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Band structures and scattering 
properties of the simplest 
one‑dimensional PT‑symmetric 
photonic crystal
Tiecheng Wang1* & Xiang Gou2

We elucidate the band structures and scattering properties of the simplest one-dimensional parity–
time ( PT)-symmetric photonic crystal. Its unit cell comprises one gain layer and one balanced loss 
layer. Herein, the analytic expressions of the band structures and scattering properties are derived, 
and based on these relations, we reveal and explain the following phenomena: Exceptional point pairs 
appear from Brillouin boundaries at a nonzero non-Hermiticity. With an increase in non-Hermiticity, 
each of these pairs moves toward the Brillouin center, finally coalescing into a single point at the 
Brillouin center at a critical non-Hermiticity value. Near the exceptional point, singular scattering is 
observed and explained. This refers to the phenomenon whereby transmittances and reflectances for 
left and right incidences reach exceptionally large values simultaneously. Moreover, these are infinite 
at some discrete points at which poles and zeros of the scattering matrix are attained. In forbidden 
gaps, unidirectional weak visibility, where transmittances are zero, is disclosed and analyzed: 
specifically, the reflectance for incidence from one side is very large, whereas that for incidence from 
the other side is very small. In this phenomenon, the eigenstates of the scattering matrix are the 
incident waves from the left and right sides, and their eigenvalues are the corresponding reflectances. 
Our results are important as new functional optical devices can potentially be developed by utilizing 
these novel phenomena.

Considerable work has been devoted to P T-symmetric optical systems in recent years1,2. Such systems are 
characterized by a complex index of refraction with balanced gain and loss n∗(−r) = n(r) , and they exhibit 
notable regularities. The product of the two eigenvalues of the scattering matrix of such a system is one3–5. In 
a P T-exact phase, both eigenvalues are unimodular; therefore, the corresponding eigenstates exhibit no net 
amplification or dissipation. By contrast, in a P T-broken phase, the unimodularity condition cannot be satis-
fied, in which case one eigenstate corresponds to amplification and the other to dissipation5. In a special case, 
one eigenvalue is a zero corresponding to the scattering matrix, which can be used to realize a coherent perfect 
absorber5–7, and the other is the corresponding pole, which can be used to lase6–10. Furthermore, P T-symmetric 
photonic structures violate normal photon-flux conservation but obey generalized unitarity relations11,12. These 
relations are extended from one dimension to higher dimensions, wherein the interactions between multimode 
fields must be considered13.

Based on these regularities, many other extraordinary scattering phenomena have been detected and eluci-
dated in P T-symmetric optical systems. Notably, anisotropic transmission resonances are supported, mean-
ing that at some frequencies, there is unit transmission and zero reflection for a wave incident from a single 
side11. Unidirectional invisibility is a typical optical effect of P T-symmetric photonic structures11,14–18. The 
optical forces exerted on P T-symmetric photonic heterostructures under the normal incidence of a single 
and two counterpropagating plane waves have been studied19. In addition, the complex band structures of one-
dimensional P T-symmetric photonic crystals (1DPTSPCs) have been calculated and analyzed; importantly, 
it has been found that with an increase in non-Hermiticity, two types of P T phase diagrams are obtained20,21. 
The exceptional contours and complex band structures of two-dimensional P T-symmetric photonic crystals, 
whose non-Hermitian primitive cell corresponds to an integer multiple of the primitive cell of the underlying 
Hermitian system, have also been studied22,23. Besides the definitions of the P T-exact phase and P T-broken 
phase based on the eigen equations of the scattering matrixes, there are another definitions based on complex 
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band structures20–23. In our previous work, we clarified these two defining criteria and suggested that the defini-
tions based on complex band structures are preferable24.

Herein, we study the transmittances and reflectances of the simplest one-dimensional P T-symmetric pho-
tonic crystal (SOPTPC) comprehensively and thoroughly. Further, we present theoretical expressions obtained 
using the simplicity of this model. The rest of this paper is organized as follows: In section “Model and structure”, 
the analytic expressions of the transfer matrix and band structure are derived; further, these are used to elucidate 
the band structures for different non-Hermiticities. In section “Scattering properties”, we disclose and discuss 
the unidirectional weak visibility and singular scattering phenomena in our model. We conclude the paper with 
a summary in section “Conclusion”.

