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Abstract 

Background:  In dairy cattle populations in which crossbreeding has been used, animals show some level of diversity 
in their origins. In rotational crossbreeding, for instance, crossbred dams are mated with purebred sires from differ-
ent pure breeds, and the genetic composition of crossbred animals is an admixture of the breeds included in the 
rotation. How to use the data of such individuals in genomic evaluations is still an open question. In this study, we 
aimed at providing methodologies for the use of data from crossbred individuals with an admixed genetic back-
ground together with data from multiple pure breeds, for the purpose of genomic evaluations for both purebred and 
crossbred animals. A three-breed rotational crossbreeding system was mimicked using simulations based on animals 
genotyped with the 50 K single nucleotide polymorphism (SNP) chip.

Results:  For purebred populations, within-breed genomic predictions generally led to higher accuracies than those 
from multi-breed predictions using combined data of pure breeds. Adding admixed population’s (MIX) data to the 
combined pure breed data considering MIX as a different breed led to higher accuracies. When prediction models 
were able to account for breed origin of alleles, accuracies were generally higher than those from combining all avail-
able data, depending on the correlation of quantitative trait loci (QTL) effects between the breeds. Accuracies varied 
when using SNP effects from any of the pure breeds to predict the breeding values of MIX. Using those breed-specific 
SNP effects that were estimated separately in each pure breed, while accounting for breed origin of alleles for the 
selection candidates of MIX, generally improved the accuracies. Models that are able to accommodate MIX data with 
the breed origin of alleles approach generally led to higher accuracies than models without breed origin of alleles, 
depending on the correlation of QTL effects between the breeds.

Conclusions:  Combining all available data, pure breeds’ and admixed population’s data, in a multi-breed reference 
population is beneficial for the estimation of breeding values for pure breeds with a small reference population. For 
MIX, such an approach can lead to higher accuracies than considering breed origin of alleles for the selection candi-
dates, and using breed-specific SNP effects estimated separately in each pure breed. Including MIX data in the refer-
ence population of multiple breeds by considering the breed origin of alleles, accuracies can be further improved. Our 
findings are relevant for breeding programs in which crossbreeding is systematically applied, and also for populations 
that involve different subpopulations and between which exchange of genetic material is routine practice.
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Background
Genomic evaluation facilitates the accurate selection of 
genetically superior individuals as early as their DNA 
samples are obtained [1]. Genetic progress by selection 
depends on the accuracy of prediction. For genomic 
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prediction, it depends on the proportion of genetic vari-
ance that is explained by genome-wide single nucleotide 
polymorphisms (SNPs), and the accuracy with which the 
effect of those SNPs is estimated [2, 3]. Both factors are 
conditional on the linkage disequilibrium (LD) between 
SNPs and quantitative trait loci (QTL) [1–3].

For an accurate genomic prediction, a large popula-
tion of individuals with both phenotypes and genotypes 
is needed, which may not be possible for all traits and/
or all breeds [4–6]. In such cases, remedies would be to 
use SNP effects from another breed (a strategy known 
as across-breed prediction) with a large reference popu-
lation, or to add data from other breeds (multi-breed 
prediction) to improve the accuracy of the estimates of 
SNP effects. However, accuracies of across-breed predic-
tions are generally around zero, and combining data from 
multiple breeds has not notably improved accuracies in 
empirical studies [7–10].

When multiple breeds are combined to form a refer-
ence population, predictions rely on the SNP-QTL LD 
across breeds. However, LD may be different [11, 12], or 
the phase of the SNP and QTL alleles may be reversed 
[13] among the breeds, due to selection and genetic drift 
[9]. The QTL, or SNPs in high LD with QTL can be inte-
grated into marker panels for genomic prediction with a 
multi-breed reference population [14] or for performing 
across-breed predictions [15]. Although this may allevi-
ate the issue that SNP-QTL LD can differ between differ-
ent breeds, it includes an implicit assumption that QTL 
effects are the same across breeds. This may not be true 
if, for instance, interactions between QTL and genetic 
background exist [10, 11]. Hence, it may be more appro-
priate to assume that QTL, and therefore SNP effects are 
different but correlated, rather than they are the same 
across breeds.

