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Abstract

Translation of mRNAs into proteins is a key cellular process. Ribo-
some binding sites and stop codons provide signals to initiate and
terminate translation, while stable secondary mRNA structures can
induce translational recoding events. Fluorescent proteins are
commonly used to characterize such elements but require the
modification of a part’s natural context and allow only a few param-
eters to be monitored concurrently. Here, we combine Ribo-seq with
quantitative RNA-seq to measure at nucleotide resolution and in
absolute units the performance of elements controlling transcrip-
tional and translational processes during protein synthesis. We
simultaneously measure 779 translation initiation rates and 750
translation termination efficiencies across the Escherichia coli tran-
scriptome, in addition to translational frameshifting induced at a
stable RNA pseudoknot structure. By analyzing the transcriptional
and translational response, we discover that sequestered ribosomes
at the pseudoknot contribute to a r32-mediated stress response,
codon-specific pausing, and a drop in translation initiation rates
across the cell. Our work demonstrates the power of integrating
global approaches toward a comprehensive and quantitative under-
standing of gene regulation and burden in living cells.
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Introduction

Gene expression is a multi-step process involving the transcription

of DNA into messenger RNA (mRNA) and the translation of mRNAs

into proteins. To fully understand how a cell functions and adapts

to changing environments and adverse conditions (e.g., disease or

chronic stress), quantitative methods to monitor these processes are

required (Belliveau et al, 2018). Gene regulatory networks (also

known as genetic circuits) control when and where these processes

take place and underpin many important cellular phenotypes.

Recently, there has been growing interest in building synthetic

genetic circuits to understand the function of natural gene regula-

tory networks through precise perturbations and/or creating

systems de novo (Smanski et al, 2016; Wang et al, 2016).

The construction of a genetic circuit requires the assembly of

many DNA-encoded parts that control the initiation and termination

of transcription and translation. A major challenge is predicting how

a part will behave when assembled with many others (Cardinale

et al, 2013). The sequences of surrounding parts (Poole et al, 2000),

interactions with other circuit components or the host cell (Cardi-

nale et al, 2013; Ceroni et al, 2015; Gyorgy et al, 2015; Goro-

chowski et al, 2016), and the general physiological state of the cell

(Wohlgemuth et al, 2013; Gorochowski et al, 2014) can all alter a

part’s behavior. Although biophysical models have been refined to

capture some contextual effects (Salis et al, 2009; Seo et al, 2013;

Espah Borujeni et al, 2014), and new types of part created to insu-

late against these factors (Moon et al, 2012; Daniel et al, 2013;

Mutalik et al, 2013; Siuti et al, 2013; Yang et al, 2014; Shendure

et al, 2017), we have yet to reach a point where large and robust

genetic circuits can be reliably built on our first attempt. A crucial

step toward this goal will be to better understand how the many

parts of large genetic circuits function in concert. However,

approaches to simultaneously measure the performance of many

parts within the context of a circuit are currently lacking.

Fluorescent proteins and probes are commonly used to character-

ize the function of genetic parts (Jones et al, 2014; Hecht et al,

2017) and debug the failure of genetic circuits (Nielsen et al, 2016).

For circuits that use transcription rate (i.e., RNAP flux) as a

common signal between components (Canton et al, 2008),
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debugging plasmids containing a promoter responsive to the signal

of interest have been used to drive expression of a fluorescent

protein to track the propagation of signals and reveal the root cause

of failures (Nielsen et al, 2016). Alternatively, any genes whose

expression is controlled by the part of interest can be tagged with a

fluorescent protein (Snapp, 2005). Such modifications allow for a

readout of protein level but come at the cost of alterations to the

circuit. This is problematic as there is no guarantee the fluorescent

tag itself will not affect a part’s function (Baens et al, 2006;

Margolin, 2012).

The past decade has seen tremendous advances in sequencing

technologies. This has resulted in continuously falling costs and a

growing range of information that can be captured (Goodwin et al,

2016). Sequencing also offers several advantages over fluorescent

probes for characterizing and debugging genetic parts and circuits.

Firstly, it does not require any modification of the circuit DNA.

Second, it provides a more direct measurement of the processes

being controlled (e.g., monitoring transcription of specific RNAs),

and third, it captures information regarding the host response and

consequently their indirect effects on a part’s function. Recently,

RNA sequencing (RNA-seq) has been used to characterize every

transcriptional component in a large logic circuit composed of 46

genetic parts (Gorochowski et al, 2017). While successful in demon-

strating the ability to characterize genetic part function, observe

internal transcriptional states, and find the root cause of circuit fail-

ures, the use of RNA-seq alone restricts the method to purely tran-

scriptional elements and does not allow for quantification in

physically meaningful units.

Here, we develop an approach that combines ribosome profiling

(Ribo-seq) with quantitative RNA-seq that enables the high-

throughput characterization of endogenous sequences and synthetic

genetic parts controlling transcription and translation in absolute

units. Ribo-seq provides position-specific information on translating

ribosomes through sequencing of ribosome-protected fragments

(RPFs; approximately 25–28 nt). This allows for genome-wide

protein synthesis rates to be calculated with accuracy similar to

quantitative proteomics (Li et al, 2014). By supplementing the

sequencing data with other experimentally measured cell parame-

ters, we generate transcription and translation profiles that capture

the flux of both RNA polymerases (RNAPs) and ribosomes govern-

ing these processes. We apply our method to Escherichia coli and

demonstrate how local changes in these profiles can be interpreted

using mathematical models to infer the performance of three dif-

ferent types of genetic part in absolute units. Finally, we demon-

strate how genome-wide shifts in transcription and translation can

be used to dissect the burden that synthetic genetic constructs place

on the host cell and the role that competition for shared cellular

resources, such as ribosomes, plays.

Results

Generating transcription and translation profiles in
absolute units

To enable quantification of both transcription and translation in

absolute units, we modified the RNA-seq protocol and extended the

Ribo-seq protocol with quantitative measurements of cellular

properties (red elements in Fig 1A). For RNA-seq, we introduced a

set of RNA spike-ins to our samples at known molar concentrations

before the random alkaline fragmentation of the RNA (left panel,

Fig 1A). The RNA spike-ins span a wide range of lengths (250–2,000

nt) and concentrations and share no homology with the transcrip-

tome of the host cell (Appendix Fig S1). Using RNA spike-ins with

known concentrations, the mapped reads can be converted to abso-

lute molecule counts and then normalized by cell counts to give

absolute transcript copy numbers per cell (Mortazavi et al, 2008;

Bartholomäus et al, 2016) (Materials and Methods). The total

number of transcripts per cell was ~8,200 which correlates well with

earlier measurements of ~7,800 mRNA copies/per cell using a single

spike-in (Bartholomäus et al, 2016). Similar overall copy numbers

have been theoretically predicted (Bremer et al, 2003) and experi-

mentally determined for another E. coli strain (Taniguchi et al,

2010). For Ribo-seq, we directly ligated adaptors to the extracted

ribosome-protected fragments (RPFs) (Guo et al, 2010) to capture

low-abundance transcripts (Del Campo et al, 2015). Sequencing was

also complemented with additional measurements of cell growth

rate, count, and protein mass (right panel, Fig 1A).

