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Transient exposure to calcium 
ionophore enables in vitro 
fertilization in sterile mouse models
Felipe A. Navarrete1, Antonio Alvau1, Hoi Chang Lee1, Lonny R. Levin2, Jochen Buck2, 
Patricia Martin-De Leon3, Celia M. Santi4, Dario Krapf5, Jesse Mager1, Rafael A. Fissore1, 
Ana M. Salicioni1, Alberto Darszon6 & Pablo E. Visconti1

Mammalian sperm acquire fertilizing capacity in the female tract in a process called capacitation. At 
the molecular level, capacitation requires protein kinase A activation, changes in membrane potential 
and an increase in intracellular calcium. Inhibition of these pathways results in loss of fertilizing ability 
in vivo and in vitro. We demonstrated that transient incubation of mouse sperm with Ca2+ ionophore 
accelerated capacitation and rescued fertilizing capacity in sperm with inactivated PKA function. We 
now show that a pulse of Ca2+ ionophore induces fertilizing capacity in sperm from infertile CatSper1 
(Ca2+ channel), Adcy10 (soluble adenylyl cyclase) and Slo3 (K+ channel) KO mice. In contrast, sperm 
from infertile mice lacking the Ca2+ efflux pump PMACA4 were not rescued. These results indicate 
that a transient increase in intracellular Ca2+ can overcome genetic infertility in mice and suggest this 
approach may prove adaptable to rescue sperm function in certain cases of human male infertility.

In 1978, Steptoe and Edwards reported the birth of Louise Joy Brown, the first successful “Test-Tube” baby1. A 
major step toward this achievement occurred in the early 1950’s, when Chang2 and Austin3 demonstrated inde-
pendently that sperm have to be in the female reproductive tract for a period of time before acquiring fertilizing 
capacity, a phenomenon now known as sperm capacitation. Capacitation includes all post-ejaculation biochem-
ical and physiological changes that render mammalian sperm able to fertilize4. As part of capacitation, sperm 
acquire the ability to undergo acrosomal exocytosis4,5 and undergo changes in their motility pattern (i.e., hyper-
activation). Molecularly, capacitation is associated with; (1) activation of a cAMP/protein kinase A pathway6;  
(2) loss of cholesterol7 and other lipid modifications8; (3) increase in intracellular pH (pHi)9; (4) hyperpolari-
zation of the sperm plasma membrane potential10–12; (5) increase in intracellular Ca2+ concentration [Ca2+]i

13; 
and (6) increase in protein tyrosine phosphorylation14,15. These pathways were first identified as playing a role in 
capacitation using compounds that either stimulate or block the respective signaling processes. More recently, the 
essential roles of cAMP, Ca2+ and plasma membrane hyperpolarization were confirmed using knock-out (KO) 
genetic approaches.

The role of cAMP in capacitation and fertilization was originally asserted using reagents such as cAMP ago-
nists (dibutyryl cAMP, 8-BrcAMP) and antagonists of PKA-dependent pathways (e.g. H89, PKI, rpScAMP), as 
well as other conditions in which soluble adenylyl cyclase Adcy10 (aka sAC)16,17, the major source of cAMP in 
sperm, cannot be activated (e.g. HCO3

−-free incubation media; addition of KH7, a specific sAC inhibitor)18. 
These roles of cAMP were confirmed using KO genetic mouse models lacking either the PKA sperm-specific cat-
alytic splicing variant Cα​219, or sAC18; these mice are sterile and their sperm cannot fertilize in vitro. Our group 
has recently demonstrated that hyperpolarizing changes in membrane potential are necessary and sufficient to 
prepare the sperm for a physiological acrosome reaction20. Accordingly, sperm missing the sperm-specific K+ 
channel SLO3 cannot hyperpolarize and are infertile21. Finally, Ca2+ was shown to be essential for hyperactiva-
tion and the acrosome reaction both by removing it using Ca2+-free incubation media, either with or without 
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chelating agents (i.e., EGTA)22, or by elevating it using Ca2+ ionophores such as A23187
23. Consistent with these 

findings, male mice with the sperm-specific Ca2+ channel complex CatSper gene knocked out are infertile, and 
their sperm are unable to undergo hyperactivation24.

