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Abstract

Purpose:Morphine is the predominantly used drug for postoperative and cancer pain

management. However, the abuse potential of morphine is the primary disadvantage

of using opioids in pain management. Melatonin is a neurohormone synthesized in the

pineal gland and is involved in circadian rhythms in mammals, as well as other physi-

ological functions. Melatonin provenly attenuates alcohol-seeking and relapse behav-

iors in rats. Therefore, we aimed to investigate the involvement of the melatonergic

system in attenuatingmorphine dependence.

Materials andmethods:MaleWistar ratsweredivided into three groups: control,mor-

phine, and morphine + melatonin. Animals were habituated for 3 days, and the initial

preference was evaluated. Following the initial preference, the control group received

the vehicle and was placed for a 45-min session in the assigned chamber every day,

alternatingbetween the twochambers, for 8days. Themorphine group receivedamor-

phine injection (5mg/kg, IP) andwas placed for a 45-min session in thewhite chamber,

for a total of four sessions. The morphine + melatonin group received the morphine

injection (5 mg/kg, IP) for a total of four sessions over an 8-day period. In the posttest

session, the control and morphine groups received a vehicle injection 30 min before

placement in the conditionedplace preference (CPP). Themorphine+melatonin group

received a single injection of melatonin (50 mg/kg, IP) 30 min before the preference

test.

Results: Statistical analysis revealed that repeated administration ofmorphine for four

sessions produced a significant increase in the CPP score in the morphine group com-

pared to the control group. However, a single melatonin injection administered 30min

before the posttest attenuated morphine-seeking behavior and reduced morphine-

induced place preference.

Conclusion:These findings provide novel evidence for the role of themelatonergic sys-

tem as a potential target in modulatingmorphine-seeking behavior.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
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1 INTRODUCTION

Morphine is one of the predominantly used drugs in postoperative

and cancer pain management (Afsharimani et al., 2011; Aubrun et al.,

2003; Donnelly et al., 2002). However, the prolonged use of morphine

is associated with an increased probability of tolerance and potential

for abuse, which is a primary disadvantage of using opioids in pain

management (Norn et al., 2005; Preston et al., 1991). Opioid addiction

is a worldwide problem, affecting many countries and causing health

concerns due to elevated risks of drug overdose and death (Vadivelu

et al., 2018). It has been estimated by the United Nations World Drug

Report that around 29.5 million people worldwide are at high-risk of

consumption of opioids drugs (UNODC, 2016). In North America, in

countries such as the United States, the opioids public health crisis

has led to thousands of deaths (Krausz et al., 2021). In Europe, it has

been estimated that around 1.3 million people could be a major risk of

opioid addiction in 2018 (Drugs & Addiction, 2018). However, existing

treatments for opioid addiction have several limitations, such as poor

patient compliance and higher chances of relapse (Corbett et al., 2006;

Rosenblum et al., 2008). Exploring alternative drugs to alleviate addic-

tion is thus an urgent necessity for developing targeted and effective

treatments (Ballantyne, 2017).

Furthermore, repetitive use of morphine can cause neuroadaptive

changes in the brain, leading to seeking behavior upon cessation of

use (Spanagel & Shippenberg, 1993; Spanagel et al., 1993). In addi-

tion, the nucleus accumbens and ventral tegmental area lie between

the main brain regions that undergo neuroadaptive changes due to

morphine abuse (Kim et al., 2016). Morphine triggers the opioid G

protein-coupled receptors, which subsequently activate potassium,

calcium channels, and adenylate cyclase (Alvarez et al., 2002; Mestek

et al., 1995). This is followed by a signaling cascade, including the stim-

ulation of mitogen-activated protein kinases (MAPK) and extracellular

signal-regulated kinase (ERK) pathways (Dai et al., 2018; Shen et al.,

2018).

