be cell type-specific as no galactosylated
structures were observed for the SLC35A2/SLC35A3 double knockout in the HepG2 and
CHO cells.

Taken together, further studies are necessary to fully understand the UDP-Gal delivery
into the Golgi lumen. Undoubtedly, it appears to be a complex process that is possibly me-
diated by more than one transporter protein with an emphasis on the potential involvement
of the SLC35A3 kin.

4.2. UDP-N-Acetylglucosamine Supply

The UDP-GlcNAc is an important glycosylation substrate because, similarly as for
UDP-Gal, GlcNAc is also found in all major classes of glycoconjugates including N-
glycoproteins, O-glycoproteins, proteoglycans and glycolipids. Among the mammalian
proteins proposed to translocate UDP-GlcNAc to the Golgi lumen are: (i) SLC35A3 (discov-
ered earliest), (ii) SLC35D2, and (iii) SLC35B4.

Mammalian SLC35A3 was discovered by Guillen et al. in 1998 by complementation of
the K. lactis mutant unable to translocate UDP-GlcNAc across the Golgi membranes with the
canine SLC35A3 gene [34]. The human SLC35A3 gene was identified based on nucleotide
sequence similarity to the human SLC35A2 gene and was demonstrated to localize to the
Golgi apparatus in the CHO cells [59]. The transporter was shown to be specific towards
UDP-GlcNAc and not to UDP-Gal and CMP-Sia in the S. cerevisiae heterologous system.

In the Golgi lumen, GlcNAc is incorporated into N-glycan antennae by mannoside
N-acetylglucosaminyltransferases. The Mgat1 and Mgat2 form mono- and biantennary N-
glycans, while Mgat4 and Mgat5 are responsible for further branching [143]. In order to test
whether SLC35A3 delivers UDP-GlcNAc for glycan biosynthesis, we silenced the SLC35A3
gene using siRNA technology in the CHO, HeLa and MDCK cell lines [142]. As GlcNAc is
an important component of the complex-type N-glycans, we anticipated that the SLC35A3
knockdown would result in a severe impairment of these structures. To our surprise,
only the tri- and tetra-antennary species were depleted, while the bi-antennary ones were
unperturbed. Hence, we concluded that the SLC35A3 transporter may selectively supply
Mgat4 and Mgat5 transferases, while Mgat1 and Mgat2 are supplied with UDP-GlcNAc by
another transporter.

The effect of SLC35A3 knockdown was also investigated in relation to the synthesis of
keratan sulphate (KS) proteoglycans [142]. This type of GAG is composed of alternating
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units of Gal and GlcNAc. Relative to other cell lines, MDCK produces particularly large
quantities of KS proteoglycans which makes it a good model to investigate these glyco-
conjugates. As anticipated, the amount of KS proteoglycans was significantly depleted
in the MDCK cells with an SLC35A3 knockdown. On the other hand, heparan sulphate
(HS), which is composed of alternating units of GlcNAc and GlcA, was not affected. This
difference may be due to the selective supply of UDP-GlcNAc by SLC35A3 to KS, and not
to HS, synthesis.

Although our results obtained using siRNA technology provided some insights into
the role of SLC35A3 in the synthesis of cellular N- and proteoglycans, some of the observed
effects might have been underestimated due to the incomplete gene silencing. Therefore,
as a follow up, we knocked out the SLC35A3 gene using the CRISPR/Cas9 approach in
mammalian cell lines, i.e., HepG2, HEK293T and CHO. Similar to the previous study [142],
we observed that SLC35A3 knockout resulted in a decrease in the amount of tri- and
tetra-antennary N-glycans regardless of the analysed cell line, while bi-antennary species
remained unaffected. The depletion of the multibranched N-glycans in SLC35A3 knockouts
was potentiated by the lack of SLC35A2.

In the same study, we also investigated N-glycans decorating secreted SEAP reporter
glycoprotein. Here, a very mild to no effect on the level of multibranched structures was
observed for the single SLC35A3 as well as for the double SLC35A2/SLC35A3 knockouts.