Recently, we found that addition of Ca2+ ionophore A23187 produced a fast increase in intracellular Ca2+ that was 
accompanied by complete loss of sperm motility23. However, if A23187 is removed after 10 min, intracellular Ca2+ 
levels dropped and sperm gained hyperactive motility23. In addition to inducing hyperactive motility, this short 
treatment with Ca2+ ionophore A23187 enhanced the sperm fertilizing capacity. Interestingly, the Ca2+ ionophore 
pulse supported capacitation in sperm incubated under non-capacitating conditions, and it induced hyperactiva-
tion and the capacity to fertilize in vitro even under conditions where cAMP-dependent pathways were blocked23. 
These results suggested that A23187 could overcome defects in the signaling pathways upstream of the increase 
in intracellular Ca2+ required for capacitation. Here, we tested this hypothesis using infertile genetic KO mouse 
models. Consistent with our hypothesis, a short A23187 pulse overcomes the infertile phenotypes of CatSper24, 
sAC18 and SLO3 KO sperm21. Furthermore, our previous results suggested that after A23187 washout, sperm 
are required to reduce the intracellular Ca2+ concentrations to gain hyperactivation and fertilizing capacity23.  
Consistent with this hypothesis, sperm lacking the Ca2+ efflux pump PMCA4, which mediates Ca2+ extrusion25, 
were not rescued by treatment with ionophore, suggesting that this ATPase is required downstream to remove 
excess intracellular Ca2+.

Results
A23187 improves hyperactivation and fertilizing capacity of sperm from C57BL/6J mice.  Sperm 
physiology and their ability to fertilize in vitro is highly dependent upon genetic background26. Over the years, 
C57BL/6J has been a common genetic background for studying KO genetic mouse models. Unfortunately, relative 
to sperm from mice of other genetic backgrounds, specifically CD1(ICR) mice, sperm from C57BL/6J exhibit sig-
nificantly lower hyperactivation rates when capacitated27 (Fig. 1A, Supplementary Table I) and are less efficient for 
in vitro fertilization26 (Fig. 1B). When we compared the effect of a short pulse of Ca2+ ionophore on sperm from 
CD1 (ICR) with sperm from C57BL/6J mice, A23187 treatment elevated the percentage of hyperactive C57BL/6J 
sperm to similar levels as those obtained using CD1 (ICR) sperm (Fig. 1A). Moreover, this increase was followed 
by a significant increase in C57BL/6J sperm fertilization rate (Fig. 1B). Importantly, treating C57BL/6J sperm with 
a pulse of A23187 increased the percentage of 2-cell embryos competent to develop into blastocysts (Fig. 1C,D). 
Capacitation requires PKA activation19 and, as expected, in the presence of the PKA inhibitor H89, C57BL/6J 
sperm were unable to fertilize in vitro (Fig. 1E) and did not show the prototypical increase in phosphorylation 
of PKA substrates (Fig. 1F). Remarkably, as seen previously with CD1 (ICR) sperm23, incubating H89-treated 
C57BL/6J sperm for 10 min with A23187 was sufficient to induce fertilizing capacity (Fig. 1E), despite the fact that 
PKA remained inactive (Fig. 1F). Altogether, these data indicate that transient exposure to A23187 can improve IVF 
success for mouse strains with reduced fertility, in a PKA independent manner.