Cumulative studies have examined the effects of melatonin on opi-

oid tolerance,withdrawal, and hyperalgesia (Cheng et al., 2019;Hemati

et al., 2021; Raghavendra & Kulkarni, 1999; Xin et al., 2012). Mela-

tonin is a neurohormone synthesized in the pineal gland and is involved

in regulating circadian rhythms in mammals and other physiological

functions (Vengeliene et al., 2015). In fact, the co-administration of

melatonin and morphine can delay the development of tolerance to

morphine analgesic effects and reverse naloxone-withdrawal effects

(Raghavendra &Kulkarni, 2000). Melatonin receptor antagonists, such

as luzindole or prazosin, have failed to reverse morphine tolerance

and dependence (Raghavendra & Kulkarni, 2000). Thus, it was sug-

gested that the effect of melatonin on morphine tolerance may be

attributed to the inhibitory effect of nitric oxide (Raghavendra &

Kulkarni, 2000). Moreover, melatonin provenly attenuates morphine-

induced hyperalgesia by modulating protein kinase C gamma and N-

methyl-D-aspartate receptor expression in the spinal cord in rats (Song

et al., 2015).

Melatonin activates two G-coupled protein receptors (MT1 and

MT2) that mediate adenylyl cyclase inhibition (von Gall et al., 2002).

Melatonin receptors occur in key brain regions, such as the nucleus

accumbens, prefrontal cortex, striatum, amygdala, and hippocam-

pus (Musshoff et al., 2002; Uz et al., 2005; Wongprayoon & Govit-

rapong, 2021). Cumulative studies have established a robust connec-

tion between melatonin and seeking behavior associated with drugs

of abuse (Conroy et al., 2012; Kovanen et al., 2010; McClung et al.,

2005). Moreover, alcohol consumption can disturb circadian rhythms

and melatonin production in rats (Peres et al., 2011). Similarly, heroin

can affect circadian gene expression, β-endorphin, and interleukin-2

(IL-2) in humans (Li et al., 2009). In addition,methamphetamine use can

reduce circadian gene expression in the suprachiasmatic nucleus and

striatum in rodents (Iijima et al., 2002;Masubuchi et al., 2000).

Activation of melatonin receptors has shown neuroprotective

effects through antioxidant and free radical scavenger properties

(Acuña-Castroviejo et al., 1996; Giusti et al., 1996; D.-X. Tan,

1993). Furthermore,melatonin attenuates alcohol-seeking and relapse

behaviors in rats (Vengelieneet al., 2015). It has alsobeen reported that

melatonin reduces the number of active pokes and cocaine-seeking

behaviors in rats (Takahashi et al., 2017). Thus, themelatonergic system

may be a potential target for attenuating drug addiction and depen-

dence. To our knowledge, only a few studies have explored the poten-

tial use of melatonin to modulate opioid-seeking behavior in rats and

its role as a potential target in modulating morphine-seeking behavior

using conditioned place preference (CPP).

2 MATERIALS AND METHODS

2.1 Animals

Male Wistar rats weighing between 280 and 300 g were supplied by

King Fahd Medical Research Center, King Abdulaziz University, Jed-

dah. Two rats were housed in each plastic cage. The temperature was

maintained at 21◦C, with a room humidity of approximately 50%, and

a 12/12 light/dark cycle. All animals had free access to standard food

and water. The experiment was performed in accordance with the Ani-

mal Care and Use Committee (ACUC) guidelines of King Fahd Med-

ical Research Center. The study experiments were approved by the

Biomedical Ethics Research Committee (Reference No. 405−20) at

King Abdulaziz University. The experiments adhered to the guidelines

of ethics and research on living creatures prepared by the King Abdu-

laziz City for Science and Technology (KACST), approved by Royal

Decree No.M/59 on August 24, 2010.
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F IGURE 1 The experimental procedure timeline showing habituation, acquisition, and preference tests

2.2 Drugs

Melatonin (M5250; Sigma Aldrich) (50 mg/kg, intraperitoneal [IP])

(Takahashi et al., 2017) was prepared daily, dissolved in 0.5% ethanol,

and diluted with saline. Morphine was supplied by King Abdulaziz Uni-

versity Hospital Pharmacy. The vehicle contained 0.5% ethanol and

saline.