In addition to N-glycans and some proteoglycans, GlcNAc is also present in the
structures of some O-linked glycans. As judged from the MALDI-TOF spectra, essen-
tially all GlcNAc-containing O-glycan structures produced by the wild-type cells were
also present in the samples derived from the SLC35A3 knockouts. Taken together, these
results may suggest redundancy of SLC35A3 in the supply of UDP-GlcNAc for N- and
O-glycan biosynthesis.

The SLC35A3 knockouts were also tested for the ability to translocate radiolabelled
UDP-GlcNAc into Golgi vesicles in HEK293T and CHO cell lines but the results were
inconclusive, i.e., a decrease of the rate of transport observed for the HEK293T cells could
not be reproduced in the CHO cells [138].

The UDP-GlcNAc is also a substrate for O-GlcNAcylation, a post-translational modifi-
cation that takes place in the cytoplasm and nucleus [3], which was recently shown to also
affect SLC35A3 [144]. The knockdown of the O-GlcNAc transferase (OGT), the only known
enzyme responsible for O-GlcNAcylation, decreased synthesis of tri- and tetra-antennary
N-glycans, which is a similar effect to the SLC35A3 knockout. These results by Song et al.,
obtained for HeLa cells [144], are in line with our results for CHO cell line [138,142]. The
study also showed that SLC35A3 transporter’s activity can be regulated by the cytoplasmic
O-GlcNAc modification.

Apart from SLC35A3, UDP-GlcNAc appears to be translocated to the Golgi by SLC35D2
(also known as HRFC1) [61]. The gene was identified by homology to the D. melanogaster frc
and C. elegans sqv-7. The SLC35D2 was shown to localize to the Golgi of the HCT116 cells
and to be specific for UDP-GlcNAc and UDP-Glc in the S. cerevisiae heterologous system.
Over-production of SLC35D2 in the HCT116 cells increased the amount of GlcNAc-rich HS,
which suggests that SLC35D2 may be involved in supply of UDP-GlcNAc for HS synthesis.

The UDP-GlcNAc was also shown to be transported by the human SLC35B4 over-
produced in yeast [63], however, in the native context the protein appears to localize to the
ER (described in Section 4.5) and it seems to be redundant for UDP-GlcNAc delivery for
biosynthesis of glycoconjugates [145]. In summary, supply of UDP-GlcNAc for glycosyla-
tion remains poorly understood but surely relies on more than one transporter protein.

4.3. CMP-Sialic Acid Supply

The only so far identified mammalian CMP-Sia transporter (CST) is SLC35A1 [36,146].
To date, mouse SLC35A1 is the only mammalian NST whose three-dimensional structure
has been determined [79]. The amino acid sequence similarity to the human variant is about
91%. Structural data demonstrated that SLC35A1 contains 10 transmembrane helices with
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both N- and C-termini facing the cytosol. Both TMD5 and TMD10 appear to be involved in
dimer formation, while the other domains seem to be involved in the formation of transport
bundles [106].

The first studies on SLC35A1 began with the isolation of two mutants from a CHO cell
line based on their resistance to WGA. CHO-Lec2 [15] and clone 1013 [18] were isolated
independently and both showed a dramatic reduction in sialylation caused by mutations
in the SLC35A1 gene [147]. The over-expression of human SLC35A1 in CHO-Lec2 cells
enabled restoration of the wild-type phenotype and the microsomal vesicles isolated from
these cells exhibited high CMP-Sia transport activity [36]. Moreover, a murine SLC35A1
expressed in S. cerevisiae gave them the ability to transport CMP-Sia into Golgi vesicles [56].
In addition, the CHO MAR-11 cell line was developed. These cells contain a point mutation
in the SLC35A1 gene, resulting in a premature stop codon [148] and their phenotype is
characterized by a yet lower surface sialic acid than CHO-Lec2 cells.

Recently, we knocked out the SLC35A1 gene in the human cell line HEK293T using
CRISPR-Cas9 strategy [98]. Although the level of sialylated structures was reduced, sia-
lylated N-glycans were still detectable. Moreover, a sialylated glycosphingolipid species
(GM3) was synthesized by the SLC35A1-deficient cells. Altogether, these results suggest
the existence of an SLC35A1-independent Golgi CMP-Sia uptake route.