Crossbreeding emerges as an efficient strategy for 
dairy cattle breeding to achieve better productivity and 
robustness at the animal as well as the system level. 
The improved performance is due to the use of specific 
combining abilities and heterosis [16]. In dairy cattle 
populations, in which crossbreeding has been used, 
animals show different levels of diversity in their origins 
[11, 17]. On the one hand, in rotational crossbreeding, 
for instance, where crossbred dams are mated to pure-
bred sires from different pure breeds, the genetic com-
position of crossbred animals is an admixture of the 
breeds included in the rotation. At each rotation cycle, 
depending on the breed of the sires used, admixture 
proportions of crossbred individuals change consid-
erably [18]. On the other hand, the gene pool of some 
“purebred” populations may also contain a fraction of 
the genome from other breeds, because bulls are used 
across the breeds to some extent [19]. A prerequisite 

for a well-structured crossbreeding system is to have an 
efficient breeding plan within the pure breeds, as well 
as crossbred population. Because, a sufficient number 
of purebred bulls is required for the system, and genetic 
gain in the pure breeds should be maintained to ensure 
that the overall economical benefit over time is not 
negatively affected [20]. Nonetheless, genomic evalu-
ations in dairy cattle are mostly carried out separately 
for each breed, and neither are cross breed data used 
nor are breeders getting genomic evaluations for their 
crossbred animals. Therefore, in some breeding pro-
grams it is necessary that genomic prediction models 
can accommodate a reference population including 
admixed individuals, as well as multiple pure breeds, 
allowing simultaneous evaluation of all selection 
candidates.

An appealing approach to make use of data of 
admixed individuals in genomic prediction is to 
incorporate breed proportions in genomic prediction 
models. Makgahlela et  al. [11] extended the random 
regression model to account for interactions between 
marker effects and breed proportions, where the breed 
proportions were inferred from pedigree data in Nor-
dic Red Dairy cattle. They reported that prediction 
accuracy can be higher if breed proportions are consid-
ered. Thomasen et al. [21] performed genomic predic-
tions in Danish Jersey dairy cattle, and concluded that 
a model that accounts for breed proportions, estimated 
either from pedigree or markers, does not improve the 
accuracy of genomic predictions compared to a model 
that ignores them. There are at least two limitations 
with both [11, 21] approaches. First, a single measure 
of breed proportion may not be appropriate, because 
two individuals with exactly the same breed propor-
tions may have very different patterns of admixture 
along their genome depending on which chromosomal 
region is inherited from which pure breed [22]. Second, 
the correlations between the breeds were assumed to 
be homogenous across the whole genome [21], or those 
correlations were even set to zero due to difficulties in 
the estimation [11].

In this article, we propose a methodology that is suit-
able for genomic prediction using a reference population 
of multiple purebred and admixed individuals. Through 
simulations, we investigated the impact of the correlation 
of QTL effects between the breeds, and the heritability 
of the trait on the accuracy of genomic prediction using 
different approaches: (i) treating the combined data as a 
single homogeneous population, (ii) considering breed-
specific SNP effects with or without accounting for cor-
relations between the breeds, and (iii) considering priors 
that lead to the use of region-specific correlations among 
the breeds.
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Methods
Data simulation
Genotypes
Genotype data at 51,477 loci were available for ani-
mals from each of the three dairy cattle breeds: Dan-
ish Holstein (HOL), Swedish Red (RED) and Danish 
Jersey (JER), from which a subset of 1050 (HOL and 
RED) or 220 (JER) individuals formed the base popu-
lations for this study. The SNPs that were fixed for the 
same allele in all three breeds were removed. For com-
putational reasons, only the SNPs (12,664) on first five 
chromosomes were considered. A plot summarising the 
principle component analysis of genomic relationships 
among all animals was depicted to assess the genetic 
relationships between the pure breeds (see Additional 
file 1: Figure S1). In order to establish a data set includ-
ing multiple pure breeds (i.e., HOL, RED and JER) and 
an admixed population (hereafter, MIX), a rotational 
crossbreeding system was mimicked using simulations, 
that considered three cycles of rotation (Table  1) for 
nine generations. Using the same sets of base popula-
tion genotype data, 10 replicates were generated.