A23187 treatment rescues hyperactivation and fertilizing capacity of CatSper1 KO sperm.  In 
the absence of the CatSper channel complex, sperm fail to undergo hyperactivated motility and are unable to 
fertilize24. To test whether Ca2+ ionophore treatment can overcome the CatSper infertile phenotype, sperm from 
CatSper1 KO mice were incubated in conditions that support capacitation in the absence or in the presence of 
20 μ​M A23187. After 10 min, the sperm were washed twice by centrifugation in A23187-free media and the percent-
age of hyperactive sperm was measured using CASA. As expected, in the absence of A23187, CatSper KO sperm 
did not undergo hyperactivation (Fig. 2A, Supplementary Table II and Supplementary Movie 1). However, once 
exposed to Ca2+ ionophore, a significant number of CatSper KO sperm exhibited hyperactivated motility (Fig. 2A, 
Supplementary Table II and Supplementary Movie 2). In addition, A23187-treated CatSper KO sperm were com-
petent to fertilize metaphase II-arrested eggs in vitro (Fig. 2B). In two independent experiments, fertilized eggs 
were allowed to develop to late morula or blastocyst stage (Fig. 2C, left panel) and ten embryos in each case were 
non-surgically transferred to pseudopregnant WT female mice28–30. From these experiments, five CatSper (+​/−​) 
mouse pups were born from two different females (Fig. 2C, right panel). These heterozygous F1 mice were fertile; 
mating a male and female from this heterozygous population yielded a normal litter with 1 wild type, 4 heterozy-
gous and 3 CatSper KO F2 progeny (Fig. 2D).

A23187 treatment rescues hyperactivation and fertilizing capacity in sperm of Adcy10 (aka sAC) 
KO and Slo3 KO but not in sperm from Pmca4 KO mice.  Capacitation requires up-regulation of cAMP 
concentrations18,19 and hyperpolarization of the sperm plasma membrane21. Under normal capacitation con-
ditions, neither sAC KO nor SLO3 KO sperm undergo hyperactivation (Fig. 3B), and while SLO3 KO sperm 
are able to move (Supplementary Table III and Supplementary Movie 3), sAC KO sperm are almost immotile 
(Fig. 3A, Supplementary Table III and Supplementary Movie 5). Considering that transient exposure to A23187 
can improve IVF success in a PKA independent manner (Fig. 1E and ref. 23), we tested whether these KO mouse 
models could be rescued by a Ca2+ ionophore pulse. When treated with A23187 for 10 min, a significant fraction 
of sAC KO sperm became motile and both sAC KO and SLO3 KO sperm underwent hyperactivation (Fig. 3B and 
Supplementary Movies 4 and 6). Moreover, A23187 treatment induced in vitro fertilizing capacity in sperm from 
both KO models (Fig. 3C).

We previously showed that the increase in intracellular Ca2+ caused by A23187 has to be followed by a reduction 
in intracellular concentrations of this ion after removal of the ionophore23. In sperm, two molecules are thought 
to mediate Ca2+ extrusion, namely the Na+/Ca2+ exchanger and the more efficient, sperm-specific Ca2+ ATPase 
PMCA431. Male Pmca4 KO mice are infertile32; their sperm display poor motility and do not undergo hyperac-
tivation (Fig. 3D,E). These data suggest this molecule is involved in regulation of normal Ca2+ homeostasis in 
sperm. We hypothesized that sperm lacking PMCA4 would have diminished capacity to efflux Ca2+ following 
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ionophore treatment and be less susceptible to A23187 rescue. Treatment with A23187 rendered all Pmca4−/− sperm 
motionless, and their motility was not recovered after ionophore removal (Fig. 3D). Consequently, neither their 
hyperactivated motility nor their fertilizing capacity was rescued (Fig. 3E).

Discussion
Capacitation encompasses a series of sequential and concomitant biochemical changes required for sperm to 
gain full fertilization competency. Despite the relevance of capacitation, the molecular mechanisms intrinsic to 
this process are not well understood. A very early event in sperm capacitation is the activation of motility by a 