4.4. GDP-Fucose Supply

Fucose is a terminal residue found in N- and O-glycans. So far, two GDP-Fuc trans-
porters have been identified in humans, i.e., SLC35C1 and SLC35C2.

In 1999 Lübke et al. associated a genetic disorder, LADII, resulting in a general decrease
in fucosylation, with an ineffective translocation of GDP-Fuc to the Golgi apparatus [50].
Based on these findings, in 2001, two independent groups identified genes encoding
human GDP-Fuc transporter, SLC35C1 [37,111]. Lübke et al. characterized the human
transporter protein by complementation of fibroblasts from a LADII patient with cDNA
library constructed from human liver [111].

Independently, Lühn et al. cloned C. elegans genes into the cells of a LADII patient
and observed restoration of fucosylation [37]. Then, by sequence comparison of the genes
encoding for putative GDP-Fuc transporters, they identified human gene, SLC35C1. More-
over, they showed that SLC35C1 localized to the Golgi apparatus. It was also shown that
upon oral administration of Fuc to the LADII patients, fucosylation of macromolecules was
restored [114,117,119].

The first attempt to resolve the phenomenon of the success of the oral Fuc therapy was
done by Hellbusch et al. who studied the effect of Fuc supplementation in mice deficient in
SLC35C1 protein [149]. They showed that the mechanism of Fuc treatment leading to the
improvement in fucosylation is independent of SLC35C1, which suggests an existence of
an alternative GDP-Fuc translocation path to the Golgi.

Studies of the mechanism of Fuc supplementation were also attempted by our labora-
tory [150]. We generated SLC35C1 knockouts in two human cell lines, HEK293T and HepG2.
The effect of the GDP-Fuc transporter deficiency was quantified using our customized
HPLC method in which all multibranched complex-type N-glycans are first enzymatically
reduced to a simple biantennary (GlcNAc)2(Man)3 structure (either fucosylated or non-
fucosylated) and then separated on a column. The percentage of fucosylation is calculated
as a ratio of the signal from the fucosylated glycan divided by the sum of the signals from
both fucosylated and non-fucosylated species.

Using our method, we quantified the percentage of fucosylation of the cellular
complex-type N-glycans in the wild-type HEK293T and HepG2 cells to be ~80%. In
the SLC35C1 knockouts the fucosylation was reduced to ~8% and ~15%, respectively.

In this approach we could not, however, exclude that the fucosylated structures
found in the SLC35C1 knockouts came from fucosylated glycoconjugates contained in the
serum. Therefore, we employed a close to zero-background system in which the analysis is
performed on the purified N-glycans decorating His-tagged SEAP reporter over-produced
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in the cells. Here, thanks to the washing of the Ni-NTA-bound SEAP, the possibility
of the presence of serum-derived glycoconjugates is minimized. Using this system, we
demonstrated that the remaining ~8–15% of fucosylation is not due to the contamination of
the sample by serum glycoconjugates but indeed a result of fucosylation occurring in the
SLC35C1 knockout cells.

In the same study we also analysed secreted O-glycans using MALDI-TOF mass
spectrometry [150]. Our spectra show that in the SLC35C1 knockout cells fucosylation was
significantly reduced, but not completely abolished.

As Fuc feeding is a basis of LADII therapy, the analysis of fucosylation phenotype
of the wild-type and SLC35C1 knockout was repeated for the cells supplemented with
exogenous Fuc. First, we optimized supplementation conditions, i.e., time of treatment and
Fuc concentration in culture media. We observed that the addition of 5 mM Fuc to culture
media nearly completely restored fucosylation of both N- and O-glycans in the SLC35C1
knockouts [150].

It was speculated that Fuc treatment causes an increase in GDP-Fuc concentration in
cytosol of patients’ cells, thereby forcing defective SLC35C1 variants to translocate more
GDP-Fuc to the Golgi lumen [151]. We showed that the basal level of GDP-Fuc in the wild-
type and in the SLC35C1 knockout is the same (~5–13 µM) and increases ~40–50 fold upon
feeding with 5 mM Fuc to ~150–200 µM [150]. Millimolar concentrations of exogenous
Fuc were required to observe restoration of the wild-type fucosylation in the SLC35C1
knockout cells.