Simulations started with 1050 (HOL and RED) or 220 
(JER) individuals (generation 0–G0), of which 50 (HOL 
and RED) or 20 (JER) were assigned as males and the 
rest as females. The purebred populations were gen-
erated by mating sires and dams from the same breed 
(Table  1). Population sizes and the number of males 
and females were kept constant at each of the simulated 
generations for HOL, RED and JER. This was achieved 
by mating 20 dams with the same sire, each mating 
yielding one offspring, except for one mating which 
yielded two offsprings, for the simulations of HOL and 
RED. In the simulation of the JER population, each sire 
was mated with 10 dams, where each mating yielded 
one offspring, except for one mating which yielded two 
offsprings.

The MIX in G1 was generated by mating sires from JER 
and dams from HOL of G0. The MIX in G2 was gener-
ated by mating sires from RED and dams from MIX of 
G1. Finally, one rotation cycle was completed by gener-
ating MIX in G3 by mating sires from HOL and dams 
from MIX of G2. The following generations of MIX were 
generated by mating sires from a pure breed, where the 
pure breed depended on the rotation cycle, with the 
dams from the MIX (Table  1). Population size and the 
number of males ( n = 50 ) and females ( n = 1000 ) were 
also kept constant at each of the simulated generations 
for MIX. When MIX individuals were mated with HOL 
or RED, the mating structure was similar to that in the 
pure breeds, whereas when MIX (or HOL) individuals 
were mated with JER, each JER sire was mated with 50 
dams, where 2 or 3 matings per sire were replicated to 
retain the population size of MIX at 1050. Selection was 
not considered, and mating was completely at random.

The number of recombinations on each chromosome 
was determined using a random variable drawn from 
a Poisson distribution, under the assumption that the 
length of a chromosome in Morgan (we assumed 1 cM 
~  1 Mb) is the lambda parameter [23]. Recombination 
positions were sampled from a uniform distribution, and 
interference was ignored [23]. Mutation was not consid-
ered in the simulations.

Phenotypes
The total number of QTL was set at 250, which were 
selected randomly among the SNPs that satisfied 
0.01 < MAF ≤ 0.30 , where MAF is the minor allele fre-
quency computed as follows. First, allele frequency at 
each locus ( pl ) was computed for each breed, and then 
averaged over the breeds ( p̄l ), to avoid population sizes 
affecting allele frequencies. Second, MAF of each locus 
was computed as min(p̄l , 1− p̄l) . The selection of QTL 
with 0.01 < MAF ≤ 0.30 ensured that the QTL were seg-
regating with a lower MAF compared to SNPs, for the 
combined population at G0. Table 2 shows some descrip-
tive statistics for SNPs and QTL for each pure breed at 
G0. The QTL were excluded from the final data set of 
SNPs. It should be noted that although G0 was common 
to all 10 replicates, and therefore, the SNPs that met the 
criteria to be selected as QTL were the same, the QTL or 
SNP sets did not fully overlap among the replicates due 
to randomised selection of QTL. The effects (explained 
below) of QTL were also simulated separately for each 
replicate.

