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Abstract: There are generally complex features with large curvature or narrow space on surfaces of
complicated tiny parts, which makes high-precision measurements of their three-dimensional (3D)
overall profiles a long-lasting industrial problem. This paper proposes a feasible measurement solu-
tion to this problem, by designing a cradle-type point-scanning five-axis measurement system. All the
key technology of this system is also studied from the system construction to the actual measurement
process, and the measurement accuracy is improved through error calibration and compensation.
Finally, the feasibility is proved by engineering realization. The measurement capability of the system
is verified by measuring workpieces such as cross cylinders and microtriangular pyramids.

Keywords: five-axis; cradle type; point-scanning; error modeling

1. Introduction

The entire sizes of tiny parts with complicated features are in the millimeter or cen-
timeter level, and they generally have typical structural features such as large curvature
surfaces, narrow areas, complex structures, sharp edges, etc. [1]. Tiny parts such as crossed
cylinders, diamond cutters, microtriangular pyramids, etc., have been widely used in many
fields such as aerospace, biomedicine, telecommunication, intelligent manufacturing, and
optical communication [2,3]. The application performance of tiny parts is affected by the
manufacture quality of their surface profiles, so it is of great significance to focus on their
surface profile measurements [4,5]. One of the research hotspots in the measurement field
of tiny parts is to measure their typical structures. The overall profile measurement is
to measure the complete surface profiles of workpieces without blind spots and obtain
3D profile information. To realize these measurements, measurement systems with mul-
tiple motion axes are required, which are also called MDOF (multi-degree-of-freedom)
measurement systems [6]. MDOF systems can flexibly adjust the relative postures and
positions between probes and workpieces through multiaxis linkage motions to achieve
scanning measurements on whole surfaces [7]. However, the measurement accuracy of
systems is a composite indicator of the accuracy of sensors and multiaxis linkage mecha-
nisms [8,9]. While MDOF measurement systems increase the flexibility of motions, they
also introduce more errors and error coupling relationships [10,11]. These errors make
high-precision measurements with MDOF measurement systems become a long-lasting
problem in industry.

Currently, two scanning motion forms, namely, the rotary motions of probes or work-
pieces are mainly used for profile measurements from multiple relative positions. As the
source of surface data of measured workpieces, different probes cover a variety of different
measurement principles and forms. Generally, Line-scanning and local-surface-scanning
measurement forms are limited in dynamic range among existing measurement methods,
and need point cloud registration to achieve large-scale surface reconstruction. In contrast,
measurement forms based on single-point probes have the largest dynamic range and
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highest flexibility, and can achieve 3D measurements of any surfaces with complex features
through point scanning [12]. Among them, non-contact point-scanning measurement
principles are more efficient than traditional contact CMMs or similar instruments and
will not scratch measured surfaces [13]. Firstly, as for MDOF measurement systems with
rotary point-scanning probes, there have been several commercial instruments, among
which Nanomefos by Dutch Optics Centre and Demcon [14] and Luphoscan by Taylor
Hobson [15] are the most typical. However, the measurement accuracy of these instruments
depends on high-precision feedback mechanisms such as laser interferometers [16], so
these systems are relatively complex and expensive, and cannot be widely used in indus-
trial applications. Besides, Luphoscan cannot measure most non-rotational asymmetric
optical free-form components due to its structure. To solve this problem, our research
group have designed and built a five-axis point-scanning measurement system, which
controls the probe to rotate in two dimensions so that the probe can maintain postures
along normal vectors of measured surfaces [17]. After studying the technology of system
error modeling and compensation, high-precision measurements of large-curvature optical
free-form surfaces are realized. However, the rotary radii of probes are relatively large in
MDOF measurement systems, which will result in the waste of space and travels of motion
mechanisms. The systems mentioned above can measure part of the area of whole surfaces
on optical components within a certain angle range, but still cannot realize the entire
surface measurements, let alone the entire surfaces of complicated tiny parts. Secondly,
as for rotation scanning by workpieces, most measurement systems only use the single
rotary stage to adjust workpieces, and few use the form of dual-axis rotation, such as S
Neox 3D optical profiler by Sensofar [18] and StentCheck 3D CMM by Werth [19]. The S
Neox 3D optical profiler uses an AC dual-axis rotary stage (cradle-type structure [20,21])
similar with some five-axis machining centers to adjust the posture of workpieces. This
instrument has the capability to measure entire surfaces of milling cutters. Since its probes
are based on the local-surface-scanning measurement principle, point cloud registration
is needed, which destroys the continuity of measurements and reduces the measurement
accuracy. The StentCheck 3D CMM uses a tilting table and rotation stage to rotate measured
workpieces in two dimensions, and its efficiency is much higher than that of the S Neox 3D
optical profiler. However, the measurement range of this system is limited by the angle
range of the tilting table, and it cannot realize the whole surface scanning of tiny parts with
more complicated structures. However, the cradle-type structure for workpiece rotation
has certain advantages. Compared with rotating probes, only rotating measured tiny parts
can achieve a wide range of angular movements in space, and the radii of rotations are
relatively small. The cradle-type structure makes the posture adjustment more accurate
and efficient, and saves space and the movement of motion mechanisms [22]. It can be
seen that the method of rotating workpieces on a cradle-type five-axis system is a relatively
promising measurement solution, which is worthy of further study.