In summary, our results demonstrate that fucosylation of N- and O-glycans can be
restored by supplementation with millimolar concentrations of Fuc not only in the cells with
pathogenic variants of the SLC35C1 gene, but also in the cells completely lacking SLC35C1.

In mammalian cells, GDP-Fuc is synthesized via two biosynthetic pathways, i.e., de
novo and salvage. The de novo pathway utilizes Man as a substrate, while the salvage
pathway uses Fuc recovered from lysosomal degradation of glycoconjugates or Fuc ob-
tained from the environment [152]. Having determined that high Fuc concentration could
restore fucosylation in SLC35C1 knockout cell lines, we checked whether an addition of
high (5 mM) amounts of Man would also increase intracellular GDP-Fuc concentration. The
outcome of this experiment could either support or disprove the concept of oral adminis-
tration of Man as an alternative treatment for LADII patients. We observed that 5 mM Man
added to the culture medium caused no changes in the intracellular GDP-Fuc concentration
neither in SLC35C1 knockout nor in the wild-type cells.

Aside from phenotypic investigation of the SLC35C1 knockout with and without Fuc
supplementation, we have also followed metabolic fate of the exogenous monosugars (Fuc
and Man). Radiolabelled compounds allowed detection of the residual fucosylation of
N-glycans synthesized by the SLC35C1 knockout cells. By feeding the cells with nanomolar
concentrations of either of the radioactive monosugars, [3H]Fuc or [3H]Man, and comparing
radioactivity of the fucosylated N-glycans, we found that the SLC35C1-deficient cells
preferentially used GDP-Fuc produced in the salvage pathway as compared with the de
novo pathway. This was the first indication that an NST could discriminate between the
substrates coming from different sources.

Taken together, we proposed an existence of three different GDP-Fuc transport systems
in the mammalian Golgi membrane. The first one, SLC35C1-dependent, mainly utilizes the
NS pool derived from the de novo pathway. The other two, independent form SLC35C1,
mainly use GDP-Fuc synthesized in the salvage pathway. Among the latter two, one is able
to work at basal levels of intracellular GDP-Fuc, whereas the other requires much higher
substrate concentrations that can only be achieved by feeding the cells with millimolar
Fuc [150]. The identity of those alternative GDP-Fuc transport systems remains yet to
be discovered.

The GDP-Fuc was also reported to translocate to the Golgi via another transporter,
SLC35C2 [93,153], which has about 22–23% identity and 37–38% similarity to SLC35C1 and
mainly localizes to the Golgi apparatus [153].
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As mentioned above, cells completely deficient in SLC35C1 retained small but non-
negligible ability to incorporate Fuc into their N- and O-glycans. To investigate whether
the remaining fucosylation may be supported by SLC35C2, our group generated double
SLC35C1/SLC35C2 knockout in the HEK293T cells [150]. Even in the absence of both
SLC35C1 and SLC35C2 the fucosylated glycans were still detectable to the same level as
for the SLC35C1 single knockout. This may indicate that either SLC35C2 is not the backup
GDP-Fuc supplier for fucosylation of the N- and O-glycans in the HEK293T cells or its
deficiency is compensated by another NST(s) of yet unknown identity.

4.5. UDP-Xylose Supply

In mammals, Xyl is found in a tetra-saccharide linker that links GAG chains with
core proteins in proteoglycans (-GlcA-Gal-Gal-Xyl-Ser/Thr). To date, the only known
mammalian transporter of UDP-Xyl is SLC35B4. This protein comes in two splice variants:
a longer version encoding a protein of 331 amino acids and a shorter version encoding a
protein of 231 amino acids.

In 2005, Ashikov et al. showed that vesicles from S. cerevisiae expressing the longer
isoform of human SLC35B4 displayed a specific uptake of UDP-Xyl and UDP-GlcNAc [63].
However, research on a homologue from D. melanogaster showed ability to also trans-
port GDP-Fuc [93]. Moreover, microsomes derived from Chinese hamster V79 cells over-
expressing either of the splice variants were able to also transport UDP-GlcA, but only after
preloading of the microsomes with UDP-GlcNAc [154].