Even if additive and dominance effects of QTL are the 
same in different breeds, the difference in QTL allele fre-
quencies may cause substitution effects of QTL [16] to 
differ among breeds, as well as genetic (co)variances. In 
this study, the substitution effects of QTL were simulated 

Table 1  Parents of each simulated generation

a HOL, RED, JER and MIX: Danish Holstein, Swedish Red, Danish Jersey and 
admixed population respectively
b Subscripts denote the generation, and superscripts denote the sex, i.e., males 
(M) and females (F)

Generation/
population

HOLa RED JER MIX

1b
HOL

M
0
× HOL

F
0
RED

M
0
× RED

F
0
JER

M
0
× JER

F
0

JER
M
0
× HOL

F
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
6 HOL

M
5
× HOL

F
5
RED

M
5
× RED

F
5
JER

M
5
× JER

F
5

HOL
M
5
×MIX

F
5

7 HOL
M
6
× HOL

F
6
RED

M
6
× RED

F
6
JER

M
6
× JER

F
6

JER
M
6
×MIX

F
6

8 HOL
M
7
× HOL

F
7
RED

M
7
× RED

F
7
JER

M
7
× JER

F
7

RED
M
7
×MIX

F
7

9 HOL
M
8
× HOL

F
8
RED

M
8
× RED

F
8
JER

M
8
× JER

F
8

HOL
M
8
×MIX

F
8
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directly from a multivariate normal distribution for vary-
ing levels of correlations among the QTL effects of differ-
ent breeds, i.e., correlations of 1.00, 0.50 or 0.25.

Each individual had two alleles (maternal and paternal 
alleles) at each locus, inherited from its dam and sire. The 
breed origin of each allele for all loci was traced back to 
pure breeds at G0, and was known without error. The 
breeding value of each individual i ( ui ) across G0–G9 was 
generated as follows:

where QM
ijk and QP

ijk are the number of copies (0 or 1) of an 
arbitrarily chosen allele A at QTL locus k, inherited from 
its dam and sire breed j (j = H,R,J for HOL, RED and JER, 
respectively), respectively. The αM

jk  and αP
jk are the simu-

lated QTL effects for locus k, in breed j. The QTL effects 
were scaled such that the mean of the breed-specific 
genetic variances (computed as the variance of breeding 
values) is 100 at G0. A random residual ei drawn from a 
normal distribution, ei | σ 2

e ∼ N (0, σ 2
e ) , was added to 

each animal’s breeding value to generate its phenotypic 
value. The size of σ 2

e  was determined according to the 
simulated heritabilities (explained later) and the mean 
genetic variance (100) over the breeds. The same value of 
σ 2
e  was used in all generations for all individuals.
True (simulated) genetic correlations between the 

breeds were computed from the genetic variances, 
σ 2
u,j =

∑250
k=1 2pjk

(

1− pjk
)

σ 2
αj

 , and covariances, 

σu,jj′ =
∑250

k=1

√

2pjk
(

1− pjk
)

2pj′k
(

1− pj′k
)

σαjj′ 

(j = H,R,J and j  = j′ ) [24] at k QTL. The genetic correla-
tions between HOL–RED, HOL–JER and RED–JER were 
0.88, 0.75 and 0.78, respectively, for a correlation between 
QTL of 1.00, over 10 replicates and at G0. These genetic 
correlations were 0.45, 0.38 and 0.38 for a correlation 
between QTL of 0.50, and 0.22, 0.19 and 0.19 for a corre-
lation between QTL of 0.25, respectively. The differences 
between QTL effect correlations and genetic correlations 

ui =
250
∑

k=1

[

QM
ijk ∗ α

M
jk + QP

ijk ∗ α
P
jk

]

,

were due to the difference in QTL allele frequencies 
between the breeds. The correlations between QTL allele 
frequencies of HOL–RED, HOL–JER and RED–JER were 
0.33, 0.22 and 0.41, respectively. The correlations between 
SNP allele frequencies were 0.47, 0.32 and 0.46. The QTL 
effect correlations of 0.50 and 0.25 are consistent with the 
reported genomic correlations (genetic correlations esti-
mated based on available SNP sets) between some cattle 
breeds for milk [14, 25] and fat [14], respectively. Two 
levels of heritability were considered for each scenario of 
correlations, i.e., 0.40 and 0.05, which are of the same 
magnitude as those reported for milk production and fer-
tility traits, respectively (e.g., [6]). Due to fixing the size of 
the residual variance across the breeds, heritabilities fluc-
tuated around these mean values across the breeds. Aver-
aged over the replicates and correlation scenarios, 
realized heritabilities for the two traits (i.e., traits with 
heritabilities of 0.40 and 0.05) were 0.43 and 0.06 for 
HOL, 0.42 and 0.05 for RED, and 0.35 and 0.04 for JER.