2.3 Conditioned place preference apparatus

The apparatus comprised two automated Plexiglas designed by

Columbus Instruments, Columbus, OH, USA. The two chambers

were attached with Auto-Track software (OPTO-MAX), which uses

infrared (IR) light-emitting sensors to detect animal movements.

The white chamber had vertical white stripes and a smooth white

floor. The black chamber had black and white squares and a dot-

ted floor. The time spent, ambulatory count, distance traveled, and

resting time were calculated automatically using the OPTO-MAX

software.

2.4 Experimental design

Twenty-four animals were divided into three groups: control, mor-

phine, andmorphine+melatonin. The experimentwas performed over

14 days, as shown in Figure 1. All animals were habituated for the

first 3 days before commencing the acquisition phase. Habituationwas

facilitated by placing each animal in the apparatus with both chamber

doors opened to allow the animal to freely explore the apparatus for

20 min. All animals showed a preference for the black chamber versus

thewhite chamber in the pretest onDay 4; therefore, we used a biased

approach tomeasure the reward and seeking behavior of morphine.

The acquisition phase was conducted over an 8-day period (Days 5

to 12) and included four sessions. In the acquisition phase, the control

group received the vehicle IP injection and was placed in the assigned

chamber for 45 min. The chamber was alternated for each animal. The

morphine group received a morphine injection (5 mg/kg, IP) and was

placed for 45 min in the white chamber every other day, alternating

with the vehicle in the black chamber. Themorphine+melatonin group

received themorphine injection (5mg/kg, IP) andwasplaced for 45min

in the white chamber every other day, alternating with the vehicle in

the black chamber. On Day 13 (the posttest day), the control and mor-

phine groups received a vehicle IP injection 30 min before placement

in the apparatus. Contrarily, the morphine+melatonin group received

melatonin (50 mg/kg, IP) 30 min before testing for preference. Impor-

F IGURE 2 Effect of vehicle, morphine andmorphine+melatonin
in conditioned place preference (CPP) score on the pretest and
posttest. No significant differences were found in the CPP score in
pretest between all groups. However, there is a significant increase in
the CPP score in themorphine group as compared to the control and
morphine+melatonin groups. Moreover, no significant differences
were found in CPP score between the control group and themorphine
+melatonin group. Values are shown asmeans± SEM (****p< .0001)
(n= 8)

tantly, the animals were placed in the CPP apparatus for the posttest

period (20min).

2.5 Statistical analysis

The CPP score was calculated as the time spent in the nonpreferred

chamber/total time spent in both chambers, as introduced in a previous

study (Sun et al., 2018). The time spent (CPP score), distance traveled,

resting time, ambulatory count, and total activity count were analyzed

using a two-way repeatedmeasures analysis of variance (ANOVA), fol-

lowed by Tukey’s post hoc tests. All data were analyzed using Prism 9,

and the p-value was set at< .05 for significance.

3 RESULTS

3.1 Effect of melatonin on morphine-induced
conditioned place preference

Regarding the CPP score, statistical analyses revealed significant

effects of time (F [2, 21] = 12.57, p = .0003), treatment (F [1,

21] = 18.06, p = .0004), and treatment × time (F [2, 21] = 11.85,

p = .0004) (Figure 2). Repeated administration of morphine over four

sessions produced a significant increase in the CPP score among

the morphine group compared to the control group (p = .0002).
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F IGURE 3 Effect of vehicle, morphine andmorphine+melatonin on ambulatory counts (a) and total activity counts (b) in pretest and posttest.
Statistical analyses revealed no significant difference in pretest and posttest between all groups in ambulatory counts (a) and total activity counts
(b). Values are shown asmeans± SEM (n= 8)
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F IGURE 4 Effect of vehicle, morphine andmorphine+melatonin on resting time (a) and distance travelled (b) in pretest and posttest.
Statistical analyses exhibited no significant difference in pretest and posttest between all groups in resting time (a) and distance travelled (b).
Values are shown asmeans± SEM (n= 8)

However, a single dose of melatonin administered 30 min before

the posttest attenuated morphine-seeking behavior and prevented

morphine-induced place preference, when comparing the morphine

group with the morphine + melatonin group (p = < .0001). No signif-

icant difference was found between the control and morphine+mela-

tonin groups (p= .4866).

