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Abstract

We are moving into the age of ‘Big Data’ in biomedical research and bioinformatics. This

trend could be encapsulated in this simple formula: D = S * F, where the volume of data gen-

erated (D) increases in both dimensions: the number of samples (S) and the number of sam-

ple features (F). Frequently, a typical omics classification includes redundant and irrelevant

features (e.g. genes or proteins) that can result in long computation times; decrease of the

model performance and the selection of suboptimal features (genes and proteins) after

the classification/regression step. Multiple algorithms and reviews has been published to

describe all the existing methods for feature selection, their strengths and weakness. How-

ever, the selection of the correct FS algorithm and strategy constitutes an enormous chal-

lenge. Despite the number and diversity of algorithms available, the proper choice of an

approach for facing a specific problem often falls in a ‘grey zone’. In this study, we select a

subset of FS methods to develop an efficient workflow and an R package for bioinformatics

machine learning problems. We cover relevant issues concerning FS, ranging from do-

main’s problems to algorithm solutions and computational tools. Finally, we use seven differ-

ent proteomics and gene expression datasets to evaluate the workflow and guide the FS

process.

Introduction

The term ‘Big Data’ is often used to describe the huge volumes of information produced by

modern systems such as mobile devices, tracking tools and sensors [1, 2]. In biomedical

research, the growth of high-throughput (omics) technologies has resulted in an exponential

growth in the dimensionality and sample size. This increase has two major directions: i) the

number of samples processed, powered by novels machines (i.e. sequencers and mass spec-

trometers); and ii) the features, attributes and variables collected alongside each sample [3].

This high-dimensional environment becomes a challenge to many modelling tasks used in bio-

informatics, ranging from sequence analysis to spectral analyses as well as literature mining.
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Reducing data complexity is therefore crucial for data analysis tasks, knowledge inference

using machine learning (ML) algorithms, and data visualization [4–6].

The ‘curse of dimensionality’ (term first introduced by Bellman in 1957) [7] described the

problem caused by the exponential increase in volume associated with adding extra dimen-

sions to an Euclidean space. In this context, the typical bioinformatics problem involves both:

relevant and redundant features. Therefore, a Feature Selection (FS) approach becomes a cru-

cial and non-trivial task because: i) it provides a deeper insight into the underlying processes

that are the foundation of the data; ii) it improves the performance (CPU-time and memory)

of the ML step, by reducing the number of variables; and iii) it produces better model results

avoiding overfitting. However, a FS algorithm brings an important decision in any ML work-

flow (e.g. classification of protein/gene expression profiles): are there redundant features (e.g.

proteins or genes) in the dataset that are irrelevant and/or redundant for the biological study?

The most-common attempt to address the FS problem (the so-called univariate filtering

approach) is to use a variable ranking method to filter out the least promising variables before

using a multivariate method [8]. These methods have been used extensively in computational

biology for cancer classification using microarray data [9, 10]. However, correlation filters

could prompt some loss of relevant features that are meaningless by themselves but that can be

useful in combination. To overcome this effect, a set of algorithms has been proposed to com-

bine the original variables into a new and smaller subset of features, such as Principal Compo-

nent Analysis (PCA) and Linear Discriminant Analysis. In PCA [11], new orthogonal features

(latent variables or principal components) are obtained by maximizing the variation of the

original features. The number of the latent features (factors) can be much lower than the num-

ber of original features, so that the data can be visualized in a much lower-dimensional space.

As correlation filters, PCA methods can reduce the number of variables by looking into the

feature dependencies without taking into account the final learning model. In 1997, a powerful

strategy emerged that combines a FS algorithm with a learning/classification step: the so-called

wrapper methods [12]. These wrapper approaches (e.g. forward selection and backward elimi-
nation) can use the prediction performance of a given ML approach to assess the relative use-

fulness of different subsets of variables. An exhaustive search can be performed if the number

of variables is not too large.

Due to the diversity of FS methods available, it is hard to choose the correct approach

needed to accomplish a specific task beforehand (e.g. regression or classification). In 2007,

Saeys and co-workers published an introduction to FS in bioinformatics [3]. Also, several

reviews have focused on the application in computational biology of particular methods such

as PCA [13, 14] or Support Vector Machines (SVM) [15]. However, most of this work has

been done to describe current methods in isolation and not to evaluate how they could be

combined. In this manuscript, we developed a FS workflow and an R package for high-dimen-

sional omics data analysis. The workflow combined univariate/multivariate correlation filters

with wrapper feature backward elimination and it was applied to regression and classification

problems. We benchmarked the individual steps of the described workflow, highlighting the

optimal steps in different scenarios, using seven different omics datasets. Finally, we discuss

major challenges when applying the described workflow to classification problems of high-

dimensional omics data.