Model and structure
Here, the object of study is the SOPTPC system, in which each unit cell consists of two alternating layers, as 
shown in Fig. 1. Their refractive indices are represented by n∗ ≡ nr − ini and n ≡ nr + ini ; further, their thick-
nesses are equal and are denoted by d = 0.5� , where � is the thickness of a unit cell. In this study, as shown in 
Fig. 1, we only consider the simplest case, wherein the electromagnetic wave in the model propagates normally. 
A (C) and B (D) represent the amplitudes of the incident and reflected waves on the left (right) side of a unit cell, 
respectively. By using the transfer matrix method and Bloch’s theorem, we can obtain the Bloch wave vector and 
Bloch state from the eigen-equation of the transfer matrix of a unit cell:

Here, K denotes the Bloch wave vector, and the parameters corresponding to the transfer matrix are given by 

 
Here, we assume that each unit cell is surrounded by infinitely thin air-films on both sides. ω and c0 repre-

sent the angular frequency and velocity of plane waves in vacuum, and k is the wave vector in the lossy layer, 
k ≡ kr + iki = ωn/c0 . Further, it can be clearly observed that a is complex and b and c are real, and they satisfy 
|a|2 = bc + 1 . This relation also holds for other P T-symmetric photonic heterostructures11,12.

From Eq. (2), we can derive the analytic expression of band structures, which presents the relation between 
the Bloch wave vector K and frequency ω

 
Notably, because the right side of this equation is real, the Bloch wave vector can be real or complex, with the 

form 2mπ/�+ iKi , where m is an integer and Ki is the imaginary part of the Bloch wave vector, and ω may be 
complex. Note that −K and ω also satisfy this relation. If ω is real, the system is in the P T-exact phase, and if 
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Figure 1.   Schematic of the unit cell of the SOPTPC, which comprises two layers with refractive indices 
n
∗ ≡ nr − ini and n ≡ nr + ini ; the thicknesses of the two layers in the primitive cell are equal, d = 0.5�.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16100  | https://doi.org/10.1038/s41598-022-20559-z

www.nature.com/scientificreports/

ω is complex, K and ω∗ also satisfy this relation, which corresponds to the P T-broken phase. An exceptional 
point is located at the boundary between these two phases. At the exceptional point, the condition dK/dω = 0 
holds for real frequencies and real Bloch wave vectors in the interval (0,π) , which can be understood easily 
from band structure diagrams such as the one presented in the Fig. 2. Moreover, by substituting Eq. (3) into this 
condition, we can obtain the position of the exceptional point in SOPTPC theoretically, by solving the following 
transcendental equation:

Any band structure of the SOPTPC can be obtained by using Eq. (3); when we calculate these by using a 
computer, real frequencies are often scanned, and the aforenoted equation is used to solve for the Bloch wave 
vector. It is difficult to handle the cases wherein the frequency is complex by using that equation directly. This 
complex band structure can be calculated by the method of superposition of Bloch states in the absence of gain 
and loss20. This method can be applied to the SOPTPC as follows: the Bloch state of the underlying Hermitian 
system without gain and loss can be described as E0mK = u0mK (x)e

iKx , with the corresponding frequency ω0
mK ; 

further, the Bloch state of the corresponding P T-symmetric system EmK = umK (x)e
iKx can be expressed as 

a superposition of the Bloch states in absence of gain and loss umK (x) =
∑∞

m′=1 ηm,m′Ku
0
m′K (x) . Truncation is 

performed in the practical calculation of this summation ( m′ = 1, 2 . . .M ). After substituting this expansion 
into the Helmholtz equation, the eigen equation of the effective Hamiltonian can be derived:

Here, HK = H−1
1K H2K ; further, (H1)m′m = (εrK )m′m + i(εiK )m′m and (H2)m′m = (ωmK/c0)