We then sought to determine other parameters that could poten-

tially affect the interpretation of melatonin on the seeking behav-

ior of morphine using CPP as a tool for seeking and reward mea-

surements. The ambulatory count, total activity, resting time, and dis-

tance traveledweremeasured accordingly. The ambulatory countmea-

sured the number of beams broken in the activity plane (the CPP

apparatus). When beams were broken, the program saved this infor-

mation as counts, except for stereotypic movements associated with

scratching or grooming, which were not counted. Regarding the ambu-

latory count, no significant effects were observed for treatment (F [1,

21] = 2.323, p = .1424), time (F [2, 21] = 0.2787, p = .7596), or treat-

ment × time (F [2, 21] = 0.1920, p = .8267) (Figure 3a). The total

activity tallied every broken beam within the activity plane, including

stereotypic movement. Analysis of the total activity revealed no sig-

nificant effects of treatment (F [1, 21] = 0.9263, p = .3468), time (F

[2, 21] = 0.5048, p = .6107), or treatment × time (F [2, 21] = 0.03112,

p= .9694) (Figure 3b).

The resting time represented periods when the animals were not

moving. Statistical analyses showed no significant effects of treatment

(F [1, 21]= 0.2192, p = .6445), time (F [2, 21] = 0.8675, p = 0.4345), or

treatment × time (F [2, 21] = 0.2793, p = .7591) (Figure 4a). The dis-

tance traveled was calculated in inches for the entire testing period.

Statistical analyses indicated a significant effect of treatment (F {1,

21] = 4.393, p = 0.0484), but no significant effect for time (F [2,

21] = 0.4612, p = .6368) and treatment × time (F [2, 21] = 0.4459,

p= .6462) (Figure 4b).

4 DISCUSSION

This study aimed to investigate the involvement of the melatoner-

gic system in attenuating morphine dependence. Over time, several

methods and tools have been developed to measure motivational drug

rewards in animals, drawing on the concept of Pavlovian conditioning
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in animals, including CPP and self-administration techniques (Achat-

Mendes et al., 2005; Beckmann et al., 2011; Bryant et al., 2009; Krank,

2003). We employed the CPP tool because it is less stressful for ani-

mals and does not require the surgical implantation of a catheter, such

as in the self-administration paradigm and the extensive operant train-

ing history (Prus et al., 2009). In addition, opioids have generally pro-

duced consistent reward effects using the CPP paradigm (Alshehri

et al., 2018; Ashby et al., 2003; Mueller et al., 2002; Niikura et al.,

2013). This study used CPP to measure the effect of melatonin on

morphine-induced place preference.Moreover, the CPP paradigmpro-

vided greater insight into animal behavior during the posttest, such as

measuring the ambulatory count, total activity, resting time, and total

distance traveled. Interestingly, repeated administration of morphine

over four sessions produced a significant increase in the CPP score.

However, melatonin attenuated morphine-seeking behavior and pre-

ventedmorphine-induced place preference. Therefore, melatonin may

be a potential drug to modulate morphine-associated seeking effects

and dependence.

Opioid addiction is a global issue with devastating social and health

consequences (Volkowet al., 2019). Exploringpotential alternatives for

the management of opioid abuse is thus a critical necessity. Melatonin

exerts its physiological effects by activating melatonin receptors 1 and

2 (Onaolapo & Onaolapo, 2018). Researchers have focused on explor-

ing the potential roles of melatonin in addiction, including dopamin-

ergic system involvement, such as seeking behaviors or dependence

(Vengelieneet al., 2015). Several studies indicated thatmelatonin could

reduce dopamine release as an inhibitory effect through melatonin

receptors (Zisapel, 2001;Zisapel et al., 1982, 1983).Other studies have

shown that repeated melatonin administration can provide neuropro-

tective effects against dopamine-induced degeneration through pro-

inflammatory cytokines andupregulate antioxidant enzymeexpression

in homozygous zitter (zi/zi) rats (Hashimoto et al., 2012). Dopamine

neurotransmission in the nucleus accumbens plays a critical role in

opioid dependence (Di Chiara et al., 1999; Willuhn et al., 2010). The

interactionsbetweenmelatonin and thedopaminergic systems suggest

thatmelatonin could be apotentialmodulator of opioid-seeking behav-

ior (Motaghinejad et al., 2015; Uz et al., 2005; Yahyavi-Firouz-Abadi

et al., 2007). Thus, this study demonstrated thatmelatonin could atten-

uate morphine-seeking behavior, in part, through its interaction with

dopamine neurotransmission.