Materials and methods

Transcriptomic dataset of breast tumor samples (Dataset 1)

We first used a gene expression dataset (GEO (Gene Expression Omnibus) accession number:

GSE5325) from Saal et al. [16], which has already been extensively studied before [13]. The
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authors performed a study using microarrays to measure the expression of 27,648 genes in 105

breast tumor samples. The dataset includes the estrogen receptor alpha status (0 = negative,

1 = positive), a transcription factor recognized as being important for stimulating the growth

of a large proportion of breast cancers and used to explore co-expression [17].

High-resolution isoelectric focusing proteomics dataset (Dataset 2)

The second dataset is the result of an electrophoresis experiment on peptide samples [18]. A

total of 7,391 peptides were identified in 12 fractions, where each fraction corresponded to an

experimental isoelectric point. This dataset has been used before to develop a ML model that

can accurately predict the theoretical isoelectric points for peptides and proteins based on the

amino acid sequence properties [5, 19].

Triple-Negative Breast Cancer (TNBC) dataset (Dataset 3)

A third dataset containing protein quantification data using a label free technique was

included [20]. The dataset assembles a panel of 44 (including samples and technical replicates)

human breast cell lines and clinical tumors for analyzing the proteomics landscape of TNBC.

The studied cell lines cover mesenchymal-, luminal-, and basal-like subtypes, as well as three

receptor-positive and one non-tumorigenic cell lines. Thus, the idea behind including this

dataset was to evaluate the ability of the proposed FS workflow to classify subtypes of cellular

lines.

Transcriptomics analysis of left ventricles of mouse hearts (Dataset 4)

A fourth dataset included the results of a transcriptomics analysis of left ventricles of mouse

hearts subjected to an isoproterenol challenge [21]. In the study, the authors utilized expres-

sion arrays from left ventricular (LV) tissues, with and without an isoproterenol treatment, to

understand the genetic control of gene expression and its relationship with heart failure. Then,

the issue arising here suggests a binary classification problem where the researcher could be

interested in, in order to know the optimal feature subset which could best discriminate

between both classes (treated and non-treated samples).

Expression data from normal and prostate tumor tissues (Datasets 5, 6,

and 7)

Recently, Li et al. have used several gene expression datasets to benchmark different FS algo-

rithms [22]. From the original microarray datasets, we have selected three of those datasets

(GEO accession number: GSE6919), to compare the FS workflow with the results obtained

by Li et al. Note 1 (S1 File) summarizes the main characteristics of the datasets described

previously.

Workflow R-package

An R-package has been developed to reproduce the proposed workflow (https://github.com/

enriquea/feseR). For its development five main R packages were used: i) Caret [23] (Classifica-

tion And REgression Training) (http://topepo.github.io/caret), containing a set of functions

that attempt to streamline the process for creating predictive models; ii) randomForest [24],

a package enabling Random Forest analysis (https://cran.r-project.org/web/packages/

randomForest/); iii) prcomp, a native function included in the R package stats; iv) Kernlab
[25] (https://cran.r-project.org/web/packages/kernlab/), which provides the user with basic

kernel functionality (e.g., computing a kernel matrix), along with some utility functions,
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commonly used in kernel-based methods; and v) the FSelector package [26] (https://cran.r-

project.org/web/packages/FSelector/), which offers algorithms for filtering attributes (e.g. chi-

squared, information gain, and linear correlation).

We have used the current FS workflow and R-package in combination for two different ML

(regression/classification) problems. Six of the datasets represent classification of (protein/

gene) expression profiles and the last one a regression problem for the accurate estimation of

the isoelectric point of peptides and proteins. In the following sections, we discuss the results

of combining the different steps of the FS workflow depending of the ML problem.

Results and discussion

A good feature subset can be defined as one that contains features highly correlated with (pre-

dictive of) outcome, yet uncorrelated (independent) with (not predictive of) each other. Never-

theless, the existing diversity of FS methods makes it challenging to choose the correct one for

the task at hand (S1 File, Note 2). Fig 1 represents the proposed overall workflow to perform

FS in high-dimensional omics big data. First, a univariate correlation filter can be used before

applying any wrapper approach, to determine the relation between each feature and the class

or predicted variable. Then, a second filtering step (Correlation Matrix (CM) or PCA), can fol-

low, in order to determine the dependencies between the different dataset features. Finally,

backward elimination is achieved by wrapping a ML method, such as Random Forest and

SVM around each example.