The subcellular localization of SLC35B4 has originally been assigned to the Golgi
apparatus by over-expression of the FLAG-tagged longer isoform of human transporter
in CHO cells, which suggests that this protein might be involved in transport of UDP-Xyl
and UDP-GlcA that serve as substrates for proteoglycan synthesis [63]. However, in 2011,
our team over-expressed FLAG-tagged SLC35B4 protein in MDCK and MDCK-RCAr cell
lines and showed that both splice variants co-localized exclusively with calnexin, an ER
marker [155].

In another study, we showed that lysine 329 within a C-terminal dilysine motif KD-
SKKN is crucial for the ER localization of the human SLC35B4 [145]. Moreover, C-terminal
tagging resulted in Golgi localization of the over-expressed SLC35B4. These results indicate
that NST tagging may lead to abnormal localization and should be used with caution. In the
same study, we generated SLC35B4 knockout in the HepG2 cell line using the CRISPR-Cas9
approach. The SLC35B4-deficient cells were of the wild-type phenotype with respect to
the glycoprotein and proteoglycan structures. These observations suggest that, despite
the specificity towards UDP-Xyl and UDP-GlcNAc determined in yeast heterologous sys-
tem [63], SLC35B4 does not seem to provide these substrates to the mammalian Golgi. First,
as it is localized to the ER and second as it is redundant for biosynthesis of mammalian
glycoconjugates containing Xyl and GlcNAc residues.

4.6. Mechanism of Transport of Nucleotide Sugars

Nucleotide sugar transporters are believed to act as antiporters, exchanging cytosolic
NS for a corresponding lumenal NMP [87]. This was first postulated by Capasso and
Hirschberg in 1984 who treated Golgi fractions isolated from rat liver with GDP-Fuc labelled
with tritium in the guanosine ring [156]. When the resulting vesicles were supplemented
with GDP-Fuc labelled with 14C in the monosaccharide moiety, a decrease of tritium signal
within the vesicles was observed. The authors also showed that it was caused by the exit of
[3H]GMP from the Golgi vesicles.

However, experiments using S. cerevisiae with a null mutation in the gene encoding
for GDPase, an enzyme required for protein and sphingolipid mannosylation, showed that
reduced level of lumenal GMP caused ~5-fold reduction but did not completely abolish
GDP-Man uptake into the Golgi fractions [157].

The mechanism of antiport was also studied for other NSs e.g., UDP-Gal, UDP-
GlcA and UDP-Xyl [72]. Here, NS transport activities were reconstituted into artificial
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liposomes composed of PC or Golgi lipids. In the absence of UMP, the transport of the
UDP-sugars into the lumen occurred only until solute equilibration but no accumulation
was observed. When the vesicles were pre-loaded with UMP, translocation of the UDP-
sugars was ~2–3-fold more efficient than without the pre-loading. This may indicate that
the translocation of the UDP-sugar across the membrane can occur in the absence of UMP,
however, the presence of some residual NMP and/or NDPase activity inside the vesicles
cannot be excluded.

This problem seems to be resolved by Nji et al. who investigated CMP-Sia uptake into
the proteoliposomes composed of brain lipids and purified human SLC35A1 [106]. Here,
the presence of residual NMP within the proteoliposomes was excluded and the system
proved low to zero background. In the presented setup, minute concentrations of CMP-Sia
were able to translocate into the vesicles in the absence of the transporter. The vesicles with
the reconstituted SLC35A1 translocated CMP-Sia and this transport was highly stimulated
by the pre-loading of the vesicles with CMP. Based on these results, a model was proposed,
in which SLC35A1 can operate as both passive and active antiporter.

It is worth mentioning experiments conducted by Waldman and Rudnick in 1990 [51].
According to them, previous studies [156] might have overestimated the exchange rate of
the internal [3H]GDP-Fuc for the external GDP-[14C]Fuc. This hypothesis was based on
their observation that ~15% of the [3H]UDP-GlcNAc internalized to the Golgi-enriched
vesicles hydrolysed to [3H]GlcNAc-1-phosphate [51]. Interestingly, transport of [3H]UDP-
GlcNAc could also occur in the opposite direction, i.e., outside of the vesicles and was
stimulated by not only UDP-GlcNAc but also by UMP, UDP, UDP-Gal, but not by AMP.