The core problem that restricts the development of high-precision point-scanning
measurement systems for a long time is the measurement accuracy, which highly depends
on the accuracy of system hardware. The introduction of multiaxis motion mechanisms
has increased the scanning motion errors of MDOF measurement systems [23]. Therefore,
based on certain hardware conditions, there is an urgent need for research on high-precision
system error calibration and compensation to improve the measurement accuracy of these
systems. Most research on the error modeling and compensation of MDOF systems focuses
on CNC machine tools currently [24]. Based on the multibody kinematics theory, Zhang
Y. et al. deduced a set of transformation formulas for cradle-type five-axis CNC machine
tools, but their study only covers theoretical models without actual experiments or error
compensation research [25]. Schwenke H. et al. used a laser interferometer for the error
calibration of CNC machine tools and analyzed each rotary axis in 6 degrees of freedom [26].
Chen J et al. put forward a method to calibrate errors of rotary stages on CNC machine tools
by using a double ball bar system as the calibration part [27]. In summary, on the one hand,
most methods for the error modeling of MDOF systems need high-precision instruments
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for calibration, which limits the flexibility and practicality of methods [28]; on the other
hand, these methods are mostly aimed at CNC machine tools rather than measurement
systems [29,30]. Therefore, to solve the common problem of large measurement errors
faced by MDOF measurement systems, suitable mathematical analysis, error modeling,
error calibration, and compensation methods are required.

In this paper, focusing on the problem of the overall profile measurements of tiny parts
with complicated features, we propose a feasible solution with the cradle-style five-axis
point-scanning measurement system, and achieve the engineering realization. The key
technology from system construction, path planning, system error modeling, and com-
pensation to actual measurement process was studied. The five-axis cradle-type system
built in this paper controls the probe to rotate in space to realize scanning measurements
on whole surfaces of measured workpieces without blind spots. This system realizes the
real-time tracking of measured points through the coordinate recursive algorithm, so point
cloud registration is not needed, which ensures the continuity of scanning measurement
and improves measurement efficiency. Focusing on the improvement of the accuracy of
this point-scanning measurement system, procedures, and related algorithms of system
error identification, calibration, and compensation are proposed. The accuracy is ensured
by error correction from the source, so it does not rely too much on high-precision feedback
mechanisms. The advantage of error correction method we proposed is that it improves
the accuracy of the measurement system conveniently and effectively without the need
for additional high-precision instruments. Finally, the measurement capability and ac-
curacy of our system are verified by measuring cross cylinders, standard spheres, and
other workpieces.

2. Measurement Scheme

The general idea of this paper is shown in Figure 1. A cradle-type five-axis point-
scanning measurement system structure was designed to measure the overall 3D profiles
of tiny parts. By analyzing the relationship between axes in this system, a model of mea-
surement coordinate system was constructed based on the kinematic theory, meanwhile
coordinates of real-time measuring points were calculated. For specific measured work-
pieces, it is necessary to design measurement paths based on their surfaces. Nominal
models of measured workpieces were analyzed, and their overall surfaces were segmented
into several areas. Scanning paths were designed according to specific features. Compared
with traditional three-axis or four-axis measurement systems, complicated correlation
among axes in five-axis systems introduced more error terms. Error terms of this five-axis
system were identified, classified according to their influence mechanisms, and their im-
pacts on measurement results were simulated. To improve efficiency, only major error
terms (which account for most of the proportion to measurement accuracy) were concerned.
A calibration and compensation process for major error terms was proposed and verified
via simulation to test theory feasibility. An experiment setup was built and calibrated
based on theorical research. Four kinds of tiny parts were measured and reconstructed
with point clouds. The registration between point clouds and nominal models was applied
to evaluate measurement accuracy.
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Figure 1. A schematic diagram for overall 3D profile measurements of tiny parts.