A previous method was further developed to generate transcrip-

tion profiles that capture the number of RNAPs passing each nucleo-

tide per unit time across the entire genome (i.e., the RNAP flux).

This assumes that RNA levels within the cells have reached a

steady-state (Gorochowski et al, 2017) and that all RNAs have a

fixed degradation rate (0.0067/s) so that RNA-seq data, which

captures a snapshot of relative abundances of RNAs, can be used to

estimate relative RNA synthesis rates (Gorochowski et al, 2017).

Because each RNA is synthesized by an RNAP, these values are

equivalent to the relative RNAP flux. Since mRNA degradation rates

can vary significantly across the transcriptome, we relaxed this

assumption by incorporating experimentally measured transcript-

specific degradation rates using previously published data (Chen

et al, 2015). Finally, by using the known molar concentrations of

the RNA spike-ins and their corresponding RNA-seq reads from our

modified protocol (Appendix Fig S1), we are able to convert the

transcription profiles into RNAP/s units. Existing mathematical

models of promoters and terminators were then used to interpret

changes in the transcription profiles and quantify the performance

of these parts in absolute units.

To generate translation profiles that capture the ribosome flux

per transcript, we first took each uniquely mapped RPF read from

the Ribo-seq data and considering the architecture of a translating

ribosome, estimated the central nucleotide of each codon in the

ribosomal P site, i.e., the peptidyl-tRNA site (Materials and Meth-

ods; Appendix Fig S6) (Mohammad et al, 2016). By summing these

positions for all reads at each nucleotide x, we computed the RPF

coverage N(x). If each ribosome translates at a relatively constant

speed, then at a point in time the RPF coverage is proportional to

the number of ribosomes at each nucleotide. This captures relative

differences in ribosome flux, i.e., more heavily translated regions

will have a larger number of ribosomes than lowly translated

segments and so accrue a larger number of RPF reads in the Ribo-

seq snapshot. However, the translation rate of individual codons

can vary causing an enrichment in RPF reads at slowly translating

codons (Woolstenhulme et al, 2015). Therefore, we divide N(x) by

the translation time of the codon (Fluitt et al, 2007) with a central

nucleotide at position x to give the weighted RPF coverage W(x).
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This weighting corrects for position-specific variations. Moreover,

the approach is extendable by other factors that may cause varia-

tions in translation speed, e.g., local mRNA secondary structure

(Del Campo et al, 2015; Gorochowski et al, 2015) or interaction of

some nascent chain segments with the ribosomal exit tunnel

(Charneski & Hurst, 2013).

We next convert the weighted RPF coverage into a translation

profile whose height corresponds directly to the ribosome flux across

each nucleotide in ribosomes/s units. By assuming that each

weighted RPF read corresponds to an actively translating ribosome

which synthesizes a full-length protein product, and that the cellular

proteome is at steady-state, then the protein copy number for gene i

is given by ni ¼ fimt

ftmi
. Here, ft is the weighted total number of mapped

RPF reads, mt is the total protein mass per cell, and fi and mi are the

weighted number of mapped RPF reads and the protein mass of gene

i, respectively. We measured mt directly (Fig 1A) and calculated mi

from the amino acid sequence of gene i (Materials and Methods).

Because proteins are synthesized by incorporating individual amino

acids during the translocation cycle (i.e., by ribosome translocating

from the A to P site), the replication of the entire proteome requires

rt = Σiniai ribosome translocations, where ai is the number of amino

acids in the protein encoded by gene i. Assuming that cells are grow-

ing at a constant rate with doubling time td, then the total ribosome

flux across the entire transcriptome per unit time is given by q = 3rt/

td. The factor of three accounts for ribosomes translocating at three-

nucleotide registers (i.e., 1 codon/s = 3 nt/s). These calculations

also assume that active protein degradation has a small contribution

compared to dilution by cell division, which is reasonable in most

cases. For example, > 93% of the Escherichia coli proteome is not

subject to rapid degradation with protein half-lives being well

beyond cell doubling times during exponential growth and even star-

vation conditions (Nath & Koch, 1971).

Finally, the translation profile for nucleotide x is calculated by

multiplying the total ribosome flux q by the fraction of active ribo-

somes W(x)/ft at that position and normalizing by the number of

transcripts per cell of the gene being translated mx, computed from

the RNA-seq data (Fig 1A). This gives,

RðxÞ ¼ qWðxÞ
mxft

: (1)

Importantly, because both the transcription and translation pro-

files are given in absolute units (RNAP/s and ribosomes/s, respec-

tively), they can be directly compared across samples without any

further normalization.

Translation
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Figure 1. Overview of the workflow.

A Major steps involved when quantifying transcription (RNA-seq) and translation (Ribo-seq) and the additional cellular features measured. Elements required for
quantification in absolute units are highlighted in red.

B Model for calculating the translation initiation rate of a ribosome binding site, see equation (2).
C Model for calculating translation termination efficiency of a stop codon, see equation (3). Star denotes the location of the stop codon.
D Model for calculating translational frameshifting efficiency between two coding regions “A” and “B” in zero and �1 reading frames, respectively, see equation (4).
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Characterizing genetic parts controlling translation

Genetic parts controlling translation alter ribosome flux along a

transcript, and these changes are captured by the translation pro-

files. We developed new mathematical models to interpret these

signals and quantify the performance of RBSs, stop codons, and

translational recoding (e.g., ribosome frameshifting) in open reading

frames (ORFs) at stable secondary structures.

In prokaryotes, RBSs facilitate translation initiation and cause a

jump in the translation profile after the start codon of the associated

gene due to an increase in ribosome flux originating at that location

(Fig 1B). If initiation is rate limiting (Li et al, 2014), then the trans-

lation initiation rate of an RBS (in ribosomes/s units) is given by the

increase in ribosome flux downstream of the RBS,

dR ¼
Xxe

i¼xs

RðiÞ � CðiÞ
ðxe � xsÞ �

Xx0

i¼x0�n

RðiÞ � C� � Cþ

n
: (2)

Here, x0 is the start point of the RBS, and xs and xe are the start

and end points of the protein-coding region associated with the RBS,

respectively (Fig 1B). By averaging the translation profile over the

length of the protein-coding region, we are able to smooth out small

localized fluctuations that might affect the measurement. A window

of n = 30 nt (10 codons) was also used to average fluctuations in

the translation profile upstream of the RBS; the averaging window is

equal to the approximate length of a ribosome footprint. If the tran-

scription start site (TSS) of the promoter expressing this transcript

fell in the upstream window, then the start point (x0 – n) was

adjusted to the TSS to ensure that the incoming ribosome flux is not

underestimated. A similar change was made if the coding sequence

was within an operon and the end of an upstream protein-coding

region falls in this window. In this case, the start point was adjusted

to 9 nt (3 codons) downstream of the stop codon of the overlapping

protein-coding region. We also included correction factors to

remove the effect of translating ribosomes upstream of the RBS that

are not in the same reading frame as the RBS-controlled ORF and

therefore may not fully traverse the coding sequence due to out-of-

frame stop codons. These are given by,

C� ¼
Xðx0�nÞ=3

i¼0

Rðx0 � nþ 3iþ 2Þ
ðx0 � nÞ=3 ; (3)

Cþ ¼
Xðx0�nÞ=3

i¼0

Rðx0 � nþ 3iþ 1Þ
ðx0 � nÞ=3 ; (4)

CðxÞ ¼
c� þ cþ; x\s� ^ x\sþ

c�; x\s� ^ x� sþ

cþ; x� s� ^ x\sþ

0; otherwise

8><
>:

(5)

where s� and s+ are the positions of the first out-of-frame stop

codon downstream of x0 – n in the �1 and +1 reading frame,

respectively. C� and C+ capture the average out-of-frame ribosome

flux in the region upstream of the RBS in the �1 and +1 reading

frame, respectively, and C(x) calculates the total sum of these ribo-

some fluxes that would reach nucleotide x downstream of the RBS.