Removing irrelevant features: Univariate correlation filtering

The univariate correlation filtering step removes all features that are not directly related to

their class variables. When we applied this approach to Dataset 1 it removed those genes with

a non-correlated expression to the presence or absence of estrogen receptor alpha, reducing

the number of genes from 8,534 (only those genes showing expression in all samples were con-

sidered) to 1,697. In Dataset 2, we used the univariate filter to remove features (amino acid

properties) unrelated with the isoelectric point. Fig 2A shows the high-correlation found

among the original 545 physicochemical peptides properties considered for the 7,391 peptides.

We implemented a univariate correlation filter to remove all features that were not correlated

with the isoelectric point (correlation coefficient < = 0.30), reducing the number of variables

to 89 features. When we extended the analysis to the remaining benchmarking datasets, we

observed that, in general, univariate correlation filtering removed more than 80% of the origi-

nal features that were not related to the predicted variable. As previously discussed by other

Fig 1. Proposed workflow for FS including a filtering step with univariate and/or multivariate

approaches, followed by a wrapper approach (recursive feature elimination).

https://doi.org/10.1371/journal.pone.0189875.g001
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authors [8], univariate correlation filtering should be always applied at early stages of any clas-

sification and/or regression process. However, univariate correlation filtering can only be used

to study the relationship of each feature with a class variable, but cannot be applied to find the

relationships among them. For this reason, a multivariate step (e.g. correlation matrix) was

used (Fig 1) to remove the redundancy among highly-correlated features (correlation coeffi-

cient> = 0.75).

Reducing feature complexity: CM or PCA

We implemented two different strategies (depending on the classification or regression prob-

lem) to reduce the number of variables, while keeping most of the original and relevant infor-

mation: CM and PCA. Dataset 2 is a good example of a dataset containing regression related

problems. In this particular case, the aim was to predict more accurately the isoelectric point

of peptides and proteins, using other physicochemical features of the peptides. Therefore, the

final model should be based on, or be correlated to, the original features (because they would

be used in the future to make a predictor that could be applied for other datasets). One of the

simplest and most powerful filtering approaches to remove feature redundancy, while keeping

original features, is the use of a CM filter. For example, peptides properties such as aromatic

rings, bond and carbon atom counts are strongly correlated [5, 27]. Therefore, any of these

variables could be used as a proxy for all the others. It should be noted that several features

clustered together, suggesting a high-redundancy in the feature set. By applying the CM filter,

it is possible to remove those that are redundant (or irrelevant) and to keep only a reduced fea-

ture set for subsequent analysis steps. The present workflow keeps only 20 variables (out of

the original 545 features, see Fig 2B) for the final ML step (Fig 1). The current approach also

reuses the final model in new datasets because the filtering steps preserve the original variables

by only removing the redundant ones.

Opposite to Dataset 2, the other datasets constitute good examples of classification related

problems. In addition to the CM filter approach, we implemented and studied the use of Prin-

cipal Component Analysis (PCA) as a multivariate filter to reduce the number of features.

PCA reduces the dimensionality of the data while retaining most of the variation in the predic-

tor variables [13]. Thus, by using a few components, PCA can represent each sample by using

relatively few (new) variables instead of (potentially) thousands of them. Fig 3 shows the PCA

performed in Dataset 1. The proportion of the variation present in all genes is encompassed

within each of the principal components, with the first few components representing most of

it (Fig 3A). The cumulative variance analysis shows that most of the variance is contained in

the first 30 principal components (75%), where only 76 components reach a 95% of variance

Fig 2. (A) Correlation matrix for the 544 physicochemical (features) of the 7,391 peptides (samples) included

in Dataset 2; (B) the final 20 variables after the correlation-matrix filtering steps.

https://doi.org/10.1371/journal.pone.0189875.g002
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(Fig 3B) and 104 components are enough to retain all the original variance. This number of

variables is 10-fold smaller than the original 1,697 features obtained after applying the univari-

ate correlation filter.

When the number of variables is larger than the number of samples, PCA can reduce the

dimensionality of the samples to, at most, the number of samples, without losing information

[13, 28]. We obtained the same results when PCA was applied to the other relevant datasets

(Dataset 3 to Dataset 7, those with a classification problem, S2 File). However, since the prin-

cipal components are linear combinations of the original data, it is not obvious how model

parameter estimates can relate back to the original variables. Thus, this method is not suitable

for problems where it is required to keep the primary information (e.g. in the case of regres-

sion problems, Dataset 2).