3. Coordinate System Construction and Path Planning

The cradle-type five-axis measurement system mainly consists of electric motion
stages and a probe. This system has three linear axes of X, Y, and Z, two rotary axes
of A and C. To reduce positioning errors caused by the movement of neighboring axes,
this self-built system separates the Z axis from the X axis and Y axis. The cradle-type
due-axis setup consists of A-axis and C-axis rotary stages, which are orthogonal. Measured
workpieces are installed on the C-axis rotary stage by a three-jaw chuck. The spatial
position and orientation of workpieces are adjusted by four motion axes, while the position
of the confocal probe is only adjusted by the Z-axis linear stage. Actually, the basic idea of
this paper can be straightforwardly extended to any configurations of five-axis system. The
point-scanning probe used is a chromatic confocal probe, which has significant advantages
on strong anti-interference and can realize high-precision measurement of workpieces.

Figure 2 shows the process of coordinates recursion. The coordinate system, following
the measurement system model, is a right-hand coordinate system. The directions of axes
are the same as the nominal directions of linear stages or rotary stages. When analyzing
the motion trajectory of coordinate points with the idea of relative motion, the measured
workpieces can be considered as fixed, while the probe performs all the motions. Thus,
the situation that workpieces rotate around the A axis and C axis is regarded as the probe
rotating around the A axis and C axis in opposite directions. The spatial coordinates of
point cloud were calculated with measurement data of different measurement areas and
paths, and they were all summarized in this measurement coordinate system to restore the
overall 3D profile.
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Figure 2. Schematic diagrams for coordinates recursion: (a) calculate the first point coordinates; (b) calculate the n + 1th
point coordinates.

A standard cylinder of a known diameter was used to show the principle of the
coordinate calculation. Since chromatic confocal probes can only measure relative distances,
that means, measurement data is the distance along the optical axis between the measuring
point and a reference plane. The reference point is the intersection point between the
optical axis and the reference plane, and the working distance is the distance between the
exit pupil of the probe and its reference point. Suppose the working distance of the probe
is d, the radius of the standard cylinder is r, and the initial measurement result is h0.

The process of calculating coordinates of the first measuring point in the measurement
coordinate system is shown in Figure 2a. The initial coordinates Pep_0 of the exit pupil are
(0, 0, d + r + h0), and the initial coordinates Pref_0 of the reference point are (0, 0, r + h0). The
measurement data transmitted from the measurement system to the computer at a time
includes six terms (xi, yi, zi, α, β, and hi), which represent the real-time position information
of the X, Y, Z, A, and C axes, and the measurement data of the chromatic confocal probe.

Due to the motions of three linear stages, the position of the exit pupil of the probe
will change from (0, 0, d + r+ h0) to (x1, y1, z1 + d + r + h0), and the reference point will move
to (x1, y1, z1 + r + h0). In three-dimensional space, each rotary axis can be positioned by two
points on it, which is named c1 (a, b, c) and c2. According to the rotation transformation
principle of rigid body in three dimensions, the vector of the axis p and rotary matrix R can
be written as follows:

p =

 u
v
w

 =
c2 − c1

norm(c2 − c1)
(1)

R =


u2 + (v2 + w2) cos(γ) uv(1− cos(γ))− w sin(γ) uw(1− cos(γ)) + v sin(γ) (a(v2 + w2)− u(bv + cw))(1− cos(γ)) + (bw− cv) sin(γ)
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After rotations, the coordinates of the exit pupil of the probe Pep_1 and reference point
Pref_1 are expressed as Equations (3) and (4).