Ribosomes terminate translation and disassociate from a tran-

script when a stop codon (TAA, TAG or TGA) is encountered. This

leads to a drop in the translation profile at these points (Fig 1C).

Although this process is typically efficient, there is a rare chance

that some ribosomes may read through a stop codon and continue

translating downstream (Arribere et al, 2016). Assuming that all

ribosomes translating the protein-coding region are in-frame with

the associated stop codon and do not frameshift prior to it, then the

translation termination efficiency of the stop codon (i.e., the fraction

of ribosomes terminating) is given by,

Te ¼ 1�
Px1þn

i¼x1
RðiÞ=nPx0

i¼xs
RðiÞ=ðx0 � xsÞ : (6)

Here, x0 and x1 are the start and end nucleotides of the stop

codon, respectively, xs is the start of the coding region associated

with this stop codon, and n = 30 nt (codons) is the window, with

the same width as described above, used to average fluctuations in

the translation profile downstream of the stop codon (Fig 1C). If

additional stop codons are present in the downstream window, the

end point of this window (x1 + n) was adjusted to ensure that the

translation termination efficiency of only the first stop codon was

measured. A similar adjustment was made if the end of a tran-

script generated by an upstream promoter ends within this

window.

Translation converts the information encoded in mRNA into

protein whereby each triplet of nucleotides (a codon) is translated

into a proteinogenic amino acid. Because of the three-nucleotide

periodicity in the decoding, each nucleotide could be either in the

first, second, or third position of a codon, thus defining three read-

ing frames for every transcript. Consequently, a single mRNA

sequence can encode three different proteins. Although synthetic

biology rarely uses multiple reading frames, natural systems exploit

this feature in many different ways (Tsuchihashi & Kornberg, 1990;

Condron et al, 1991a; Giedroc & Cornish, 2009; Bordeau & Felden,

2014). In our workflow, the RPFs used to generate the translation

profiles were aligned to the middle nucleotide of the codon residing

in the ribosomal P site, providing the frame of translation. To char-

acterize genetic parts that cause translational recoding through ribo-

somal frameshifting, we compared regions directly before and after

the part. Strong frameshifting will cause the fraction of RPFs to shift

from the original frame to a new one when comparing these regions

with the frameshifting efficiency given by,

Fe ¼ 1�
Pxe

i¼x1
RðiÞ=ðxe � x1ÞPx0

i¼xs
RðiÞ=ðx0 � xsÞ : (7)

Here, x0 is the nucleotide at the start of the region where

frameshifting occurs, and x1 is the end nucleotide of the stop codon

for the first coding sequence (Fig 1D).

Measuring genome-wide translation initiation and translation
termination in Escherichia coli

We applied our approach to E. coli cells harboring a lacZ gene

whose expression is induced using isopropyl b-D-1-thiogalactopyra-
noside (IPTG) (Fig 2A). After induction for 10 min, lacZ expression

reached 14% of the total cellular protein mass (Appendix Table S1).

Samples from non-induced and induced cells were subjected to the

combined sequencing workflow (Fig 1A). Sequencing yielded

between 41 and 199 million reads per sample (Appendix Table S2)
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with no measurable bias across RNA lengths and concentrations

(Appendix Fig S1), and a high correlation in endogenous gene

expression between biological replicates (R2 > 0.96; Appendix Fig

S2). Distributions of mRNA copy numbers and RPF densities per

gene were similar across conditions with RPF densities showing a

broader spread than mRNA copy numbers (Appendix Fig S5).

Transcription and translation profiles were generated from these

data and used to measure translation initiation rates of RBSs and

translation termination efficiencies of stop codons across the

genome. To remove the bias due to the RPF enrichment at the 50-
end of coding regions (Ingolia et al, 2009) (Fig 2B), xs was adjusted

to 51 bp (17 codons) downstream of the start codon when estimat-

ing average ribosome flux across a coding region in Equations (2)

and (6). To determine whether translation rates were fairly constant

across each gene, we compared the number of RPFs mapping to the

first and second half of each coding region. If the ribosomes traverse

the coding sequence at a constant speed, then the two halves of a

transcript should have a near identical RPF coverage. We found a

high correlation between both halves for cells with non-induced and

induced lacZ expression with less than � 1.5-fold difference for

80% of all genes (Appendix Fig S3). This suggests a relatively

constant speed of the ribosomes across each coding sequence but

does not allow for comparisons between genes due to potential

gene-wide biases, e.g., an enrichment in rare codons for a particular

gene.

We characterized chromosomal RBSs in E. coli by assuming that

each covered a region spanning 15 bp upstream of the start codon.

Like background RPF levels, the correction factors in equation (5)

applied during characterization of the RBSs were small, on average

0.06 and 0.1% of the ribosome flux through the coding region, both

with and without inducing lacZ expression with IPTG, respectively.

The translation initiation rates of the 779 RBSs we measured varied

over two orders of magnitude with a median initiation rate of 0.18

ribosome/s (Fig 2C; Dataset EV1). This closely matches previously

measured rates for single genes (Kennell & Riezman, 1977). A few

RBSs of transcripts mostly related to stress response functions

(tabA, hdeA, uspA, uspG), the ribosomal subunit protein L31

(rpmE), and some genes with unknown function (ydiH, yjdM, yjfN,

ybeD) reached much higher rates of up to 3.4 ribosomes/s.

To estimate translation termination efficiency at stop codons, we

analyzed regions that spanned 9 nt up and downstream of the stop

codon (Fig 2B). We excluded overlapping genes and those bearing

internal sites that promote frameshifting (Baggett et al, 2017), both

of which break the assumptions of our model. In total, the transla-

tion termination efficiency of 750 stop codons was measured and

their median translation termination efficiency across the transcrip-

tome was found to be 0.974, with 249 of them (33% of all

measured) having translation termination efficiencies > 0.99

(Fig 2D; Dataset EV2). Similar performance for both RBSs

(R2 = 0.81) and stop codons (R2 = 0.45) was found between cells
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with non-induced and induced lacZ expression (Fig 2E and F; Data-

sets EV1 and EV2).

Quantifying differences in transcription and translation of
endogenous and synthetic genes

The quantitative measurements produced by our methodology allow

both transcription and translation to be monitored simultaneously.