Figure 1.  A23187 improves hyperactivation and fertilizing capacity of sperm from C57BL/6J genetic 
background. Sperm from CD1 (ICR) or C57BL/6J mice were treated with or without 20 μ​M A23187 for 10 min 
as described in Methods. After capacitation, sperm parameters were measured. In each of the panels, bars 
represent average ±​ SEM (*p <​ 0.05; **p <​ 0.01, ***p <​ 0.001) from independent experiments as indicated 
below. (A) Hyperactivation. The percentage of hyperactive motile sperm was obtained using CASAnova 
software (n =​ 4). (B) IVF. Fertilization rate was calculated considering the percentage of inseminated eggs 
achieving two-cell stage (n =​ 7). (C) Percentage of blastocyst formation. After 24 hours incubation, 2-cell 
embryos were transferred to KSOM media and incubated for additional 2.5 days to reach blastocyst stage. 
Notice that the percentage of blastocysts formation presented in the figure was obtained considering only the 
total 2-cell embryos and not the original number of oocytes. (D) Example of blastocysts formed using C57BL/6J 
sperm without (left panel) or with A23187 pre-treatment (right panel). (E) IVF conducted in the presence of H89 
inhibitor. Sperm treated or not with A23187 for 10 min were incubated in the absence or in the presence of  
50 μ​M H89. Fertilization rate was calculated as in B. (F) A23187 treatment overcomes the need for PKA activation 
in spermatozoa. Sperm treated or not with A23187 as described above were incubated in the absence or in the 
presence of 50 μ​M H89. Western blots were conducted as described in Methods (n =​ 3).
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cAMP-dependent pathway33. The activation of cAMP synthesis occurs immediately after sperm are released from 
the epididymis and come into contact with high HCO3

− and Ca2+ present in the seminal fluid34,35. Plasma mem-
brane transport of these ions regulates sperm cAMP metabolism through stimulation of Adcy10 (aka sAC)18, 
which elevates intracellular cAMP and activates PKA. Then, PKA phosphorylates target proteins and initiates 
several signaling pathways. These pathways include sperm plasma membrane hyperpolarization, increase in pHi, 
and increase in intracellular Ca2+ ions. Consistent with the influence of these events, KO mice models in which 
any of these pathways is interrupted are infertile.

Physiologically, sperm capacitation is associated with preparation for a physiological acrosome reaction 
and changes in their motility pattern collectively known as hyperactivation. Originally observed in hamster 
sperm moving in the oviduct, hyperactivated motility36 was later described in other mammalian species includ-
ing humans37. Hyperactivation is associated with a strong, high-amplitude asymmetrical flagellar beating that 
appears to be essential for the sperm to loosen their attachment to the oviductal epithelium and to penetrate the 
zona pellucida38. Consistent with an essential role of hyperactivation for fertilization competency, low motility 
and/or defects in hyperactivation is one of the most common phenotypes observed in sperm from many different 
infertile knock-out models, including those used in the present work (i.e., Catsper−/−, Adcy10−/−, Slo3−/− and 
Pmca4−/−)18,21,24,32.

Although very little is known about the molecular pathways regulating hyperactivation, Ca2+ ions have been 
shown to play roles in the initiation and maintenance of this type of movement22. Most of the information regard-
ing the role of Ca2+ in hyperactivation has been obtained using loss-of-function approaches analyzing sperm 
motility in media devoid of Ca2+ ions. Gain-of-function experiments using Ca2+ ionophores (e.g. A23187, iono-
mycin) to increase [Ca2+ ]i have yielded unexpected results because, instead of enhancing hyperactivation, these 
compounds stopped sperm movement7,23,39. Despite being motionless, ionophore-treated sperm are alive as they 
recover motility after the compound is quenched with lipophilic agents39 or removed by centrifugation23. The 
reversibility of the A23187 effect suggests that the sperm is able to return to physiological [Ca2+ ]i after a drop 
in free ionophore concentration. In our previous work, we showed that a short incubation period with A23187, 
in addition to initiating hyperactivation, accelerated the acquisition of fertilizing capacity. Most importantly, 
our data indicated that 10 min incubation with A23187 induced fertilization competence even when activation of 
cAMP-dependent signaling pathways was blocked23.