Cumulative studies have explored the effects of opioids on the

induction of inflammation and antioxidant enzyme activity (Xu et al.,

2006; Zhang et al., 2004; Zhou et al., 2001). Findings indicate thatmor-

phine increases the activity of oxidative damage molecules, such as

8-hydroxydeoxyguanosine and other related biomolecules in animals

(Zhang et al., 2004). In addition, opioids provenly reduce the activity

of in vivo antioxidative enzymes, such as glutathione, and activities

of superoxide dismutase, glutathione peroxidase, and catalase antiox-

idant enzymes (Payabvash et al., 2006; Singhal et al., 1994; Zhang et al.,

2004). Contrarily, studies have suggested that melatonin may enhance

the antioxidant effect by increasing mRNA expression (Reiter et al.,

2003; Reiter et al., 2000). Melatonin has also been shown to enhance

many antioxidative enzymes, such as glutathione reductase enzyme,

glutathione peroxidase, and superoxide dismutase (Tomas-Zapico &

Coto-Montes, 2005). In addition, melatonin has free radical scavenger

properties on hydroxyl radicals and superoxide ion radicals in in vivo

and in vitro models (D. Tan et al., 2002). Thus, melatonin can exert a

regulatory effect on antioxidant enzymes and may play a role in mod-

ulatingmorphine-seeking behavior.

Furthermore, melatonin has been used as a hypnotic, resynchro-

nizing, and antioxidant agent in clinical practice (Maldonado et al.,

2009). Melatonin is associated with regulation of the circadian sleep-

wake rhythm and circadian secretion of hormones (Pandi-Perumal

et al., 2008). Several studies have suggested that exogenously admin-

isteredmelatonin has sedative-hypnotic properties in humans (Naguib

et al., 2003; Shavali et al., 2005). Moreover, melatonin may produce

anxiolytic and sedation effects in adults and children, without affect-

ing motor ability or impacting recovery (Naguib & Samarkandi, 1999,

2000). Conversely, while cumulative studies have reported that exoge-

nously administered melatonin can produce a sedation effect in ani-

mals, other studies have reported no sleep-related effects (Wang et al.,

2003, 2002). Some studies reported that melatonin did not induce a

sedation effect (Dyche et al., 2012; Fisher & Sugden, 2010), whereas

others found that in low doses, melatonin could enhance sedation

in rats (Mendelson, 2002; Mendelson et al., 1980). Thus, this study

measured ambulatory count, total activity, resting time, and distance

traveled to address the sedation hypothesis. These parameters pro-

vided a detailed understanding of animal behavior followingmelatonin

injection and during the posttest period. Statistical analyses revealed

that melatonin administration 30 min before the posttest did not

affect these parameters, compared to the morphine and morphine +

melatonin groups. Therefore, the melatonin attenuation of morphine-

seeking behavior was not attributable to the sedative-hypnotic effects

of melatonin.

5 CONCLUSION

This study showed the effect ofmelatonin onmorphine seeking behav-

ior using the CPP paradigm. Morphine produces a seeking effect using

the CPP paradigm. Interestingly, melatonin attenuated the morphine-

induced preference when injected 30minutes before the posttest. The

melatonin effect may be attributed to its interaction with dopamine

neurotransmission and its modulatory effect on antioxidant enzymes

in the brain. However, we provided evidence that the melatonin effect

was distinct from its sedative-hypnotic properties. Further studies

are warranted to investigate the molecular effect of melatonin on

dopamine neurotransmission in the nucleus accumbens and other

brain regions.
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