To demonstrate this capability, we first focused on differences in the

contributions of transcription and translation to overall protein

synthesis rates of endogenous genes in E. coli. For each gene, we

calculated the protein synthesis rate by multiplying the transcript

copy number by the RBS-mediated translation initiation rate per

transcript. We found a strong correlation with previously measured

synthesis rates (Li et al, 2014) (Fig 3A). We also extracted the tran-

scription and translation profiles of three genes (uspA, ompA, and

gapA) whose protein synthesis rate was similar, but whose expres-

sion was controlled differently at the levels of transcription and

translation (Fig 3B). Quantification of the promoters and RBSs for

these three genes showed more than an order of magnitude dif-

ference in their transcription and translation initiation rates; uspA

was weakly transcribed and highly translated, ompA was highly

transcribed and weakly translated, and gapA was moderately tran-

scribed and translated (Fig 3C).

Because we measure transcription and translation initiation rates

in absolute units, it was also possible to determine their ratio

(RNAP/ribosome) for each gene and assess whether there was a

preference for high/low relative synthesis rates for transcription/

translation given a gene’s overall protein expression level. This

analysis revealed a trend where weakly expressed genes exhibited

low RNAP/ribosome ratios, while strongly expressed genes saw

higher RNAP/ribosome ratios (Fig 3A).

These different modes of gene expression can have a major influ-

ence on the efficiency of protein synthesis (Ceroni et al, 2015) and

affect the variability in protein levels between cells (Raser & O’Shea,

2005). For example, a metabolically efficient way to strongly

express a protein of interest in bacteria is by producing high

numbers of transcripts (e.g., with high transcription initiation rate

and high stability) with a relatively weak RBS (e.g., low translation

initiation rate). This ensures that each ribosome initiating on a tran-

script has a very low probability of colliding with others, guarantee-

ing efficient translation elongation (Cambray et al, 2018;

Gorochowski & Ellis, 2018). We observe that this strategy is adopted

for strongly expressed endogenous genes (Fig 3A).

We next sought to demonstrate the ability to measure dynamic

changes in the function of regulatory parts using the LacZ construct.

We quantified the inducible promoter and terminator controlling

transcription, and the RBS and stop codon controlling translation

when the inducer IPTG was absent and present. The transcription

and translation profiles clearly showed the beginning and end of

both the transcript and protein-coding region, with sharp increases

and decreases at transcriptional/translational start and stop sites

(Fig 3D). Induction caused a large increase in the number of lacZ

transcripts from 0.18 to 110 copies per cell, which was directly

observed in the transcription profiles. In contrast, the translation

profiles remained stable across conditions. The Ptac promoter has a

transcription initiation rate of 0.0004 RNAP/s in the absence and 0.3

RNAP/s in the presence of IPTG (1 mM), respectively (Fig 3E). This

closely matches the previously measured transcription initiation rate

of 0.33 RNAP/s for the Plac promoter (Kennell & Riezman, 1977),

which the Ptac promoter is derived from (De Boer et al, 1983). The

RBS for the lacZ gene had consistent translation initiation rates of

between 0.13 and 0.14 ribosomes/s, respectively (Fig 3E). It may

seem counterintuitive to observe translation without IPTG induction

because very few transcripts will be present. However, leaky expres-

sion from the Ptac promoter was sufficient to capture enough RPFs

during sequencing to generate a translation profile. It should be

noted that the translation profile represents the ribosome flux per

transcript; thus, its shape was nearly identical to that when the Ptac
promoter was induced. Like the RBS, both the transcriptional termi-

nator and stop codon showed similar efficiencies of 0.93–0.95 and

0.96–0.99, respectively (Fig 3E).

Characterizing a synthetic pseudoknot that induces
translational recoding

Pseudoknots (PKs) are stable tertiary structures that regulate gene

expression. They are frequently combined with slippery sequences

in compact viral genomes to stimulate translational recoding and

produce multiple protein products from a single gene (Tsuchihashi

& Kornberg, 1990; Brierley et al, 2007; Giedroc & Cornish, 2009;

Sharma et al, 2014). The percentage of recoding events generally

reflects the stoichiometry of the translated proteins (e.g., capsule

proteins for virus assembly) and helps overcome problems where

the stochastic nature of transcription and translation makes mainte-

nance of specific ratios difficult (Condron et al, 1991a). PKs are the

most common type of structure used to facilitate mostly �1

frameshifting (Atkins et al, 2016) and in much rarer cases +1

frameshifting (e.g., in eukaryotic antizyme genes) (Ivanov et al,

2004). PKs consist of a hairpin with an additional loop that folds

back to stabilize the hairpin via extra base pairing (Fig 4A). In addi-

tion to stimulating recoding events, PKs regulate translational initia-

tion, where they interfere with an RBS through antisense sequences

that base pair with the RBS (Unoson & Wagner, 2007; Bordeau &

Felden, 2014). They also act as an evolutionary tool, reducing the

length of sequence needed to encode multiple protein-coding

regions and therefore act as a form of genome compression.

Two elements signal and stimulate frameshifting. The first is a

slippery site consisting of a heptanucleotide sequence of the form

XXXYYYZ which enables out-of-zero-frame paring in the A or P site

of the ribosome, facilitating recoding events. The second is a PK situ-

ated 6–8 nt downstream of the slippery site. In bacteria, the distance

between the slippery site and the 50-end of the PK positions mRNA in

the entry channel of the 30S ribosomal subunit, enabling contact

with the PK which pauses translation and provides an extended time

window for frameshifting to occur (Giedroc & Cornish, 2009).

To demonstrate our ability to characterize this process, we

created an inducible genetic construct (referred to as PK-LacZ) that

incorporated a virus-inspired PK structure within its natural context

(gene10) fused to lacZ in a �1 frame (Fig 4A) (Tholstrup et al,

2012). Gene10 ends with a stop codon such that translation of lacZ

requires frameshifting at the PK. We specifically chose a PK variant

(22/6a), which exhibits much lower frameshifting efficiency (~3%)

(Tholstrup et al, 2012) compared to the wild-type PK (~10%) in its

natural context (Condron et al, 1991a), but is known to heavily

sequester and stall ribosomes and induce a significant stress
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response (Tholstrup et al, 2012). With our approach, we sought to

perform complementary quantification of the frameshifting effi-

ciency, but more importantly to explore why such significant cellu-

lar stress was caused. A slippery site UUUAAAG preceded the PK.

Gene10 of bacteriophage T7 produces two proteins, one through

translation in the zero-frame and one through a �1 frameshift; both

protein products constitute the bacteriophage capsid (Condron et al,

1991b). We generated translation profiles to assess ribosome flux

along the entire construct (Fig 4B). These showed high levels of

translation up to the PK with a major drop of 80–90% at the PK to

the end of the gene10 coding region, and a further drop of ~97%

after this region (Fig 4B). To analyze frameshifting within gene10,

we divided the construct into three regions: (i) the gene10 segment

up to the slippery site, (ii) the middle region, which covers the slip-

pery site along with the PK up to the gene10 stop codon, and (iii)

the downstream lacZ gene in a �1 frame. The large drops in the

translation profiles at both the PK and gene10 stop codons lead to

low numbers of RPFs across the lacZ gene and caused high levels of

noise in the translation profiles (Fig 4B). This made direct

comparisons of frame-specific expression levels at a codon resolu-

tion impossible. Therefore, for each of the three regions, we pooled

the RPFs and calculated the fraction of RPFs in each frame as a total

of all three possible frames. We found that the zero and �1 frames

dominate the gene10 and lacZ regions, respectively, with > 46% of

all RPFs being found in these frames (top row, Fig 4C). The middle

region saw a greater mix of all three, and the zero-frame further

dropped in the lacZ region. This is likely due to a combination of

ribosomes that have passed the PK successfully and terminated in

zero-frame at the end of gene10 and those that have frameshifted.