Figure 2.  A23187 treatment induces hyperactivation and fertilizing capacity of CatSper1 KO sperm. Mouse 
sperm from CatSper WT and KO were incubated in TYH medium in the presence or absence of A23187 as 
described above. In each of the panels, bars represent average ±​ SEM (*p <​ 0.05; **p <​ 0.01, ***p <​ 0.001) from 
7 independent experiments. (A) Hyperactivation was measured in sperm from WT and CatSper1−/− treated 
or not with a short (10 min) exposure to 20 μ​M A23187. After 1 hour and 20 minutes, sperm motility parameters 
were analyzed by CASA. (B) Approximately 1 ×​ 106 sperm cells from WT and KO CatSper were co-incubated 
with about 20–30 oocytes. Fertilization rate was scored 24 hour post-insemination as described above. (C) Two 
cell embryos from IVF were transferred to KSOM media and cultured for 2.5 more days until they reach late 
morula and early blastocyst (left panel). Then, blastocysts were non-surgically transferred to pseudo-pregnant 
females. 21 days later pups where born and reared to sexual maturity (right panel). (D) One heterozygous 
female and one heterozygous male were mated, and 8 F2 pups were born. The respective genotype from WT, F1, 
CatSper−/− and F2 generations were analyzed by PCR.
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Considering these results, we hypothesized that a temporary elevation of intracellular Ca2+ primes the sperm 
for hyperactivation and bypasses the need for other signaling pathways required to up-regulate Ca2+ influx in 
sperm. To test this hypothesis, in the present work, we selected four KO models affecting independent signal-
ing pathways involved in sperm motility. Three of these signaling molecules are believed to act upstream of the 
increase in Ca2+ required for hyperactivation: CatSper, sAC and SLO3. Sperm from each of these mouse mod-
els were unable to undergo hyperactivation and are incapable of fertilizing metaphase II arrested eggs in vitro. 
In addition, Pmca4 KO sperm were used, which would not allow intracellular Ca2+ lowering after saturating 
sperm cells with this ion. Pmca4 KO mice are sterile because their sperm are deficient in both progressive and 
hyperactivated motility25,40. PMCA4 has been shown to be an essential source of Ca2+ clearance in sperm, and it 
is required to achieve a low resting [Ca2+ ]i

31. Consistent with our hypotheses, a short incubation of sperm with 
A23187 induced hyperactivation of CatSper, Adcy10 and Slo3 KO but not of Pmca4 KO sperm.

Male factors contribute to approximately half of all cases of infertility41. However, in over 75% of these cases it 
is unusual to have a clear diagnosis of the abnormalities found in semen parameters42,43. Currently, assisted repro-
ductive technologies (ART) remain the main therapy available. Recent studies using KO mouse models, including 
those used in the present work, revealed that loss of function of a variety of genes results in infertility. Interestingly, 
several of these models display normal sperm counts, and their main deficiency is found in capacitation-associated 
processes such as impediments to undergo hyperactivation24, to undergo the acrosome reaction21, or to go 
through the utero-tubal junction in vivo44,45. We hypothesize that strategies designed to elevate [Ca2+]i such as 
the use of A23187 pulse should overcome the need of upstream signaling pathways including but not limited to 
PKA activation. In addition, although IVF has been successfully employed in multiple species5, requirements 
of sperm for capacitation vary greatly among species and have been developed for each sperm type essentially  
by trial and error. In some species, such as the horse, effective methods for IVF have yet to be established despite 
decades of work46. Failure of equine IVF does not appear to be associated with oocyte characteristics47 but with the 
inability of horse sperm to hyperactivate and to penetrate the egg zona pellucida (ZP), two landmarks of capac-
itation. A better understanding of capacitation signaling processes have the potential to generate a “universal”  
IVF technology that can be used in endangered/exotic species for which ART is not currently available.