Optimizing the feature selection: Wrapper recursive feature elimination

All filtering FS approaches previously shown (e.g. correlation-based or PCA) are relatively

easy to implement and computationally fast. Therefore, these algorithms represent a suitable

choice in the first stage of any given FS pipeline. However, wrapper methods should be used in

the last steps to find the “optimal” feature subsets, by iteratively selecting features based on

classifier performance (Fig 1). The wrapper methods should be combined with cross-valida-

tion steps to improve the final results [12, 29]. These cross-validation steps can be used to

assess the results of the learning analysis (e.g. regression or classification) and help to general-

ize these steps to an independent dataset. The goal of cross-validation is to define a dataset to

"test" the model in the training phase (i.e., the validation dataset), in order to limit problems

like overfitting [29]. In the proposed workflow, we used a recursive feature elimination (back-

ward elimination) approach in combination with two ML models (Random Forest and SVM)

to systematically increase each ML step. The number of cross-validation iterations should be

evaluated in detail because it could significantly increase the running time without improving

the performance of the model prediction.

We implemented the wrapper backward elimination step in combination with the SVM

radial kernel, in order to predict the isoelectric point using Dataset 2. Table 1 shows the per-

formance (regarding running time and model prediction accuracy) of the feature workflow for

Fig 3. (A) Proportion of variance and (B) cumulative variance of principal components for the analysis of

Dataset 1.

https://doi.org/10.1371/journal.pone.0189875.g003
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Dataset 2. We benchmarked all the FS combinations with the SVM model by removing each

of them. Applying the SVM model alone (SVM) without FS or cross-validation helps to predict

the isoelectric point with a high root-mean-square error (RMSE) of 0.88. In contrast, when

both correlation filters (X2-CM-SVM) were applied, RMSE and running time decreased to

0.57 and 0.50 min, respectively. When the complete workflow (X2-CM-RFE-SVM-CV3) was

used RMSE decreased to 0.33 (Table 1). It should be noted that when pre-filtering was applied

(RFE-SVM-CV3), RMSE decreased to 0.32 and two new variables were added to the SVM

model. However, this improvement in performance (e.g. low RMSE) decreased the overall effi-

ciency of the workflow by increasing the execution time three-fold. Also, we observed no

changes where the number of cross-validation steps was increased (Table 1).

Wrapper backward elimination step provided a powerful method to optimize the final sub-

set of variables in response to the regression SVM model. Fig 4 shows the final results of the

isoelectric point prediction (Dataset 2) for all FS combinations. Backward selection in combi-

nation with the cross-validation step enables a better estimation of the variable prediction (iso-

electric point) in the regions where less experimental evidences exist (basic pH range). This

workflow has been used in a recent approach to predict the isoelectric point and it has proven

to predict the isoelectric point more accurately than any other algorithm so far. A similar

implementation was applied to the remaining datasets (1, 3–7) where a Random Forest model

was wrapped around, using a recursive approach to evaluate the performance and the variable

weight following different FS workflows. We first evaluated the Random Forest approach for

FS without any filtering and parameter tuning as discussed before by Díaz-Uriarte et al. [30].

In addition, four recursive feature elimination methods, wrapped with Random Forest, were

combined as follows: RFE-RF without any pre-filtering step (i.e. other FS methods), PCA com-

bined with RFE-RF, univariate correlation filtering (X2) combined with RFE-RF, and finally,

all methods were used sequentially: X2-PCA-RFE-RF or X2-CM-RFE-RF.

Fig 5 shows the performance evaluation (for the expression datasets 1, 3–7) of each com-

plete FS combination (X2-PCA-RFE-RF and X2-CM-RFE-RF) and the random forest classifi-

cation without FS step. We use the approach previously reported by Pochet et al. [31], where

20-fold randomized test data were used to summarize the accuracy in the prediction (see

detailed description in S2 File). Also, we kept a 10-fold internal cross-validation step in all

implementations of recursive feature selection trials. The results shown that when any of the

full FS approaches are applied the average accuracy is higher compare with the results when

not FS is used (red box plots). Only, in Dataset 3 the workflow using PCA is less efficient than

the random forest without FS step which can be related with the low number of samples ana-

lyzed (44). Importantly, even when RF perform very well it retains all the original features on

each making difficult to decided which features are more relevant for the classification (S1

Table 1. Benchmark of the SVM regression model for Dataset 2 applying different FS methods (SVM), no feature selection, (X2) univariate correla-

tion alone, (CM) correlation matrix filtering, (RFE) and wrapper feature elimination. The figures indicated using the prefixes CV3, CV7 and CV10 corre-

spond to the number of interactions in the cross-validation steps during the RFE feature selection.