Similar results were found with and without induction by IPTG

(Fig 4C). An identical analysis of the reading frames from the RNA-

seq data revealed that no specific frame was preferred with equal

fractions of each (bottom row, Fig 4C). This suggests that the read-

ing frames recovered for the RPFs were not influenced by any

sequencing bias. We further tested whether the major translation

frame could be recovered by analyzing the entire genome and

measured the fraction of each frame across every gene. The correct

zero-frame dominated in most cases (Fig 4D).
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Figure 3. Simultaneous quantification of transcription and translation of endogenous genes and a synthetic genetic construct.

A Comparison of protein synthesis rate of endogenous E. coli genes measured using Ribo-seq from this study (in molecules/s units) and from that by Li et al (2014) (in
molecules/generation units). Each point corresponds to a single gene, and color denotes the ratio of transcription initiation rate to translation initiation rate (giving
RNAP/ribosome) capturing whether transcription (light yellow) or translation (dark blue) is more dominant.

B Transcription (bottom) and translation (top) profiles for uspA, ompA, and gapA, computed from the RNA-seq and Ribo-seq data without induction. Positions of the
genetic parts and gene are shown below the profiles.

C Promoter strengths in RNAP/s units and RBS initiation rates in ribosome/s units.
D Transcription (bottom) and translation (top) profiles for lacZ. Profiles are shown for cells in the absence and presence of IPTG (1 mM). Position of genetic parts and

gene is shown below the profiles. RBS is omitted from the genetic design due to its size.
E Measured promoter strength in RNAP/s units, RBS initiation rate in ribosomes/s units, and the transcriptional terminator and translation termination efficiency for

lacZ. Data shown for cells in the absence and presence of IPTG (1 mM).
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Finally, to calculate the efficiency of PK-induced frameshifting,

we compared the density of RPFs per nucleotide for the middle and

lacZ regions. Because the PK causes ribosome stalling, the assump-

tion of constant ribosome speed is broken for the gene10 region

upstream of the PK. Therefore, when calculating the frameshifting

efficiency using equation (7), xs and x0 were set to the start and end

nucleotides of the middle region, directly downstream of the PK

where pausing was not expected to occur. We found that the PK

caused 2–3% of ribosomes to frameshift. This precisely matched

previous measurements of 3% for the same PK variant (22/6a)

measured by monitoring radioactive methionine incorporation

(Tholstrup et al, 2012).

Cellular response to a strong synthetic pseudoknot

Expression of strong PKs can severely impact cell growth, but the

reason for this remains unclear (Tholstrup et al, 2012). We

observed a large number of RPF reads within the gene10 region

(Fig 4B). These could be caused by either premature termination of

ribosomes or stalled translation at the PK. Given previous experi-

mental characterization of the 22/6a PK variant, which has been

shown to sequester ribosomes (Tholstrup et al, 2012), it is likely

that many of these reads (Fig 4B) capture stalled ribosomes. Stalling

increases the abundance of partially synthesized protein products

but also limits the availability of translational resources, raising the

question as to whether the expression of the PK-LacZ construct elic-

its cellular stress by sequestering ribosomes. To better understand

the burden that expression of both lacZ and PK-lacZ exhibited on

the cell, we compared shifts in transcription (i.e., mRNA counts)

and translation efficiency (i.e., density of ribosome footprints per

mRNA) of endogenous genes following induction with IPTG

(Fig 5A; Dataset EV3). No major changes were observed for the

LacZ construct (Fig 5A). In contrast, the PK-LacZ construct caused

significant shifts in the expression of 491 genes (Dataset EV4). Of

these, 341 were transcriptionally (i.e., significant changes in mRNA

counts) and 204 translationally regulated (i.e., significant changes

in translational efficiency), with little overlap (54 genes) between

the two types of regulation (Fig 5B). Of the transcriptionally regu-

lated genes, most saw a drop in mRNA counts, while translationally

regulated genes were split between increasing and decreasing trans-

lational efficiencies. Gene ontology (GO) analysis revealed a cluster-

ing of transcriptionally downregulated genes in categories mostly

linked to translation, e.g., ribosomal proteins, amino acid biosynthe-

sis, amino acid activation (aminoacyl synthetases), and genes
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Figure 4. Characterization of a synthetic pseudoknot construct that induces translational frameshifting.

A Genetic design of the PK-LacZ construct. Expanded sequence shows the PK secondary structure with the slippery site underlined, as well as the two genes (gene10
and lacZ) in differing reading frames.

B Translation profiles for the PK-LacZ construct in cells cultured in the absence (bottom) and presence (top) of IPTG (1 mM). The gene10, middle, and lacZ regions are
labeled above the profiles. Shaded region denotes the PK, and dashed lines denote the start codon and stop codons of gene10 and LacZ.

C Fractions of the total RPFs and mRNA reads in each reading frame for the gene10, PK or middle, and lacZ regions. Data shown separately for cells cultured in the
absence and presence of IPTG (1 mM).

D Violin plots of the distributions of fractions of total RPFs and mRNA reads in each reading frame for all E. coli transcripts. Median values shown by horizontal bars.
Data from two biological replicates. *P = 0.049; **P = 1.6 × 10�9 (Mann–Whitney U test).
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involved in respiration and catabolism (Dataset EV5). Transcription-

ally upregulated genes were associated with ATP binding, chaper-

ones (ftsH, lon, clpB, dnaJK, groLS, htpG), ion binding, proteolytic

activities (ftsH, prlC, htpX), and an endoribonuclease (ybeY). Inter-

estingly, the expression of all of these are under r32 regulation

which is the most common regulatory mode to counteract heat

stress. r32 upregulation is often observed by expressing synthetic

constructs, although the precise mechanism of r32 activation is not

known (Ceroni et al, 2018). In our case, the incompletely synthe-

sized polypeptides from the stalled ribosomes on the PK-LacZ

mRNA are most likely partially folded or misfolded and generate

misfolding stress similar to the heat shock response. Binding of the

major E. coli chaperone systems, DnaK/DnaJ and GroEL/S, to the

misfolded proteins negatively regulates r32. The shift of the chaper-

ones to misfolded proteins releases r32, which then binds to the

RNA polymerases and induces expression of heat shock genes

(Guisbert et al, 2004; Mogk et al, 2011). This notion is supported by

the fact that dnaJ, groL/S, and grpE were transcriptionally upregu-

lated during PK induction as well as ftsH, which encodes the

protease that degrades r32.