Improving IVF conditions would be of great value; however, at the clinical level, ICSI has replaced IVF when 
confronted with cases of infertility due to unknown male factor(s). ICSI is reliable and, from the patient’s point of 

Figure 3.  A23187 treatment induces fertilizing capacity in sperm from Adcy10 and Slo3 infertile KO 
genetic models but not in sperm from Pmca4 KO. Sperm from 3 different KO genetic mice models with 
their respective WT were incubated in TYH standard in the presence or absence of A23187 as describe above. In 
each of the panels, bars represent average ±​ SEM (*p <​ 0.05; **p <​ 0.01, ***p <​ 0.001) from 7 WT (C57BL/6J), 
3 Slo3 KO and 4 Adcy10 KO (aka sAC) independent experiments. (A) The percentage of motile sperm was 
measured by CASA system from WT (C57BL/6J), Slo3 KO, and Adcy10 KO (aka Sac) at time 1 hour and 20 min 
after A23187 treatment (10 min A23187 exposure). (B) Hyperactivation rate was measured at the same time by 
analysis of sperm motility parameters using CASAnova software. (C) Fertilization rate was scored 24 hour post-
insemination as described above. (D,E) Analysis of sperm functional parameters in Pmca4−/−. Hyperactivation 
(D) and fertilization rate (E) were measured as above with sperm were pre-treated or not with A23187 for 10 min.
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view, more economical because of higher probability of success. Despite these advantages, ICSI bypasses certain 
aspects of normal fertilization and may bear effects that are not easily observed. Taking this into consideration, 
a method to improve IVF can be a desirable option in some male factor cases. It is worth noting that A23187 has 
already been used in the clinic for patients with repeated ICSI failure48 due to problems in egg activation. In these 
cases, fertilized eggs are transiently incubated with ionophore after ICSI, which exposes the zygote to high Ca2+. 
On the contrary, with the method described here, where sperm are transiently treated with A23187, the ionophore 
is washed out and does not come in contact with the embryo. More interestingly, using this methodology to 
overcome infertility problems related to motility and hyperactivation could be used to improve the success rate of 
intrauterine insemination, which is a significantly less invasive and less costly procedure than either IVF or ICSI.

Methods
Materials.  Chemicals and other lab reagents were purchased as follows: Calcium Ionophore A23187 (C7522), 
Bovine serum albumin (BSA, fatty acid-free) (A0281), Tween-20 (P7949), fish skin gelatin (G7765), Pregnant 
mare serum gonadotropin (G4877) and human chorionic gonadotropin (CG5), were purchased from Sigma 
(St. Louis, MO). Non-Surgical Embryo Transfer (NSET) Device was acquired from Paratechs (Billerica, MA). 
N-[2-[[3-(4-bromophenyl)-2-propen-1-yl]amino]ethyl]5-isoquinolinesulfonamide, and dihydrochloride H-89 
(130964-39-5) were purchased from Cayman chemical (Ann Arbor, Michigan). Embryo transfer light mineral 
oil (ES-005-C) and EmbryoMax®​ KSOM Medium (1X) w/1/2 Amino Acids (MR-106-D) were obtained from 
Millipore (Billerica, MA). Rabbit monoclonal anti-phosphoPKA substrates (anti-pPKAS) (clone100G7E), was 
purchased from Cell Signaling (Danvers, MA). Horseradish peroxidase-conjugated anti-rabbit IgGs was pur-
chased from Jackson Immuno-Research Laboratories GE Life Sciences. 30% Acrylamide and β​-Mercaptoethanol 
were obtained from Biorad.