2(εrK )m′m are asso-
ciated with 
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Hamiltonian for the P T-symmetric system, and ηmK =
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)T is the eigenvector; the cor-
responding eigen frequency is  ωmK  .  For our model,  ω0

mK = ±Kc0/nr + 2πc0m/(nr�) and 
u0mK (x) = ei(K±2mπ/�)x . Moreover, the diagonal elements of matrix εrK are equal to εr� , and the non-diagonal 
elements are equal to zero, whereas the diagonal elements of matrix εiK are equal to zero and the non-diagonal 
elements (εiK )m′m are �

i(m−m′)π εi

[
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.
In Fig. 2, we plot the complex band structures for different values of non-Hermiticities ni ; the real part is 

fixed at nr = 2.025, and the 30 lowest bands in absence of gain and loss are considered to expand the Bloch 
waves in the SOPTPC. The band structure in the absence of gain and loss is shown in Fig. 2a and b. The analytic 
expression can be derived from Eq. (3), ωmK�

2πc0
= ± K�

2πnr
+ m

nr
 , where m = 0, 1, 2 . . . . In this case, the system is 

homogeneous, and we can observe that there is no forbidden gap. As the imaginary part of the refractive index 
increases, e.g., as shown in Fig. 2c and d at ni = 0.2 , exceptional point pairs emerge from the Brillouin bounda-
ries, the bands open, and the corresponding bandgaps appear at the Brillouin center. From Eq. (3), it can be 
proved, as follows, that exceptional points emerge for a nonzero non-Hermiticity ni regardless of the smallness 
of ni . At Brillouin boundaries K� = ±π , if the frequency is real, then −1 < −n2r cos (2k0nrd)/

(

n2r + n2i
)

< 1 
and n2i cosh (ki�)/

(
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)

> 0 ; therefore, Eq. (3) cannot be satisfied, and the frequency must be complex. 
Exceptional points always appear in pairs owing to mirror symmetry in K space, which is discussed in a previous 
theoretical analysis1,2. It can also be proved from Eq. (3) that forbidden gaps are located at Brillouin centers for a 
nonzero ni : At zero non-Hermiticity, bands touch at the Brillouin center, and the frequencies corresponding to 
the points where the bands touch are located at ωmK�

2πc0
= m

2  ; further, at a nonzero non-Hermiticity, if the previous 
band-touching points satisfy the dispersion relation given by Eq. (3), then 1 =

[
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]
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Figure 2.   Complex band structures of the SOPTPC at ni = 0 (a) and (b), ni = 0.2 (c) and (d), ni = 0.4 (e) and 
(f), ni = 0.6 (g) and (h), and ni = 0.8 (i) and (j). The five panels at the top show the real parts of the reduced 
frequencies, and the five panels in the bottom denote the corresponding imaginary parts of the reduced 
frequencies. The real parts of the refractive indices are fixed at nr = 2.0.
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therefore, cosh (ki�) = 1 ; however, ki� cannot be zero under our assumption. Consequently, forbidden gaps 
appear at these frequencies.

As the non-Hermiticity ni is increased continuously, the forbidden gaps broaden gradually, and exceptional 
point pairs move away from the Brillouin boundaries to the Brillouin center; at some critical values, these 
exceptional point pairs coalesce at the Brillouin center. Subsequently, the corresponding conduction bands 
completely evolve into complex bands, wherein the eigen frequency corresponding to any Bloch wave vector is 
complex. The critical values can be solved theoretically; specifically, they can be determined by Eqs. (4) and (3) 
at K = 0 . After a lengthy albeit straightforward calculation, these critical points can be determined based on 
the following expression:

In addition, for any fixed non-Hermiticity ni , we find that the larger the frequency of the exceptional point 
pair, the closer the pair gets to the Brillouin center. This phenomenon can be also explained theoretically: if the 
frequency is large, then cosh (ki�) is large according to Eq. (4); consequently, the minimum of cos (K�) becomes 
large. Hence, as ni increases, the conduction bands with larger frequencies evolve to complete the complex band 
more rapidly, which can be also observed in the Fig. 3.