The antiport mechanism was also studied for UDP-GlcNAc and UDP-Gal in the semi-
permeabilized mouse thymocytes [158]. In this study, addition of the external 1 mM UMP/
UDP caused efflux of intravesicular UDP-[14C]GlcNAc. The fact that the effect of UDP was
about twice as strong as the effect of UMP may suggest that, in addition to the original model
of equimolar NS:NMP exchange, NDP may also serve as the antiported molecule. Indeed,
intravesicular [3H]UDP stimulated uptake of both UDP-GlcNAc and UDP-Gal.

These reports strongly suggest that the initially simple and elegant view of equimolar
exchange of cytoplasmic NS for the lumenal NMP must be extended by several other
potential transport mechanisms. Among the most important alternative scenarios that must
be considered are: (i) NS exchange for NDP, (ii) NS exchange for another NS, (iii) uniport
of NS in the absence of the antiported molecule (passive antiport).

4.7. Homo- and Heterologous Complexes of NSTs

There are many reports in the literature about the ability of the transporters to form
homo- and heterodimers (partially described in Section 3.4) including several discovered
by our laboratory (described below).

In our group complex formation between NSTs was studied using multiple experimen-
tal approaches. Using co-immunoprecipitation and FLIM-FRET, we showed the existence
of an SLC35A2/SLC35A3 complex in the MDCK-RCAr cells [97]. Later on, this interac-
tion was confirmed in the HepG2 cells using in situ PLA [159] and in the HEK293T cells
using NanoBiT [160]. Such consistent colocalization of these two transporters demon-
strated in multiple cell lines using different experimental techniques may suggest their
functional connection.

Hetero-oligomers are also formed by an orphan NST, SLC35A4. Sosicka et al. showed
that SLC35A4 oligomerizes with its kin, SLC35A5 [159]. Moreover, in SLC35A4 knockout
HepG2 cells, the localization of the SLC35A2/SLC35A3 heteromer was perturbed. In
another study a ternary complex formed by SLC35A2, SLC35A3 and SLC35A4 was reported
in COS-7 cells using BIFC-based FRET [161].

Aside from formation of homo- and hetero-oligomeric complexes with their kins,
NSTs were also found to associate with glycosyltransferases (GTs). The SLC35A2 was
shown to associate with the ceramide galactosyltransferase (UGT8) [86]. Using FLIM-FRET
and in situ PLA our group demonstrated formation of binary complexes between either
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SLC35A2 (both spice variants) or SLC35A3 and Mgats 1–5 in three different mammalian
cell lines including PC-3, MDCK-RCAr and HEK293T [162]. Furthermore, several ternary
complexes composed of a single NST (SLC35A2, SLC35A3 or SLC35A4) and two different
Mgats or two NSTs and a single Mgat were detected using BIFC-based FRET in COS-7
cells [161]. In addition to Mgats, SLC35A2 was also shown to form binary complexes with
galactosyltransferases B4GalT1 [163] and B4GalT4 [164] in HEK293T cells using NanoBiT.
Such a rich representation of hetero-oligomeric complexes formed between NSTs and GTs,
that are directly involved in the attachment of monosugar residues to the nascent glycans,
may indicate a potential functional coupling of NS transport and glycan biosynthesis.

Moreover, in 2021, using pull-downs coupled with mass spectrometry we identi-
fied a set of proteins that may interact with three SLC35A subfamily members [165]. In
this experiment over-expressed SLC35A2-A4 was used as bait to co-immunoprecipitate
potential interaction partners from HepG2 cell lysates. For each of the NST ~20–30 in-
teracting proteins were identified including ATPases, ion channels/transporters, lipid
metabolism/membrane insertion/translocation enzymes as well as chaperons and protein
transport receptors. For a small set of selected candidates, the interactions were verified
using NanoBiT system. The SLC35A2, SLC35A3 and SLC35A4 were showed to interact
with e.g., Golgi pH regulator B (GPR89B) and ATPase 2 (ATP2A2). These observations
suggest that NSTs may associate with a wider range of functionally distinct membrane
proteins potentially involved in regulation of glycan biosynthesis.