Animals.  All procedures (including euthanasia, embryo transfer and genotyping) involving experi-
mental animals were performed in accordance with Protocol #2013-0020 approved by the University of 
Massachusetts-Amherst Institutional Animal Care and Use Committee (IACUC). CD1 (ICR) mice were obtained 
from Charles River Laboratories (Wilmington, MA). Infertile KO mice genetic models (CatSper KO24, Slo3 KO21, 
Adcy10 KO18) and their corresponding wild type were on an C57BL/6J background; Pmca4−/− 32 mice and cor-
responding wild type were on an FVB/N background. These genetically modified mice models as well as their 
wild type siblings were either provided by authors of this manuscript (Dr. Levin and Dr. Buck for Adcy10−​/−​; 
Dr. Celia Santi for SLO3 KO; Dr. Patricia Martin-De Leon for PMCA4 KO) or donated (CatSper KO mice were 
donated by Dr. David Clapham). Three of these lines can also be obtained as cryopreserved embryos. The respec-
tive strain, stock number and respective website information are: Adcy10 KO: B6;129S5-Adcy10tm1Lex/Mmnc; 
Stock number: 011659-UNC (https://www.mmrrc.org/catalog/sds.php?mmrrc_id=​11659). CatSper1 KO: 
B6.129S4-Catsper1tm1Clph/J; stock number: 018311 (https://www.jax.org/strain/018311). PMCA4 KO: Atp2b4 
nulls, MMRRC; Stock No: 36807-JAX (https://www.mmrrc.org/catalog/sds.php?mmrrc_id=​36807). For CatSper 
embryo recipients, surrogate mothers were CD1 (ICR) females, 8–12 weeks of age. In experiments in which 
phosphorylation by PKA was investigated, C57BL/6J male mice were used. Vasectomized males were obtained 
from Charles River, and used to induce pseudopregnancy as previously described49.Non-surgical embryo transfer 
(NSET) was performed with an NSET device (ParaTechs, Lexington, KY)29,30.

Media.  Medium used for sperm capacitation and fertilization assays was Toyoda–Yokoyama–Hosi (standard 
TYH) medium50, containing 119.37 mM NaCl, 4.7 mM KCl, 1.71 mM CaCl2.2H2O, 1.2 mM KH2PO4, 1.2 mM 
MgSO4.7H2O, 25.1 mM NaHCO3

−, 0.51 mM Na-pyruvate, 5.56 mM glucose, and 4 mg/mL bovine serum albu-
min (BSA), 10 μ​g/mL Gentamicin and phenol red 0.0006% at pH 7.4 equilibrated with 5% CO2. For capacitating 
conditions Ca2+ ionophore A23187 was used at a final concentration of 20 μ​M in TYH as previously described23.

Mouse Sperm Preparation.  Cauda spermatozoa were collected from each of the mouse strains described 
above. Each cauda epididymis was placed in 500 μ​L of TYH media. After 10 min. incubation at 37 °C (swim-out), 
epididymis tissue debris were removed, and the suspension adjusted to a final concentration of 1–2 107 cells/ml 
and divided into two aliquots. Aliquots were supplemented with either 20 μ​M A23187 or equivalent quantities of 
DMSO (for controls) and further incubated at 37 °C. After 10 min. incubation, sperm were washed with 2 rounds 
of centrifugations (first one at 500 ×​ g and the second one at 300 ×​ g for 5 min each) in A23187-free TYH medium. 
Sperm were then re-suspended in A23187-free TYH and capacitated in CO2 incubator for an additional hour and 
20 min. To evaluate sperm in conditions in which PKA is inactivated, H89 was used at a concentration of 50 μM 
for all incubation periods including those used for washing the ionophore A23187. After capacitation in each condi-
tion, sperm were used for the analysis of phosphorylated PKA substrates, hyperactivation and fertilizing capacity 
(see below).

SDS-PAGE and Immunoblotting.  After 1 hour and 20 min incubation in each condition, sperm pro-
teins were extracted for Western blot analysis as previously described22. Protein extracts equivalent to 1 ×​ 106 
sperm were loaded per line and subjected to SDS-PAGE an electro-transferred to PVDF membranes (Bio-Rad) at 
250 mA for 90 min on ice. To analyze phosphorylated PKA substrates, anti-phosphoPKA substrate (anti-pPKAS) 
(1/10000) Western blots were used as described22.