From the complex band structures, we can identify the P T-broken phase from the P T-exact phase. In 
Fig. 3a–c, we plot the phase diagrams in ( K�/2π , ni ) space for the bands under the first, second, and third band 
gaps, respectively. The shaded areas represent P T-broken phases, and the white areas denote P T-exact 
phases. The boundaries between the two phases are the trajectories of exceptional points. As non-Hermiticity 
is increased, exceptional points appear in pairs and move away from the Brillouin boundaries to the Brillouin 
center. Notably, at some critical values, they coalesce at the Brillouin center; concurrently, the corresponding 
bands evolve into two complete complex conjugate bands.

Scattering properties
In this section, we analyze the scattering properties of SOPTPC with N unit cells, in which case the frequency 
ω is considered to be real. As demonstrated by24,26,27, the transmittance TN ≡ |tN |2 for the incidences from both 
sides, the reflectance RNL ≡ |rNL|2 for the incidence from the left side, and the reflectance RNR ≡ |rNR|2 for the 
incidence from the right side can be expressed as 

 
The above expressions help prove that the generalized conservation law for any P T-symmetric sys-

tem holds true for |TN − 1| =
√
RNLRNR  . According to Eq.  (1), bc = 1/

(
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)2(
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Figure 4 shows the transmittances and reflectances from both sides at different values of non-Hermiticity ni . 

To analyse these properties theoretically using Eq. (7), we plot the parameters b, c, and bc in the bottom panels. 
The number of unit cells here is set as N = 10 . The values ( TN , RNL and RNR ) are denoted by ρ and are extremely 
large in some frequency regions. To observe their variations, the new ordinate y = 4tan−1ρ/π is set as follows: 
If ρ = 1 , y = 1 , and if ρ approaches ±∞ , y approaches ±2 . By combining Figs. 2 and 4, the transmittance at the 
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Figure 3.   Phase diagrams in ( K�/2π , ni ) space below the first (a), second (b), and third (c) forbidden gaps. 
The shaded parts correspond to the P T-broken phase and the white parts to the P T-exact phase.
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band gap is zero; thus, scattering properties are observed to be closely related to band structures. In the absence 
of gain and loss ni = 0 , b = c , the system is in a P T-exact phase, and all bands overlap each other at Brillouin 
boundaries and the Brillouin center; further, RNL = RNR is valid here, which is demonstrated using Eqs. (7b) 
and (7c). For every conduction band, K� varies from - π to π ; in this range, N − 1 = 9 zero points exist for 
K� = mπ/N  (m = 1, 2, · · ·N − 1) for U2

N . Therefore, at these frequencies, the transmittances arrive at the 
maximum 1, which can be understood from Eq. (7a). Simultaneously, the reflectances from both sides reach the 
minimum RNL = RNR = 0 , which can be understood from Eqs. (7b) and (7c).

When the non-Hermiticity ni is increased, the system is no longer homogeneous, and band gaps are 
formed due to interference of waves scattered by unit cells, and forbidden gaps between conduction bands 
become increasingly large. In forbidden gaps, transmittance is zero TN = 0 , and the gap between RNL and 
RNR are extremely large. This is demonstrated using Eq.  (7), K� = 2mπ + iKi� in forbidden gaps, then 
UN = sinhNKi�/sinhKi� . For a large number of unit cells N, the numerator of UN is considerably larger than 
its denominator due to the property of the hyperbolic function sinh(x) , and therefore, U2

N takes an extremely 
large value. Consequently, the transmittance in Eq. (7a) reaches zero. Moreover, because U2

N is extremely large, 
RNL = b/c and RNR = c/b ; then, from the bottom five panels, in forbidden gaps, one reflectance is small and 
the other reflectance is large. When ni is greater than 0.4, RNL is extremely large and at the same frequency RNR 
is extremely small, for example, RNL can be greater than 6, and at the same frequency, RNR can be smaller than 
0.17. This phenomenon is termed unidirectional weak visibility24, which refers to the phenomenon wherein the 
reflectance from one side is extremely small and the reflectance from the other side is extremely large in forbid-
den gaps. This phenomenon can be also explained by applying the generalized conservation law to the following 
case 