To test whether PK-lacZ expression caused changes in translation

dynamics (e.g., ribosome pausing at particular codons), we next

computed the occupancy of ribosomes at each codon (also known

as codon occupancy) across the genome and compared it to that

without inducing PK-lacZ expression (Appendix Fig S5) (Lareau

et al, 2014). Notable increases in occupancy were found for the

codons AGA, CTA, CCC, and TCC, which encode for arginine,

leucine, proline, and serine, respectively (Fig 5C). All of these

codons are rarely used in the genome for their cognate amino acid

but were found in higher proportions across gene10. For example,

the CTA codon that codes for leucine is only used by 4% of codons

in the genome, while accounting for 8% of the gene10 region.

Coupled with the strong expression of gene10, the stress induced by

this abnormal demand on cellular resources would be amplified.

The broad shifts in regulation at a cellular scale and changes in

codon occupancy suggest that PK-lacZ expression may significantly

limit the availability of shared cellular resources. From a translational

perspective, this would manifest as a cell-wide drop in translation

initiation rates as the pool of free ribosomes would be reduced (Goro-

chowski et al, 2016). To test this hypothesis, we compared the RBS

initiation rates of endogenous genes before and after induction of lacZ

and PK-lacZ expression and found a consistent reduction across all

genes for both synthetic constructs (Fig 5D; Dataset EV1). While rela-

tively small for the LacZ construct (5%) where no notable stress

response was detected, the PK-LacZ construct triggered a large (54%)

drop in translation initiation rates across the cell (Fig 5D). Analysis of

the transcriptome composition and distribution of engaged ribosomes

across cellular transcripts further revealed that the PK-LacZ construct

made up 40% of all mRNAs and captured 47% of the shared ribo-

some pool engaged in translation (Fig 5E). This would account for

the global drop in translation initiation rates and misfolding stress

induced by the partially translated proteins from gene10 transcripts,

explaining the strong r32-mediated response.

We also observed a large difference in the number of transcripts

for each construct after induction; the lacZ transcripts were 43-fold

lower than those for PK-lacZ (81 versus 3,504 transcripts/cell,

respectively). Such a difference is unlikely to occur solely through

an increased transcription initiation rate at the Ptac promoter.

Previous studies have shown that the decay rate of the lacZ tran-

script is highly dependent on the interplay between transcription

and translation rates (Yarchuk et al, 1992; Iost & Dreyfus, 1995;

Makarova et al, 1995). RNase E sites within the coding region

become accessible to cleavage by RNase E when translation initia-

tion rates are low because fewer translating ribosomes are present

to sterically shield these sites and prevent degradation (Yarchuk

et al, 1992). This mechanism could account for the lower lacZ tran-

script numbers, which in turn would reduce the number of seques-

tered ribosomes translating lacZ mRNAs and explain the lack of a

stress response for this construct.

Discussion

In this work, we present a new approach to quantify transcription

and translation in living cells at a nucleotide resolution. This is

based on a deep-sequencing workflow that combines Ribo-seq and

quantitative RNA-seq with measures of key cellular parameters and

uses mathematical models to interpret these data (Fig 1). We show

that our high-throughput approach is able to simultaneously charac-

terize the translation initiation rate of 779 RBSs and translation

termination efficiency of 750 stop codons across the E. coli tran-

scriptome (Fig 2), in addition to measuring the precise behavior of

the genetic parts controlling transcription and translation of endoge-

nous genes and a synthetic genetic construct that expresses lacZ

(Fig 3). Because our methodology is based on sequencing, it can

scale beyond the number of simultaneous measurements that are

possible with common fluorescence-based approaches, and through

the use of spike-in standards, we are able to indirectly infer part

parameters in absolute units (i.e., transcription and translation rates

in RNAP/s and ribosomes/s units, respectively). Furthermore, this

work extends previous studies (Li et al, 2014; Owens et al, 2016;

Baggett et al, 2017) by enabling the quantification of crucial expres-

sion parameters in absolute units and provides a more comprehen-

sive and quantitative picture of both transcriptional and

translational regulation across a cell.

To demonstrate the ability to quantitatively assess various trans-

lational processes that have been difficult to measure, we studied

the behavior of a genetic construct that contains a strong virus-

inspired PK structure that induces a translational frameshift (Fig 4).

Following expression of PK-lacZ, the main reading frame shifts with

a similar efficiency as measured previously for the same PK variant

using radioactive methionine incorporation (Tholstrup et al, 2012).

In contrast to lacZ expression, PK-lacZ also causes a major burden

to the cell, sequestering a large proportion of the shared gene

expression machinery, e.g., ribosomes (Fig 5). We observe tran-

scriptome-wide increases in ribosome occupancy at codons rare for

endogenous E. coli genes, but more frequent in the synthetic

construct, suggesting that the strong expression of this gene places

significant demands on the translational resources of the cell. This

burden also results in significant changes in gene regulation (both

transcriptional and translational), which was mediated by the alter-

native polymerase subunit, r32, that remodels the bacterial

proteome following thermal stress (Guo & Gross, 2014). The likely

cause of r32 activation is a combination of strong overexpression of

gene10 and misfolding stress triggered by partial unfolding of

incompletely synthesized polypeptides (Giedroc & Cornish, 2009;
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Guo & Gross, 2014). To our knowledge, the stress response induced

by a strong pseudoknot has not been reported before making this

work a valuable data set for future studies.

Previous studies have used sequencing to investigate transla-

tional regulation. Ribo-seq was employed by Li et al (2014) to

measure the protein synthesis rate of 3,041 genes and by Baggett

et al (2017) to analyze translation termination at 1,200 stop codons.

However, unlike our approach, which is calibrated by external RNA

spike-in standards, these studies had no means of assessing the

sensitivity of their measurements. Measuring the variability of

several different RNA spike-in molecules at similar known molar

concentrations allows us to accurately calculate a detection limit,

emphasizing the benefit of including external standards in sequenc-

ing experiments. Furthermore, our ability to simultaneously capture

in absolute units both mRNA copy numbers and protein synthesis

rates enables us to move beyond changes at a single level (i.e.,

mRNA or protein), opening up new analyses focused on the multi-

ple steps involved in protein synthesis (e.g., the number of ribo-

somes translating each mRNA). The use of absolute units in our

work also provides several other benefits. First, it allows for

biophysical constraints to be considered to help validate the feasibil-

ity of measurements and improve the quality of data (e.g., ensuring

the rates measured do not exceed the maximum physically possi-

ble); second, it produces data that can be directly compared to any

new experiment where measurements are also taken in absolute

units. This includes using completely different organisms where the

composition and availability of gene expression machinery vary

significantly. Such comparisons are impossible when using relative

units (e.g., RPKMs) commonly employed in sequencing today which

hinders data exchange, comparisons, and reuse.

A limitation of our approach is that the models underpinning the

generation and interpretation of the transcription and translation

profiles rely on some key assumptions that may not always hold

true. For the transcription profiles to accurately capture RNAP flux,

it is essential that the system has reached a steady-state because

RNA-seq only measures RNA abundance at a single point in time

and not directly the rate of RNA production (Gorochowski et al,

2017). While this assumption is valid for cells that have been expo-

nentially dividing for several generations, rapidly changing RNA

production or degradation rates (e.g., through increased expression

of degradation machinery or a change in the growth phase) may

cause issues. Furthermore, for quantification of absolute transcript

numbers, while the RNA spike-ins will undergo the same depletion

during sequencing library preparation, it is necessary to assume that

the total RNA from the cells is efficiently extracted prior to this step.