Pep_1 = RA_1 ×RC_1 ×


x1
y1

z1 + d + r + h0
1

 (3)

Pre f _1 = RA_1 ×RC_1 ×


x1
y1

z1 + r + h0
1

 (4)
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The optical axis vector m can indicate the spatial orientation of the probe, and can
be calculated according to the current positions of the exit pupil of the probe and refer-
ence point:

m = (Pep_1 − Pre f _1)/norm(Pep_1 − Pre f _1) (5)

Combined with the measurement result h1, the spatial coordinates of the first mea-
suring point in the global measurement coordinate system Ppoint_1 can be calculated as
Equation (6).

Ppoint_1 = Pre f _1 + h1 ×m (6)

As shown in Figure 2b, every time when measuring the next point, the data of five
motion axes recorded at the latest point were used as a reference to calculate the increment
motions of each axis. Based on the data (xn, yn, zn, αn, and βn) at the nth measuring point
and the data (xn+1, yn+1, zn+1, αn+1, βn+1, and hn+1) obtained at the n + 1th measuring point,
the process of calculating the coordinates Ppoint_n+1 of the n + 1th point was as follows:

Calculate the increment motions xadd, yadd, zadd, αadd, and βadd of the X, Y, Z, A, and C
axes, respectively. Due to the cradle-type structure, rotations around the C axis change the
directions of linear motions by X, Y, and Z stages, while rotations around the A axis change
the directions of X, Y, and Z stages and the vector of the C axis. Each motion is recorded,
and these vectors were calculated. The translation matrix Ti is expressed as Equation (7),
where axisx_i, axisy_i, and axisz_i are the vectors of X, Y, and Z stages, and O is a 3 × 3
matrix of zeros.

Ti =

[
axisx_i axisy_i axisz_i O

0 0 0 1

]
(7)

Equations (8) and (9) were used to express the coordinates of the exit pupil Pep_n+1
and reference point Pref_n+1 during the n + 1th measurement.

Pep_n+1 = RA_n+1 ×RC_n+1 × (Pep_n + Ti ×


xadd
yadd
zadd

1

) (8)

Pre f _n+1 = RA_n+1 ×RC_n+1 × (Pre f _n + Ti ×


xadd
yadd
zadd

1

) (9)

where, Pep_n and Pref_n represent the coordinates of the exit pupil and reference point
during the nth measurement.

Similarly, the optical axis vector was calculated according to the coordinates of the
pupil and reference point, and the coordinates of the n + 1th measuring point were calcu-
lated in combination with the measurement result hn+1. In summary, based on the iterative
theory, the spatial coordinates of all measured points can be derived. All points were on
the scanning paths and coordinates were calculated in the same measurement coordinate
system recursively. Point cloud registration was not needed because the relative position
of these points was consistent with the actual situation.

Since the chromatic confocal probe is a point measurement probe, it is necessary to
design scanning paths according to certain measured surfaces. Limited by the angular
characteristics and range of the probe, the contour lines with a larger curvature are usually
regarded as boundaries of different measurement areas, and scanning paths are designed
based on them. The surface near contour lines is scanned by special paths according to its
normal vectors. After area-by-area measurements, the coordinates of the point cloud can
be summarized.

There are usually three common types of profile features of tiny parts: cylindrical
surface, flat surface, and complicated structure surface. As shown in Figure 3, three
measurement paths were proposed for these three types of surfaces. Rotary scanning
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paths are suitable for measuring the surfaces whose overall contours are in the form
of rotation. The Y-axis motions are periodic steps, and the C-axis rotary stage controls
workpieces to rotate 360◦ to achieve a fixed interval point measurement on every circular
path. Raster paths are suitable for relatively flat surfaces, whose height change in a small
range. Raster paths are conventional for numerical-control machine applications. Free
scanning paths are suitable for measuring more complicated surfaces, such as area near
contour lines, and depending on the normal vectors of specific measured features, the
relative spatial position of the probe and workpieces need to be adjusted appropriately to
meet the angle characteristics of the probe. When measuring each workpiece, the paths of
different areas are generated separately. However, the measurement path is continuous, so
the measurement is also a continuous process.
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4. Error Correction Theory of the Cradle-Type Measurement System
4.1. Error Identification

Compared with traditional three-axis or four-axis systems, with the increased number
of synchronous motion axes, there are more error terms and error coupling relations in
five-axis systems. These error terms cause great harm to systems’ accuracy, especially
for point-scanning systems and CNC machine tools [31]. Actually, the most critical prob-
lem that point-scanning measurement systems need to solve is the calibration and error
compensation of motion mechanisms.