√
RNLRNR = 1 . A few similarities and differences are observed between this phenomenon and well-known 

unidirectional invisibility. In unidirectional invisibility, the reflectance from one side is zero and reflectance 
from the other side is nonzero. However, in our phenomenon, the reflectance from one side is extremely small 
but not zero, while the reflectance from the other side is extremely large. Moreover, in unidirectional invisibility, 
the transmittance is one, while in our phenomenon it is zero and occurs in the band gap. Imagine two people 
standing on both sides of a mirror. If this mirror supports the phenomenon of unidirectional invisibility, then 
one of these two people can see themselves in this mirror and the other person cannot. Moreover, one of them 
can see the other person, and the luminance obtained by the observer is the same as that obtained by the person 
being observed. However, if this mirror supports the phenomenon of unidirectional weak visibility by using our 
model, then one of these two people can see themselves more clearly in this mirror, and the other people can see 
themselves with weak luminance. Moreover, one of them cannot see the other person.

Figure 4.   Transmittance, reflectances, and corresponding parameters in the transfer matrix of the simplest 
P T-symmetric photonic crystal with N = 10 periods at ni = 0 (a)–(c), ni = 0.2 (d)–(f), ni = 0.4 (g)–(i), at 
ni = 0.6 (j)–(l), at ni = 0.8 (m)–(o). TN is denoted by the black lines in the top five panels. RNL and RNR are 
represented by the red and blue lines in the middle five panels. The parameters b, c, and bc in the transfer matrix 
of unit cell are shown by black, red, and blue lines in the bottom five panels. The real parts of refractive indices 
are fixed at nr = 2.0.
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In addition to this phenomenon, in conduction bands, the corresponding Bloch wave vector K in Eq. (7) is 
real, thus UN = sinNK�/sinK� is also real. Near exceptional points, bc becomes negative for u2 < v2 , which 
cannot be realized in Hermitian systems, and sin2NK�/sin2K� approaches |1/bc| ; thus, the transmittance TN 
and reflectances RNL and RNR can arrive at values greater than 1 simultaneously, which is shown in Eq. (7). For 
example, when ni = 0.2 in Fig. 4d and e, at the reduced frequency 0.249, TN reaches 5.2, and RNL and RNR reach 
5.7 and 3.1 simultaneously. However, in other conduction bands and all forbidden gaps, TN , RNL , and RNR can-
not reach large values simultaneously. This is because, in these regions, bc is greater than zero; thus, TN cannot 
be greater than one, which is shown in Eq. (7).

In previous studies3,7,11, researchers have investigated scattering properties by analysing the eigenequation of 

the scattering matrix. The scattering matrix of our model is given by S =
(

rNL tN
tN rNR

)

 , and the corresponding 

eigenvalues sN1,N2 and the ratios vN1,N2 of the amplitudes of two eigenstates can be derived: 

 
These two eigenvalues satisfy |sN1sN2| = 1 . When (b− c)2U2

N − 4 < 0 , |sN1| = |sN2| = 1 , that means energy 
is conserved in this case for an incident eigenstate. When (b− c)2U2

N − 4 > 0 , sN1,N2 = 1/s∗N2,N1 . Hence, one 
eigenstate exhibits amplification and the other dissipation, and the degree of this amplification or dissipa-
tion can be measured by the absolute value of the corresponding eigenvalue. In our model, Eq. (1) shows that 
b− c = 2nrni[cos (2krd)− cosh (2kid)]/

(

n2r + n2i
)

 ; thus, for Hermitian systems, (b− c)2U2
N − 4 < 0 is always 

fulfilled.
In unidirectional weak visibility, the scattering matrix is diagonal, the eigenstates are the incident waves 

from left and right sides, and the corresponding eigenvalues are the corresponding reflections rNL and rNR . 
The scattering of one eigenstate exhibits amplification, while the other eigenstate dissipation. Thus, under zero 
transmittance, the reflectance from one side can be extremely large, and simultaneously, the reflectance from 
the other side can be extremely small.