Reference and validation populations
Generations 6,7 and 8 (G6–G8) were used to form ref-
erence populations, while generation 9 (G9) was used 
to form validation populations. Hence, 660 JER individ-
uals, and 3150 individuals from each of the HOL, RED 
and MIX were available for forming reference popula-
tions to estimate SNP effects.

The SNP effects were estimated using different refer-
ence populations: (i) a single pure breed (separate for 
each breed, i.e., HOL, RED or JER), (ii) combined data of 
multiple pure breeds (HOL + RED + JER), and (iii) com-
bined data of multiple pure breeds and admixed (MIX) 
individuals. The MIX dataset was either used as a differ-
ent “breed”, assuming homogeneous SNP effects across 
all breeds (HOL + RED +  JER + MIX), or truly treated 
as an admixed population considering the breed ori-
gin of alleles (BOA) approach and uncorrelated (uncor) 
or correlated (cor) SNP effects between the breeds 
(HOL + RED + JER + MIX uncor/cor) [27, 40, 56, 57].

Table 2  Some descriptive statisticsa on SNPs and QTL for each pure breed in the base population (Generation 0–G0)

a Average over 10 replicates
b HOL, RED and JER: Danish Holstein, Swedish Red and Danish Jersey dairy cattle, respectively

HOLb RED JER

Number of fixed QTL for the reference (alternative) allele 9 (0) 5 (0) 58 (1)

Number of fixed SNPs for the reference (alternative) allele 564 (2) 385 (14) 2281 (286)

Number of breed-specific QTL 3 4 1

Number of breed-specific SNPs 261 356 50

Average MAF of segregating QTL 0.17 0.16 0.16

Average MAF of segregating SNPs 0.23 0.23 0.22
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The prediction of breeding values for each pure breed 
was performed using: (1) the estimated SNP effects from 
their own breed (within-breed prediction), (2) the esti-
mated SNP effects from each of the other breeds (across-
breed prediction), (3) the estimated SNP effects from a 
combined reference population (multi-breed prediction) 
and (4) the estimated SNP effects from a combined ref-
erence population considering the BOA approach. The 
breeding values were predicted by multiplying SNP effects 
with allele dosages, with (4) or without (1–3) considering 
breed origin of alleles. These same strategies (1–4) were 
used to predict the breeding values of admixed individu-
als, with the addition of fixed breed contributions in multi-
breed prediction [see model (1) in the next section]. For 
the admixed individuals, SNP effects estimated separately 
using pure breed reference populations (HOL/RED/JER) 
were also used to predict breeding values, considering the 
BOA approach only for the validation animals (hereafter, 
pure-BOA). That is, the breed origin of each SNP allele was 
traced back to its pure breed population only for the vali-
dation population, and the number of counted alleles was 
multiplied by the breed-specific estimate of SNP effects of 
the pure breeds.

We classified the methods using only a single breed’s 
data in model training to estimate SNP effects as “pure” 
(also includes pure-BOA as explained above), multiple 
breeds data without considering breed origin of alleles as 
“combined”, and multiple breed’s and MIX data considering 
breed origin of alleles as “BOA”.