As shown in Table 1, to facilitate error calibration and compensation, the error terms
in five-axis systems can be divided into two types: system errors and clamping errors
of workpieces. System errors can be divided into four types, namely the static errors of
the linear stage (δx, δy, and δz), static errors of the rotary stage (δθ1, δθ2, ∆x, ∆y, and ∆z),
dynamic errors of the linear stage (∆d), and dynamic errors of the rotary stage (δβ). The
first two belong to static system errors, which stem from the inaccurate clamping and is
fixed when the system is built, and the latter two belong to dynamic system errors, which
stem from motions of the linear or rotary axes and are random. The clamping errors of
measured workpieces are divided into tilt errors (δβw1 and δβw2) and centrifugal errors
(∆xw and ∆zw), and both are static errors. The schematic diagram of clamping errors is
shown in Figure 4a, with a cylinder as the workpiece. Cylinders have central axes, which
can indicate the degrees in which workpieces are usually tilted. The axis of the workpiece
may not be perpendicular to the rotary stage surface, so there is a certain angle between
this axis and the axis of the stage. Tilt errors are the angles between the projection of the
axis of the measured workpiece and coordinate axes in the plane, which is perpendicular
to the C axis. Although the axis of the workpiece is parallel to the C axis, they are not
coincident. The distance between two parallel axes represents the degree of deviation of
two axes, and the two orthogonal components of this distance in the plane perpendicular
to the C axis are called centrifugal errors.
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Table 1. The error classification of the five-axis measurement system.

Error Types Specific Error Terms Symbols Ratios

System errors

Static errors of linear stages δx, δy, δz 2.430%
Dynamic errors of linear stages ∆d 0.367%

Static errors of rotary stages δθ1, δθ2, ∆x, ∆y, ∆z 73.013%
Dynamic errors of rotary stages δβ 0.083%

Clamping errors
of workpieces

Tilt errors δβw1, δβw2 17.247%
Centrifugal errors ∆xw, ∆zw 6.860%

Based on the kinematic theory [32], the measurement system can be divided into the
workpiece chain and probe chain. The proportion of influence on results from different error
terms was calculated as follows: The measurement results can be written as a multivariate
function formula with all error terms. All values of error terms were set based on the
real situation, that is, angular error values of rotary stages were in the range of 0.01–0.02◦,
and linear error values of linear stages were in the range of 0–1 µm. The default tilt error
values of workpieces were 0–5◦, and the centrifugal error values were 0–0.5 mm. Ratios are
shown in Table 1. Among all errors, static errors of rotary stages and clamping errors had a
larger proportion than others. In a cradle-type five-axis system, the static errors of rotary
stages and clamping errors accounted for about 97.12% of the influence on the results, so
they were defined as the major error terms in this paper. Besides, the simulation results of
measuring a cross-sectional profile of a standard cylinder with clamping errors are shown
in Figure 4b, and even small clamping errors will cause a large measurement deviation.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

axes, and the two orthogonal components of this distance in the plane perpendicular to 
the C axis are called centrifugal errors. 

Table 1. The error classification of the five-axis measurement system. 

Error Types Specific Error Terms Symbols Ratios 

System errors 

Static errors of linear stages δx, δy, δz 2.430% 
Dynamic errors of linear stages Δd 0.367% 

Static errors of rotary stages δθ1, δθ2, Δx, Δy, Δz 73.013% 
Dynamic errors of rotary stages δβ 0.083% 

Clamping errors of 
workpieces 

Tilt errors δβw1, δβw2 17.247% 
Centrifugal errors Δxw, Δzw 6.860% 

Based on the kinematic theory [32], the measurement system can be divided into the 
workpiece chain and probe chain. The proportion of influence on results from different 
error terms was calculated as follows: The measurement results can be written as a multi-
variate function formula with all error terms. All values of error terms were set based on 
the real situation, that is, angular error values of rotary stages were in the range of 0.01–
0.02°, and linear error values of linear stages were in the range of 0–1 μm. The default tilt 
error values of workpieces were 0–5°, and the centrifugal error values were 0–0.5 mm. 
Ratios are shown in Table 1. Among all errors, static errors of rotary stages and clamping 
errors had a larger proportion than others. In a cradle-type five-axis system, the static 
errors of rotary stages and clamping errors accounted for about 97.12% of the influence 
on the results, so they were defined as the major error terms in this paper. Besides, the 
simulation results of measuring a cross-sectional profile of a standard cylinder with 
clamping errors are shown in Figure 4b, and even small clamping errors will cause a large 
measurement deviation. 