To comprehensively and thoroughly study the eigen-equation of the scattering matrix, we plot its two eigenval-
ues as functions of reduced frequency and imaginary part of the refractive index in Fig. 5a and b. We determine 
that the poles and zeros of the scattering matrix are distributed discretely, and they turn up alternately. We believe 
the values of eigenvalues shown in these figures are not 0 or ∞ , because in our calculation, the number of the 

(8a)
sN1,N2 =

i

[

(b+ c)UN ±
√

(b− c)2U2
N − 4

]

2(aUN − UN−1)
,

(8b)
vN1,N2 =

i

[

(c − b)UN ±
√

(b− c)2U2
N − 4

]

2
.

Figure 5.   Eigenvalues log10|sN1| (a) and log10|sN2| (b) of the scattering matrix of SOPTPC as functions of the 
reduced frequency ω�/2πc0 and imaginary part of refractive index ni . (c) log10(TN ) , (d) log10(RNL) , and (e) 
log10(RNR) in the space (ω�/2πc0, ni) . (f) Trajectory of the exceptional points in the same space (ω�/2πc0, ni).
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points we scan in the space (ω�/2πc0, ni) is finite. Thus, if we magnify some poles and zeros, the corresponding 
eigenvalues near the poles and zeros are increased and decreased, respectively. These phenomena conform to our 
theory; based on our calculation, at these positions bcU2

N + 1 = 0 . The relation between the pole and zero of the 
scattering matrix and singular scattering can be clearly observed in Fig. 5c–e, where log10(TN ) , log10(RNL) , and 
log10(RNR) in the same space (ω�/2πc0, ni) are depicted. At the pole and zero of the scattering matrix, singular 
scattering occurs. In addition, the black and blue regions in Fig. 5c are forbidden gaps with zero transmittance, 
wherein unidirectional weak visibility occurs, which also can be confirmed in Figs. 5d and e. Figure 5f shows 
the trajectories of exceptional points in the same space obtained from dispersion relation. Comparing Fig. 5c–e 
with Fig. 5f, the points of singular scatterings are distributed discretely close to the trajectories of the exceptional 
points. When the number of unit cells N is increased, more points of singular scatterings are observed. This phe-
nomenon can be also elucidated by our theory—b and c are independent of N, and there are more points of U2

N 
along a trajectory satisfying bcU2

N + 1 = 0 for larger N, which can be understood from the function diagram of 
U2
N . This means that more singular scatterings can be realized easily for more unit cells. Exceptional point is the 

coalescence point in general non-Hermitian system, where eigenstates become parallel with the same eigenvalue. 
Several novel properties near the exceptional point are disclosed and applied for the design of optical devices28–30. 
In the future, we intend to explore these properties and applications in the proposed model.

Conclusion
Based on the band structure and eigen equation of a scattering matrix, we studied the scattering properties of 
SOPTPC. The analytic expressions of the transfer matrix of its unit cell were derived; furthermore, the analytic 
expressions of band structure and scattering properties were presented. These theoretical relations helped deter-
mine and elucidate the following phenomena: As non-Hermiticity is increased, exceptional point pairs appear 
from Brillouin boundaries at nonzero non-Hermiticity, then move to and disappear at the Brillouin center. 
Singular scattering, which is that transmittance and reflectances from both sides reach infinity simultaneously, 
emerges near exceptional points and is located at bcU2

N + 1 = 0 ; simultaneously, the pole and zero of the scatter-
ing matrix are reached. Unidirectional weak visibility in forbidden gaps is disclosed and analyzed by mathemati-
cal expressions; simultaneously, the incident waves from left and right sides are the eigenstates of the scattering 
matrix, and the corresponding reflections are the eigenvalues. We believe that our results are beneficial for the 
design of P T-symmetric photonic devices.

Data availability
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from the calculation by authors.
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