For the case of NSTs homo-oligomerization, the research of our group was focused
mainly on SLC35A2, SLC35A3 and SLC35A1. Formation of homo-oligomers by over-
expressed canine SLC35A2 in CHO cells was confirmed using co-immunoprecipitation [96].
Similar observations were made for the human homologue in HEK293T cell using the
NanoBiT system [163]. For SLC35A3, homo-oligomers were observed in MDCK-RCAr

cells using FLIM-FRET [97]. In the case of SLC35A1, homo-oligomerization was shown in
HEK293T using NanoBiT [98].

In the latter study, we also investigated the effect of selected point mutations known
to cause SLC35A1-CDG. Two disease-causing SLC35A1 single amino acid mutants, i.e.,
Q101H in TMD3 and E156K in TMD6 were unable to produce luminescence signal in the
NanoBiT experiment. Our observations show that the loss of function of those mutants
was accompanied by the inability to dimerize in the Golgi membrane of living cells.

The role of interactions between NSTs and other proteins is not fully understood. There
are more and more reports about such interactions, but very little is known about the biolog-
ical significance of these phenomena. We believe that NSTs might be hub proteins that are
in the centres of glycosylation-related interaction networks also containing GTs and some
regulatory proteins. Such assemblies would be functionally complete and self-sufficient
units in the Golgi membranes, in which the NS supply could be spatially and temporarily
coupled to glycosylation to achieve higher efficiency and fidelity of glycan synthesis.

4.8. Miscellaneous Controversial Data

Apart from the aforementioned uncertainties associated with the delivery of CMP-Sia,
UDP-Gal, UDP-GlcNAc, GDP-Fuc and UDP-Xyl to the Golgi we would like to point at
some other missing puzzles of the NS transport.

To date, the delivery of UDP-GalNAc for the biosynthesis of mucin-type O-glycans
(O-GalNAc glycans) has not been assigned to any specific member of the SLC35 family. The
UDP-GalNAc was shown to be transported by the UGTrel7/SLC35D1 protein [60]. Nev-
ertheless, this NST was shown to localize to the ER, whereas the initiation of mucin-type
O-glycan biosynthesis occurs in the Golgi [6]. Hence, it appears unlikely that SLC35D1
could fulfil this role unless one assumes that NSs traffic between the organelles via vesicu-
lar transport.

In another study, UDP-GalNAc was proposed to translocate via SLC35A2 in addition
to UDP-Gal [39]. However, glycoproteins synthesized by the SLC35A2-deficient cell lines
are very rich in terminal GalNAc residues as shown by staining with Vicia villosa lectin [137].
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This is yet another example where the substrate specificity determined for an NST in a
heterologous system does not seem to correspond to its native function.

There is one more controversy associated with SLC35A2. Despite the fact that it is
the only so far identified UDP-Gal transporter in mammals, the MDCK-RCAr mutant
deficient in its activity was shown to synthesize normal amounts of chondroitin sulphate
(CS) proteoglycans [136], although the tetra-saccharide linker through which CS chains are
linked to core proteins contain two Gal residues. This suggests an existence of alternative
to SLC35A2 UDP-Gal transporter.

Among the NSTs for which their three-dimensional structure has been determined, is
the CMP-Sia transporter from Z. mays [106]. However, because plants do not incorporate
Sia in their glycans [166], the presence of a CMP-Sia transporter in maize is difficult
to rationalize.

Another potential controversy is related with UDP-Xyl supply for glycosylation. The
need for transport of this NS into the Golgi is debatable, as UDP-Xyl was shown to be
synthesized in the ER/Golgi lumen (and not in the cytoplasm) from UDP-GlcA due to
the action of UDP-Xyl synthase (UXS) [167]. Hence, the presence of a dedicated UDP-Xyl
transporter in the ER/Golgi membranes seems to be redundant.

For convenience, most important experimental observations (alongside with refer-
ences) that add to the complexity of the NSTs world and that are not directly in line with
the initial general concepts were summarized in Table 2. General tabularized information
covering a larger repertoire of NSTs can be found in the review articles [168,169].
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Table 2. Molecular features, subcellular localization, specificity, discovery, and controversial observations concerning the NSTs described in this study. GA, Golgi
apparatus; ER, endoplasmic reticulum.