Incomplete cell lysis or low-efficiency RNA extraction would require

a further correction during the quantification process.

For the translation profiles, the key assumptions are that every

ribosome footprint gives rise to a full-length protein and that dif-

ferences in codon translation times accurately capture localized

changes in translation elongation speed along all transcripts. Trans-

lation is a complex multi-step process and can be affected by
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Figure 5. Cellular response to the expression of a synthetic pseudoknot construct.

A Change in expression of chromosomal genes in E. coli cells following induction of PK-lacZ expression (1 mM IPTG). Each point represents a transcript. Differentially
expressed genes (mRNA count: P < 0.001 and absolute log2 fold-change > 1.37; translation efficiency: P < 0.01) are highlighted in color and by an alternative point
shape (transcriptional regulation: purple cross; translational regulation: orange open circle).

B Venn diagram of genes significantly regulated transcriptionally and translationally after induction of the PK-LacZ construct. Colors match those in panel (A).
C Change in codon occupancy for cells harboring the PK-LacZ construct after induction by IPTG (1 mM) calculated from the Ribo-seq data. Each point corresponds to a

codon, which are ordered by amino acid identity and then by abundance in the genome (left most abundant, right least abundant). Dashed horizontal line denotes
no change. Outliers are labeled and highlighted in red (Tukey test: 1.5 times the interquartile range below the first quartile or above the third quartile).

D Translation initiation rates for all E. coli RBSs in cells harboring the LacZ and PK-LacZ constructs in the absence and presence of IPTG (1 mM). Solid line shows the
same initiation rate for both conditions. Dotted lines denote linear regressions for the data with no offset.

E Fractions of mRNA reads and RPFs mapping to each synthetic expression construct (LacZ and PK-LacZ) and E. coli transcripts, which are divided into three major
categories: ribosomal, metabolic, and other functions. Data shown for cells cultured in the absence and presence of IPTG (1 mM).
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ribosome pausing due to amino acid charge (Charneski & Hurst,

2013), premature translational termination (Freistroffer et al, 2000),

and environmental conditions that alter cell physiology (Bartholo-

mäus et al, 2016) or the global availability of cellular resources like

ribosomes, tRNAs, and amino acids (Dong et al, 1996; Wohlgemuth

et al, 2013; Gorochowski et al, 2016). Although these factors

normally have only a small effect (Ingolia et al, 2009; Li et al, 2014;

Del Campo et al, 2015), significant genome-wide shifts induced by

long-term chronic stress can increase their occurrence and

potentially alter translation elongation speed and processivity in a

non-uniform way (Bartholomäus et al, 2016). Our calculation of

absolute protein synthesis rates also relies on the assumption that

proteins are stable with dilution by cell division dominating their

degradation rate (Nath & Koch, 1971). This holds for most proteins,

but care should be taken under severe stress conditions or for

synthetic constructs where the proteome is heavily modified (e.g.,

by overexpressing proteases).

Being able to measure RNAP and ribosome flux across multi-

component genetic circuits offers synthetic biologists a powerful

tool for designing and testing new living systems (Nielsen et al,

2016; Gorochowski et al, 2017). These capabilities are particularly

useful for large genetic circuits where many parts must function

together to generate a required phenotype. Ideally, complex circuits

are built by readily connecting simpler parts together. In electronics,

this is made possible by using the flow of electrons as a common

signal that captures the state at every point in a circuit. This signal

can be easily routed between components using wires to create

more complex functionalities. In genetic circuits, RNAP and ribo-

some fluxes can serve a similar role acting as common signals

(Canton et al, 2008; Brophy & Voigt, 2014). Promoters and RBSs

guide these signals to particular points in a circuit’s DNA/RNA and

allow them to propagate and be transformed.

The ability to easily connect large numbers of genetic parts

allows for the implementation of complex functions, but can also

lead to circuits that are fragile and break easily (Nielsen et al,

2016). This is particularly common for those that use components

with sharp switch-like transitions (e.g., repressors with high cooper-

ativity) (Nielsen et al, 2016). These types of part can lead to situa-

tions where although the output of the circuit behaves as desired, it

becomes highly sensitive to changes in growth conditions or the

inclusion of other genetic components (Gorochowski et al, 2017).

This problem arises because the parts may be required to function

near these sharp transition points allowing for minor perturbations

to cause large deviations in expression that then propagates to the

output of the circuit. The only way to guarantee the robustness of

such systems is to either measure every internal state to ensure

parts are not functioning near these transition points (Gorochowski

et al, 2017), or to implement feedback control within the circuit

itself for self-regulation (Ceroni et al, 2018). The ability to monitor

every element in a circuit also makes our approach valuable when

elucidating the root cause of failures. Instead of time-consuming

tinkering with a circuit until the problem is found, our method

allows for targeted modifications that precisely correct malfunction-

ing parts, accelerating developments in the field (Gorochowski et al,

2017).

Mature engineering fields rely on predictive models to efficiently

develop complex systems by reducing the need to physically

construct and test each design. To date, the accuracy of models in

synthetic biology has been hampered by a lack of reliable, quantita-

tive, and high-throughput measurements of genetic parts and

devices, as well as their effects on the host cell. Attempts have been

made to improve this situation by using standard calibrants

to increase reproducibility across laboratories and equipment

(Davidsohn et al, 2015; Beal et al, 2016; Castillo-Hair et al, 2016)

and by including synthetic RNA spike-ins to enable absolute quan-

tification of transcription (Owens et al, 2016). Our methodology

complements these efforts by combining RNA-seq and Ribo-seq with

RNA spike-in standards to quantify the regulation of transcription

and translation. The importance of pushing biology toward

measurements in absolute units has seen growing interest (Justman,

2018) and is becoming widely recognized as essential for developing

mechanistic models that can support reliable predictive design

(Endy et al, 2000; Jones et al, 2014; Belliveau et al, 2018). To

demonstrate why, it is important to realize that many behaviors are

intrinsically linked to their absolute scale. For example, the stochas-

tic nature of biochemical reactions means that the inherent noise

when only a few molecules are present will be far greater than when

there are many. Therefore, knowing whether one arbitrary unit

corresponds to 1 or 10,000 molecules is essential if the models are

to hold any predictive power as to the expected variability. In this

regard, the use of absolute measurements in mechanistic models of

biological parts (Jones et al, 2014; Belliveau et al, 2018) and entire

genetic systems (Endy et al, 2000) has already seen some success.