 
Figure 4. Error identification and simulation: (a) a schematic diagram for clamping errors of work-
pieces; (b) simulation results on clamping errors. 

4.2. Error Calibration and Compensation 
In Section 4.1, major error terms were identified. To improve calibration efficiency 

and avoid more errors caused by the calibration process when calibrating multiple error 
terms, only major error terms (the static errors of rotary stages and clamping errors of 
workpieces) were selected for calibration and compensation. A standard cylinder was 
used as the calibration part in calibration. The standard cylinder was rotationally sym-

Figure 4. Error identification and simulation: (a) a schematic diagram for clamping errors of work-
pieces; (b) simulation results on clamping errors.

4.2. Error Calibration and Compensation

In Section 4.1, major error terms were identified. To improve calibration efficiency
and avoid more errors caused by the calibration process when calibrating multiple error
terms, only major error terms (the static errors of rotary stages and clamping errors of
workpieces) were selected for calibration and compensation. A standard cylinder was used
as the calibration part in calibration. The standard cylinder was rotationally symmetric.
Compared with the standard sphere, it can provide a certain rotary axis as a reference, so
it is more suitable for determining the direction vector in space and the rotary axis of a
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rotary stage. The process of correcting the major error terms is as follows: (a) calibrate and
compensate the static errors of the A-axis rotary stage first; (b) calibrate and compensate
the static errors of the C-axis rotary stage; (c) calibrate and compensate the clamping errors
of the measured workpiece.

4.2.1. Calibration and Compensation of Static Errors of Rotary Stages

The static errors of two rotary stages were calibrated and compensated at first, and
the method was the same. As shown in Figure 5, when calibrating the static errors of the
rotary stage, a standard cylinder was clamped on it and rotated 0◦, 90◦, 180◦, and 270◦

respectively, and a piece of area was scanned at these four angles. Since four point clouds
were the minimum amount to form symmetry in two directions, the stable angle between
two point clouds was 90◦.
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Figure 5. The calibration process of the static errors of a rotary stage.

The rotary axes of the cylinder at these four positions could be calculated by cylindrical
fitting with the measurement results, named L1, L2, L3, and L4, and the other three axes
were generated by the rotation of the first axis L1. Four axes were symmetrically distributed
around the rotary axis of the rotary stage, so that the real vector of it could be calculated by
optimization. The coordinates of the two points on the rotary axis were the optimization
objects. The first axis L1 will be rotated 90◦, 180◦, and 270◦ around the optimized rotary
axis and the form L2′ , L3′ , L4′ , L2′ , L3′ , and L4′ did not coincide with L2, L3, and L4, and the
optimization was finished when the total distance between them reached the minimum.

By taking the optimized vector as the rotary axis, the first point cloud at 0◦ was rotated
0◦, 90◦, 180◦, and 270◦ around it and four virtual point clouds were generated. As shown in
Figure 6, both the measured and virtual point clouds were compared in the same coordinate
system, which were drawn in blue and red, respectively.
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The coordinate system O’-X’Y’Z’ of the rotary stage did not coincide with the measure-
ment coordinate system O-XYZ. Coordinates of the direction vectors O’X’, O’Y’, O’Z’, and
the origin O’ in O-XYZ can be expressed according to the static errors of the rotary stage. By
using the coordinate space transformation matrices, the coordinates of the measured point
P’ can be converted to the coordinates P in the global measurement coordinate system:

P =

[
Px Py Pz Po

0 0 0 1

]
× P′ =


xx′ xy′ xz′ xo′

yx′ yy′ yz′ yo′

zx′ zz′ zz′ zo′

0 0 0 1

× P′ (10)

where, Px, Py, and Pz represent the direction vectors of O’X’, O’Y’, and O’Z’ in the global
measurement coordinate system.

The above algorithm was used to compensate for static errors of the rotary stages.
Calculate the distances dis_zi between corresponding points in the virtual point clouds and
the optimized point clouds along the Z axis, which can explain the compensation effect
and the reliability of the optimized rotary axis:

dis_zi = zvirtual_i − zoptimized_i (11)

where, zvirtual_i and zoptimized_i are the Z coordinates of the ith point in the virtual and the
optimized point clouds.