NST Name Molecular Features Subcellular Localization Substrate Specificity Method of Discovery Controversial Results/Observations

SLC35A1 36.8 kDa, 337 aa GA CMP-Sia
Gene cloning by
complementation of the Lec2
mutant cell line [36]

- Sia is still incorporated into
glycoconjugates produced by the
HEK293T knockout cell line [98].

SLC35A2 41.0 kDa, 393 aa (UGT1),
41.3 kDa, 396 aa (UGT2)

GA (UGT1),
ER/GA (UGT2)

UDP-Gal,
UDP-GalNAc

Gene cloning by
complementation of the Had-1
mutant cell line [33]

- Gal is still incorporated into
glycoconjugates produced by the
MDCK and CHO mutant cell lines [137]
and HEK293T knockout cells [138]

- Specificity towards UDP-GalNAc is not
reflected by the phenotypes of the
MDCK and CHO mutant cell lines [137]

SLC35A3 36.0 kDa, 325 aa GA UDP-GlcNAc
Gene cloning by
complementation of the K. lactis
mutant [34]

- No effect on GlcNAc incorporation into
glycoconjugates produced by the CHO,
HEK293T and HepG2 knockout cell
lines [138]

SLC35C1 39.8 kDa, 364 aa GA GDP-Fuc

Gene cloning by
complementation of the cells
derived from LADII patients
[11,37]

- Fuc is still incorporated into
glycoconjugates produced by the
HEK293T and HepG2 knockout cell
lines [150]

- Fucosylation in the HEK293T and
HepG2 knockout cell lines is restored
upon supplementation with exogenous
fucose [150]

SLC35B4 37.4 kDa, 331 aa GA/ER UDP-Xyl,
UDP-GlcNAc

Transport assay in a
Saccharomyces cerevisiae
heterologous system [63]

- Conflicting data regarding the
subcellular localization (Golgi vs. ER)
[64,144,155]

- Lack of phenotypic effects in the
HepG2 knockout cell line [145]
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5. Closing Remarks

Starting from the 1970s, a substantial progress in the field of nucleotide transport has
been accomplished, however, a picture of glycosylation in mammalian cells is still far from
being clear. The results of our studies cast multiple doubts on the so far postulated idea
of NS delivery to the mammalian Golgi. It becomes increasingly evident that there are
separate routes in the cell for supply of the same NS to different glycosylation pathways.

This concept appears to be supported by the Golgi transport of UDP-GlcNAc. In our
view, UDP-GlcNAc is selectively delivered to the branching Mgats (Mgat4 and Mgat5) by
SLC35A3, while Mgat1 and Mgat2 seem to obtain their substrate from a different source.
Moreover, although the SLC35A3 activity is indispensable for KS biosynthesis, it does
not seem to support the production of another GlcNAc-rich GAG, i.e., HS, which in turn
appears to depend on SLC35D2. Such selectivity could result from an existence of discrete
spatially separated and functionally independent complexes consisting of unique sets of
GTs and NSTs in the Golgi membranes.

Our results provided a framework to continue studies on heterologous complexes
formed by NSTs and related proteins. Precise mapping of such complexes would allow
to better understand the mechanisms that govern and regulate the process of glycosy-
lation. We believe this could be achieved using complementary techniques such as co-
immunoprecipitation and proximity-based assays including those performed in living cells
(FLIM-FRET, NanoBiT).

Based on our findings obtained in knockout-based studies, it can be suggested that
many (if not all) NS are supplied to the Golgi by more than one transport route. It should
be emphasized that many members of the SLC35 family were not assigned to specific
substrates. Therefore, it may be reasonable to inactivate more than one SLC35 gene at a
time as an extension of the generation and phenotypic characterization of single knockouts.

Finally, our recent results suggest that there is a functional connection between the
processes that were thought to be interdependent, i.e., NST function and cytoplasmic NS
synthesis. Our idea that GDP-Fuc could exist as several independent pools that are supplied
to the Golgi by different routes sets a new direction in research on NS and their transporters.
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