As we attempt to implement ever more complex functionalities

in living cells (Nielsen et al, 2016) and push toward a deeper under-

standing of the processes sustaining life, scalable and comprehen-

sive methodologies for quantitative measurement of fundamental

processes become paramount. Such capabilities will move us

beyond a surface-level view of living cells to one that allows the

exploration of their innermost regulation and homeostasis.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

K12 (E. coli) DSMZ 498

Recombinant DNA

pBR322 Addgene 31344
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

pBR322-LacZ Tholstrup et al (2012) N/A

pBR322-PK-LacZ Tholstrup et al (2012) N/A

Oligonucleotides and other sequence-based reagents

ERCC RNA Spike-In Mix Ambion/Thermo Fisher Scientific 4456740

Chemicals, enzymes, and other reagents

RiboLock/SUPERaseIn Thermo Fisher Scientific EO0382

MNase New England Biolabs M0247S

T4 Polynucleotide kinase New England Biolabs M0201S

T4 RNA ligase New England Biolabs M0202S

Pfu DNA Polymerase Thermo Fisher Scientific EP0502

MICROBExpress mRNA isolation kit Thermo Fisher Scientific AM1905

GeneJET RNA purification kit Thermo Fisher Scientific K0731

lMACS Streptavidin kit Miltenyi Biotec 130-074-101

Qubit dsDNA HS kit Thermo Fisher Scientific Q32851

DNA1000 Chip Agilent 5067-1505

Software

fastx-toolkit version 0.0.13.2 https://github.com/agordon

cutadapt version 1.8.3 https://cutadapt.readthedocs.io/en/stable/

DESeq2 version 1.20 https://bioconductor.org/packages/

GO.db version 2.1 https://bioconductor.org/packages/

Strains, media, and inducers

The E. coli K12 strain, [K-12, recA1 D(pro-lac) thi ara F’:lacIq1 lacZ::

Tn5 proAB+], harbors a pBR322-derived plasmid containing either

lacZ with a fragment insert that contains a truncated lac operon with

the Ptac promoter and the wild-type lacZ under lacI control, or a

pseudoknot-lacZ (PK-lacZ) consisting of gene10, a virus-derived

RNA pseudoknot (Tholstrup et al, 2012), 22/6a, fused upstream of

the lacZ. Bacteria were grown in MOPS minimal medium supple-

mented with 0.4% glycerol, 2.5 lg/ml vitamin B1, 100 lg/ml ampi-

cillin, 20 lg/ml kanamycin, and additionally 50 lg/ml arginine for

the lacZ expressing strain. The cells were grown for at least 10

generations at 37°C to ensure stable exponential growth before

induction.

Gene expression and preparation of the sequencing libraries

LacZ and PK-lacZ expression were induced with isopropyl b-D-1-
thiogalactopyranoside (IPTG) to a final concentration of 1 mM at

OD600 � 0.4 for 10 and 15 min, respectively. One aliquot of each

culture was used to isolate RPFs and prepare the cDNA library for

Ribo-seq as described in Bartholomäus et al (2016). In parallel, from

another aliquot, total RNA was isolated with TRIzol (Invitrogen)

and subjected to random alkaline fragmentation for RNA-seq as

described in Bartholomäus et al (2016). Different than the previous

protocol, prior to alkaline fragmentation, the total RNA was spiked

in with RNA standards (ERCC RNA Spike-In Mix; Ambion) which

were used to (i) determine the detection limit in each data set and

(ii) calculate the copy numbers per cell. The RNA standards consist

of 92 different transcripts, covering lengths of 250–2,000 nt and

approximately a 106-fold concentration range. Detection threshold

(RPKM) has been set at values with a linear dependence between

the reads from the spike-in controls and concentration in each RNA-

seq data set. Spike-ins with linear correlation were used in the copy

number analysis (Appendix Fig S1). Total protein concentration

(grams of wet mass per ml culture) was determined by the Bradford

assay using serial dilutions of the exponentially growing cells at dif-

ferent time points (e.g., prior the induction time at OD600=0.4 and

following induction with 1 mM IPTG). Using the cell number and

the volume of E. coli as 1 femtoliter, the protein mass was recalcu-

lated as grams of wet protein mass per cell.

Processing of sequencing data

Sequenced reads were quality trimmed using fastx-toolkit version

0.0.13.2 (quality threshold: 20), sequencing adapters were cut using

cutadapt version 1.8.3 (minimal overlap: 1 nt), and the reads were

uniquely mapped to the genome of E. coli K-12 MG1655 strain using

Bowtie version 1.1.2 allowing for a maximum of two mismatches.

LacZ and other similar parts of the plasmids were masked in the

genome. Reads aligning to more than one sequence including tRNA

and rRNA were excluded from the data. The raw reads were used to

generate gene read counts by counting the number of reads whose

middle nucleotide (for reads with an even length, the nucleotide 50

of the mid-position) fell in the coding sequence (CDS). Gene read

counts were normalized by the length of the unique CDS per kilo-

base (RPKM units) and the total mapped reads per million (RPM

units) (Mortazavi et al, 2008). Biological replicates were performed
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for all sequencing reactions. Based on the high correlation between

replicates (Appendix Fig S2), reads from both biological replicates

were merged into metagene sets (Ingolia et al, 2009). Differential

gene expression was performed using DESeq2 version 1.20. Firstly,

transcripts with P < 0.01 for both translational efficiency and mRNA

expression were selected. P-values were adjusted for multiple test-

ing using false-discovery rate (FDR) according to Benjamini and

Hochberg. Since the RNA-seq data sets have very high reproducibil-

ity between replicates (Appendix Fig S1), we decided to apply more

restrictive threshold P < 0.001 and additionally selected the 25th

percentile. The GO terms with significant enrichment (P < 0.01)

were calculated using GO.db version 2.10.

Calculating absolute transcript numbers

To calculate the transcript copy number, we used a method previ-

ously described by Bartholomäus et al (2016) and Mortazavi et al

(2008). Briefly, the mapped reads for a transcript were related to the

total reads and the length of the transcriptome. The latter was deter-

mined using the molecules of all spike-in standards above the detec-

tion limit (Appendix Fig S1) and was normalized by cell number.

Calibration of ribosome profiling reads

RPFs were binned in groups of equal read length, and each group

was aligned to the stop codons as described previously by Moham-

mad et al (2016). For each read length, we calculated the distance

between the point a transcript leaves the ribosome and the middle

nucleotide in the P site. This distance was used to determine the

center of each P site codon along each mRNA (see Appendix Fig S6

for further details). As expected, the majority of our sequence reads

were 23–28 nt and these read lengths were used for the further anal-

ysis. The ribosome occupancy per codon over the whole transcrip-

tome was calculated as described by Lareau et al (2014), where the

reads over each position within a gene were normalized to the aver-

age number of footprints across this gene. Metagene analysis of the

ribosome occupancies within the start and stop codon regions was

performed as described by Baggett et al (2017). Thereby, only genes

with at least 5 RPFs in the chosen window were considered. Over-

lapping genes were excluded from the analysis.

Data analysis and visualization

Data analysis was performed using custom scripts run with R

version 3.4.4 and Python version 3.6.3. Plots were generated

using matplotlib version 2.1.2, and genetic constructs were visual-

ized using DNAplotlib version 1.0 (Der et al, 2017) with Synthetic

Biology Open Language Visual (SBOLv) notation (Myers et al,

2017).

Data availability

Sequencing data from RNA-seq and Ribo-seq are deposited in the

Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) under

accession number SRP144594.

Expanded View for this article is available online.
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