Hyperactive and Motility Parameters.  Sperm suspensions (25 μ​l) were loaded into one pre-warmed 
chamber slide (depth, 100 μ​m) (Leja slide, Spectrum Technologies) and placed on a microscope stage at 37 °C. 
Sperm movements were examined using the CEROS computer-assisted semen analysis (CASA) system (Hamilton 
Thorne Research, Beverly, MA). The default settings include the following: frames acquired: 90; frame rate: 60 Hz; 
minimum cell size: 4 pixels; static head size: 0.13–2.43; static head intensity: 0.10–1.52; static head elongation: 

https://www.mmrrc.org/catalog/sds.php?mmrrc_id=11659
https://www.jax.org/strain/018311
https://www.mmrrc.org/catalog/sds.php?mmrrc_id=36807
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5–100. Sperm with hyper activated motility, defined as motility with high amplitude thrashing patterns and short 
distance of travel, were sorted and analyzed using the CASAnova software27. At least 20 microscopy fields corre-
sponding to a minimum of 200 sperm were analyzed in each experiment.

Sperm Motility Video Recordings.  Sperm suspensions (25 μ​l) were loaded into one pre-warmed chamber 
slide (depth, 100 μ​m) (Leja slide, Spectrum Technologies). Videos were recorded for 15 seconds using an Andor 
Zyla microscope camera (Belfast, Northern Ireland) mounted on Nikon TE300 inverted microscope (Chiyoda, 
Tokyo, Japan) fitted with 20 times objective lenses. Sample temperatures were maintained at 37 °C using a Warm 
Stage (Frank E. Fryer scientific instruments, Carpentersville, Illinois).

Mouse eggs collection and IVF assays.  Metaphase II-arrested mouse eggs were collected from 6–8 
week-old super ovulated CD1 (ICR) female mice (Charles River Laboratories) as previously described22. Females 
were each injected with 5–10 IU equine chorionic gonadotropin and 5–10 IU human chorionic gonadotropin 
48 h apart. The cumulus-oocyte complexes (COC’s) were placed into a well with 500 μ​l of media (TYH standard 
medium) previously equilibrated in an incubator with 5% CO2 at 37 °C. Fertilization wells containing 20–30 eggs 
were inseminated with sperm incubated as described above in medium supporting capacitation with or without 
A23187 treatment (final concentration of 1 ×​ 106 cells/ml). After 4 h of insemination, eggs were washed and put in 
fresh media. The eggs were evaluated 24 h post-insemination. To assess fertilization the three following criteria 
were considered: 1) the formation of the male and female pronuclei; 2) the emission of the second polar body; 
and 3) two-cells stages.

Embryo Culture, Embryo transfer and Mice Genotyping.  Twenty-four hours post-insemination, 
fertilized 2 cell embryos were transferred to drops containing KSOM media and further incubated between 
3.5 and 4.1 days. At this stage, the percentage of blastocyst formation was evaluated. In some cases, 10 to 20 
blastocysts were transferred to 2.5 days post coitum (dpc) pseudo-pregnant CD-1 recipient females using the 
non-surgical uterine embryo transfer device28. Pseudo-pregnant CD-1 recipient females were obtained by mating 
with vasectomized males (obtained from Charles River) one day after in vitro fertilization. Only females with 
a clear plug were chosen as embryo recipients; late morula and early stage blastocysts were chosen to be trans-
ferred. Routine genotyping was performed with total DNA from tail biopsy samples from weaning age pups as 
templates for PCR using genotyping primers for CatSper gene forward [5′-TAAGGACAGTGACCCCAAGG-3′] 
and reverse [5 ′-TAAGGACAGTGACCCCAAGG-3 ′] and for the reporter gene Lacz forward 
[5′TGATTAGCGCCGTGGCCTGATTCATTC-3′​] and reverse [5′​-AGCATCATCCTCTGCATGGTCAGGTC-3′​]  
as described by the original authors24.

Statistical analysis.  Data from all studies are analyzed using SIGMA plot software (www.sigmaplot.com). 
Data are expressed as the means ±​ S.E.M. The difference between mean values of multiple groups was analyzed 
by one-way analysis of variance (ANOVA) followed by Tukey’s test. Statistical significances are indicated in the 
Figure legends.
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