R2 RMSE Time (min) # Features

SVM 0.97 0.88 6.8 545

X2-CM-SVM 0.98 0.57 0.5 28

RFE-SVM-CV3 0.98 0.32 35 4

RFE-SVM-CV7 0.98 0.32 115 4

RFE-SVM-CV10 0.98 0.32 168 4

X2-CM-RFE-SVM-CV3 0.98 0.33 11 2

X2-CM-RFE-SVM-CV7 0.98 0.34 36 2

X2-CM-RFE-SVM-CV10 0.98 0.34 48.1 2

https://doi.org/10.1371/journal.pone.0189875.t001
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File, Table 2). Both FS workflows reduce the number of variables in all cases in more than

90% (S1 File, Table 2), with average accuracy always above 70% (Fig 5). Because both work-

flow shows similar performance and some users may want to select PCA (less variables) or CM

(original features), the R-package allows to define which multivariate option use during the FS.

Table 2 summarizes the benchmark metrics (accuracy, standard deviation, number of final

features and time) for each evaluated FS workflow (in Dataset 1). While all methods kept the

accuracy in the range 83–88%, when all methods were combined (proposed workflow) a lower

standard deviation was obtained. Using a Random Forest model without FS, the classification

process was faster than in the case of any other combination, keeping all the relevant features

(1,969 of them). Including PCA and Recursive Feature Elimination (PCA-RFE-RF), we

observed a strong feature reduction (7–10 components) and a better standard deviation (5.4).

Fig 4. Error plot of predicted isoelectric point vs the experimental isoelectric point (Dataset 2): (SVM) applying FS or cross-

correlation step; (X2-CM-SVM) adding correlation filters as the only steps for feature selection; (RFE-SVM-CV3) recursive

feature elimination, three interactions of cross-validation combined with SVM; (X2-CM-RFE-SVM-CV3) considering the full FS

workflow.

https://doi.org/10.1371/journal.pone.0189875.g004
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Selecting a univariate correlation filter (X2-RFE-RF), a lowest standard deviation was obtained

(3.6).

Fig 6 visualizes the results of the Random Forest classification algorithm without (Fig 6A,

Fig 6C and Fig 6E) and with (Fig 6B, Fig 6D and Fig 6F) a FS step; for Datasets 1, 3, and 4,

Fig 5. Accuracy vs. feature selection combination for expression datasets (1, 3, 4, 5, 6 and 7). (RF) Random Forest without previous feature

selection step; (X2-CM-RFE-RF), random forest classification after the feature selection step using univariate correlation filter with matrix correlation and

recursive feature elimination; (X2-PCA-RFE-RF), random forest classification after the feature selection step using univariate correlation filter with

principal component analysis and recursive feature elimination. All methods include an internal cross-validation 10-fold step. All accuracy metrics were

estimated following the approach previously reported by Pochet et al. [31], where 20-fold randomized test data were used to summarize the accuracy of

the FS combination.

https://doi.org/10.1371/journal.pone.0189875.g005

Table 2. Benchmarking of the random forest model (classification) for Dataset 1, when different FS methods are applied: (RF) random forest only,

(RFE) wrapper recursive feature elimination with 10-times internal cross-validation, (PCA) principal component analysis, (X2) univariate correla-

tion filtering or (CM) correlation matrix filter. Each method is applied 20 times with randomized and class-balanced training datasets. The accuracy values

provided correspond to the average value.

Accuracy (%) SD Time (min) # features

RF 83.46 8.1 1.46 1969

RFE-RF 84.61 6.3 15.83 30

PCA-RFE-RF 83.43 5.4 3.12 10

X2-RFE-RF 87.04 3.6 4.92 25

X2-PCA-RFE-RF 88.21 4.5 3.51 8

X2-CM-RFE-RF 85.01 5.7 6.35 8

https://doi.org/10.1371/journal.pone.0189875.t002
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respectively. The results show that the remaining features obtained allow to ‘discriminate’

between the different samples classes or groups (see detailed description in S2 File). It can be

concluded that for those classification problems where the original features are needed, the

PCA step could be removed without sacrificing general performance (accuracy, standard devi-

ation, or CPU time). In contrast, univariate correlation filtering FS steps had a key impact on