The distance distributions after optimization are shown in Figure 7, and all distances
were lower than 10 nm. The errors of the A-axis and C-axis rotary stage were compen-
sated individually.
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4.2.2. Calibration and Compensation of Clamping Errors

After compensation of the static errors of two rotary stages, clamping errors were
calibrated and compensated. To ensure the completeness and continuity of the whole error
calibration process, the standard cylinder was also used as the calibration part for clamping
errors. In simulation, the point clouds used for the calibration were also gained from the
four angle 0◦, 90◦, 180◦, and 270◦ on the C-axis rotary stage, but the optimization was
different from the optimization above. Two points N1 (x1, y1, and z1) and N2 (x2, y2, and z2)
on the rotary axis were used to determine the position and the orientation of the axis in the
optimization, and the cylinder axis can be expressed as Equations (12) and (13):

x− x1

x2 − x1
=

y− y1

y2 − y1
=

z− z1

z2 − z1
(12)

(y2 + z2 − y1 − z1)x− (x2 − x1)y− (x2 − x1)z− x1y2 − x2y1 − x1z2 − x2z1 = 0 (13)

The coordinates of these two points are the optimized objects. Four point clouds are
in the same coordinate system and the cylinder is rotated around the C axis. During the
optimization, the cylinder axis was rotated and calculated. The distance Disi between the
measured point Mi (xi, yi, zi) and the cylinder axis can be calculated as Equation (14):

Disi =
|(y2 + z2 − y1 − z1)xi − (x2 − x1)yi − (x2 − x1)zi − x1y2 − x2y1 − x1z2 − x2z1|√

(y2 + z2 − y1 − z1)
2 + (x2 − x1)

2 + (x2 − x1)
2

(14)

The optimization aims to let the point clouds coincide with the cylindrical surface.
The optimized objective function is as follows:

Obj = min(
n

∑
i=1
|Disi − R|) (15)

Based on the global optimal least square method, after optimization, the position and
orientation of the cylinder axis was obtained. With the optimized cylinder axis, the error
distribution was calculated based on the nominal point clouds and the measuring point
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clouds, as shown in Figure 8. All errors were below 1 nm, which proved that the cylinder
axis was accurately positioned.
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The error compensation of the cradle-type five-axis measurement system mainly
contains the compensation of clamping errors and errors of rotary stages based on mea-
surement results on a standard cylinder. It can be seen from Figure 9 that influence of
major error terms will be eliminated significantly via error compensation, and contours
of the cylinder can be corrected after such a process. Before compensation, with the influ-
ence of static errors of rotary stages and clamping errors, the measured contours were an
oblique circular cylinder and frustum of a cone, respectively. The contours changed back
to nominal cylinders.
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5. Experiments and Results
5.1. System Construction and Error Calibration

The cradle-type five-axis measurement system is shown in Figure 10, and the entire
experimental setup was placed on a marble air-floating base. The parameters of the
hardware are shown in Table 2. The confocal probe used was produced by ThinkFocus.
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Table 2. The parameters of the five-axis measurement system.

Hardware Travel/Range Accuracy Others

X/Y/Z axes 200 mm 1 µm \

A/C axes 360◦ 0.004◦ Surface radius of C-axis stage:
30 mm

Probe 400 µm 0.1 µm NA: ±28◦

Standard cylinder r: 10 mm Cylindricity: 14 µm \

Through the simulation on error calibration and compensation, the feasibility of their
theories was verified. According to the simulation research, the major error terms of this
self-built cradle-type five-axis measurement system with a chromatic confocal probe were
calibrated, and the calibration results are shown in Table 3.

Table 3. The calibration results of the major error terms.