Fig 6. Visualization of the classification process using the first two principal components (PC1 and PC2) from

the original data before (A, C, E) and after (B, D, F), to apply the following FS workflow: Univariate correlation

(X2) with correlation matrix filter (CM) follow by Recursive Feature Elimination (RFE) wrapped with random

forest (RF). The figure shows the classes distribution for Dataset 1 (A, B), Dataset 3 (C, D) and Dataset 4 (E,

F).

https://doi.org/10.1371/journal.pone.0189875.g006
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the final results of the Random Forest model by increasing the performance in all the studied

combinations. As we pointed out earlier, PCA ‘obfuscates’ the primary information, and thus,

can potentially result in problems. When it is desirable to keep the “initial nature” of the vari-

ables, filtering methods (e.g. univariate correlation filter) exhibit a good performance (Tables

1 and 2) with a considerable lower number of features.

Summary of the benchmarking process

We have demonstrated the impact of the FS workflow in the classification and/or regression

results as well as in the performance of the ML algorithm (CPU time and memory). Finally, we

applied the same FS workflow to gene expression data from normal and prostate tumor tissues

(Datasets 5, 6 and 7), and compared them with the results obtained by Li et al. [22], who used

a similar approach on the same datasets (see Table 9 in [22]). Even though we observe a slight

improvement in the classification accuracy in these three datasets (Table 3), the most notable

differences were found in the number of features obtained by the final models and in the total

runtime, using a similar computational platform. Thus, the results from the comparison rein-

force our previous observations and validate the effectiveness of the FS workflow proposed in

this manuscript. Another comparison was performed using the recently published tool based

on maximum relevance–maximum distance (MRMD, http://lab.malab.cn/soft/MRMD/

index_en.html) by Zou et. al. [32] (Table 3, S1 File). In general, we observed that both meth-

ods were comparable regarding the accuracy of the classification. However, some notable dif-

ferences arose considering the number of the optimal (final) variables and the runtime. The

proposed FS workflow performed better than MRMD for the analyzed datasets, by selecting in

all cases less than 10% of the variables, at more than 80% reduction of the compute time.

Conclusions

FS selection algorithms are playing a major role to select correct variables for different classifi-

cation and regression problems. Nevertheless, choosing the appropriate algorithm (or combi-

nation of algorithms) is not a trivial task. Different studies have highlighted methods to

perform FS, but unfortunately, a thorough comparison including proper benchmarking is still

lacking. Another major challenge remains: how to efficiently combine different FS methods to

improve the final results. The developed FS workflow shown in this manuscript combines

major strengths of univariate filtering methods, with CM and PCA strategies, as well as recur-

sive feature elimination in two well-known learning problems: classification and regression.

When univariate filtering was used in both types of problems the number of features was

reduced by 80% without compromising the accuracy of the final model, and decreasing the

CPU time of the learning model steps. The introduction of a wrapper method (recursive fea-

ture elimination) in combination with the learning model improved the accuracy in both

Table 3. Performance comparison between the proposed approach (X2-PCA-RFE-RF) and the method reported by Li et al. [22]. The computer used

in the original manuscript was an Intel(R) Core(TM) i5-4690 @ 3.5 GHz CPU, with 16 GB of RAM. In this study, we used an Intel(R) Core(TM) i5-4200 @ 2.5

GHz CPU, with 16 GB of RAM.

Dataset Method Accuracy Variables Runtime (min)

GSE6919/GPL8300 Current Workflow 0.77 35 8.50

Li et al. 0.72 92 74.30

GSE6919/GPL92 Current Workflow 0.80 5 9.11

Li et al. 0.73 174 71.50

GSE6919/GPL93 Current Workflow 0.81 6 12.00

Li et al. 0.71 121 68.60

https://doi.org/10.1371/journal.pone.0189875.t003
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cases. If the wrapper method is applied without a previous filtering step, the CPU-time

becomes too high. Finally, we demonstrated that the use of an intermediate FS step to remove

redundancy between variables and features can significantly increase the accuracy of the learn-

ing model. This can be achieved by transforming the original variables into new components

(retaining most of the variability in the original values) using PCA or by removing redundant

highly correlated variables.

Large efforts have taken place in recent years to adopt individual FS methods. However, in

our opinion, a multiple FS step workflow offers more promising results. Future developments

should focus on other fields where the number of samples is growing considerably (e.g. clinical

genomics, text and literature mining), and on the combination of heterogeneous datasets from

different sources.
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