Error Source Error Terms Value (◦ or µm)

A axis
δθ1, δθ2 0.0741, 0.3413

∆x, ∆y, ∆z (0.8424, −0.0012, 0.0177)

C axis
δθ1, δθ2 0.5035, −0.8466

∆x, ∆y, ∆z (0.2906, 0.5074, 0.6875)

Workholding device δβw1, δβw2 −5.6936, 2.2561
∆xw, ∆zw (0.0651, −0.2498)

5.2. Measurement Results

After error compensation, the standard cylinder was measured to verify the repeatabil-
ity of this system. The measurement point cloud and the ideal STL model of the measured
workpieces were used for registration. After that, the vertical distance Di between the
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measured ith point and the corresponding tiny triangle surface was calculated. Suppose
the number of total points is n, then the standard deviation σ is obtained by the calculation
process of Equation (16). This standard deviation can reflect the dispersion degree of
the deviation between the actual and ideal coordinates, indicating the concentration of
the error distribution in a single measurement. The standard deviation in the cylinder
measurement dropped from 101.27 to 12.42 µm, as shown in Figure 11a, which confirms
the compensation effect. The same area of the standard cylinder was measured four times,
and the performance is presented in Figure 11b. The measurement results were expanded
along the angle, and the distance from each point to the cylinder axis was calculated. It can
be seen from the figure that the error distribution of each measurement was basically the
same, which proved that the repeatability was good.

σ =

√√√√√ n
∑

i=1
D2

i

n
(16)
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Figure 11. Measurement results: (a) the standard cylinder; (b) the repeatability verification.

Two kinds of typical tiny parts were selected to evaluate the overall profile measure-
ment capability of this system, which were cross cylinders and microtriangular pyramids.
These two workpieces were both manufactured by CK 6140. The orientation accuracy
of this CNC machine tool was about 0.01 mm, and the reorientation accuracy was about
0.005 mm. Cross cylinders had features of rotational symmetry, and their cylindrical axes
could be used to calibrate the clamping errors. As shown in Figure 12a, the cross area had
a large curvature and small size, which is representative and challenging to measure. The
level of detail in that area mainly depends on the sampling interval. The final point cloud
was compared with the nominal 3D model. The measurement accuracy was evaluated
by comparing the point cloud and nominal model. The standard deviation was 64.16 µm
after compensation, which confirms the compensation effect. Besides, microtriangular
pyramids have apparent contours between three sides and edges are difficult to measure.
As shown in Figure 12b, a microtriangular pyramid whose three sides were all squares was
measured. The cross-section of its handle was a regular hexagon. The evaluation method
of measurement accuracy was the same as the process above, and the standard deviation
was about 86.25 µm.
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Besides, a standard sphere was measured by a CMM (the global advantage CMM by
hexagon) and our measurement system to compare measurement results, which can be
seen in Figure 13a,c. Figure 13b is the evaluation of the point cloud measured by the CMM.
The measured area was 50% of the entire sphere surface. The standard deviation was about
26.51 µm. Figure 13d is the measurement results of 25% of the entire surface on that sphere
by our five-axis system, and the standard deviation was 9.60 µm. The error distributions
were in the shape of ring bands. A total of 70% of the entire surface was also measured
by this system, as shown in Figure 13e, and the standard deviation rose to 29.07 µm.
Considering the accuracy of electric motion stages used, this measurement accuracy was
considered reasonable. The normal radius of this standard sphere was 12.703 mm, and
the results of spherical fitting with data by the CMM and our system were 12.693 mm and
12.682 mm.
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6. Conclusions

Focusing on the difficulty of the overall profile measurements of tiny parts with
complicated features, a solution using the cradle-type five-axis measurement system was
proposed in this paper. We achieved the engineering implementation based on our theoret-
ical research. It proved that this cradle-type five-axis measurement system had good value
for engineering applications. Our contributions can be summarized as follows:

(1) An optical, cradle-type, non-registration point-scanning measurement method was
proposed, which does not need the point cloud registration process and adapts
to multiple complicated features of different sizes. This measurement system has
strong flexibility.

(2) A process to identify major error terms in measurement systems and apply calibration
and compensation on them was proposed. The advantages of this process are that it
does not rely on any additional high-precision equipment and promotes the system’s
accuracy conveniently and efficiently. This method can also be applied to correct error
terms in other measurement systems with rotary axes.

(3) A five-axis experiment setup was built and tiny parts were measured in experiments.
The measurement accuracy and capability of overall profile measurements were
verified by measuring standard workpieces and complicated tiny parts separately. It
was proved that in terms of overall profile measurement, this cradle-type five-axis
measurement system had more advantages than some commercial instruments. It
is worth noting that, measurement accuracy can be further improved if hardware
with higher accuracy is used in the future. With the help of a premeasurement by an
external measurement device, a fully automatic measurement is the next research goal.
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