Statistical models
Pure and combined
A simple approach for genomic prediction using a com-
bined reference population of multiple pure breeds and/
or admixed individuals is to assume that the marker effects 
are the same across breeds [26]. For this simple approach, 
when the data consisted of multiple breeds treated as a sin-
gle homogeneous population (Combined), we used the fol-
lowing model:

In the above equation, y is the vector of phenotypes 
(n× 1) , 1 is a vector of 1s (n× 1) , µ is the general mean, X 
is the matrix of breed proportions (n× 3) computed from 
SNP data, b is the vector of fixed breed effects (3× 1) , M 
is the matrix of centered genotypes (n× l) where cen-
tering was based on the current allele frequencies in the 
combined data, β is the vector of SNP effects, and e is the 
vector of residuals (n× 1) . The value of n depends on the 
reference population size, and l is the number of SNPs. 
Model (1) was used without the breed proportions com-
ponent Xb when the SNP effects were estimated sepa-
rately for each pure breed (pure and pure-BOA).

(1)y = 1µ+ Xb+Mβ+ e.

BOA
Admixed breed’s data was used by extending the exist-
ing linear model proposed for simple 2-way crosses (e.g., 
[27]) to accommodate more than two pure breeds:

where y is the vector of phenotypes (n× 1) of all animals, 
that is, both purebred and admixed animals, 1 is a vector of 
1s (n× 1) , µ is the general mean, MH , MR and MJ are the 
matrices of breed specific allele content of SNPs (n× l) for 
HOL, RED and JER, respectively. The entry at a locus in, 
for instance MH , for an animal were the number (0, 1 or 2) 
of counted alleles A originated from HOL. That is, when 
the animal had no allele originating from HOL, or when a 
HOL animal had an aa genotype, the corresponding entry 
was zero. The same applied to matrices MR and MJ . The 
matrices were column centered prior to analysis. The βH , 
βR and βJ are vectors of SNP effects for HOL, RED and JER, 
respectively, and e is the vector of residuals.

Bayesian analysis
A Bayesian approach was considered in the parameter 
estimation, which requires assigning prior distributions 
to the unknowns of the model. Analyses were carried 
out separately for each trait. To investigate the impact 
of assuming a heterogeneous (co)variance of SNP effects 
between different genome regions, three region sizes 
were considered based on a fixed number of SNPs; 1 SNP, 
100 SNPs and the whole genome (WG). Region sizes of 1 
SNP and WG can be regarded as BayesA and SNP-best 
linear unbiased prediction (SNP–BLUP) [1], (or equiva-
lently genomic BLUP, GBLUP [28]) when using model 
(1), and extensions of them for multiple components 
(breeds) when using model (2), respectively. In BayesA, 
it is assumed that each SNP (1 SNP) follows a normal 
distribution with null mean and a locus-specific vari-
ance, while in GBLUP it is assumed that all SNPs (WG) 
have null means and a common variance. To consider the 
heterogeneous variance of SNP effects among different 
genome regions using model (1), the matrix of genotypes 
and vector of SNP effects were partitioned into S subsets 
each with ls loci ( s = 1, . . . , S ), and priors were assigned 
to each sub-vector of β : βs | σ 2

s ∼ N (0, Iσ 2
s ) [29, 30]. The 

σ 2
s (s) were further assigned a scaled inverse chi-square 

prior with a number of degrees of freedom (df) and a 
scale parameter (S): σ 2

s | df , S ∼ χ−2(df , S) . The values of 
hyper-parameters will be explained later.

In the analyses using model (2), all genotype matrices 
and vectors of SNP effects were also partitioned into S sub-
sets each with ls loci. A normal distribution prior was 
assigned for each sub-vector of SNP effects for population j 
(j = H,R,J): βj,s | σ 2

j,s ∼ N (0, Iσ 2
j,s) . Hence, the SNP effects 

(2)y = 1µ+MHβH +MRβR +MJβJ + e,
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were breed-specific and uncorrelated across the breeds. 
That is, the genetic correlations between the breeds were 
assumed to be zero. The σ 2

j,s(s) were further assigned a 
scaled inverse chi-square prior with a number of degrees of 
freedom ( dfj ) and a scale (Sj) parameter: 
σ 2
j,s | dfj , Sj ∼ χ−2(dfj , Sj) . Using model (2), priors were also 

assigned such that the marker effects were breed-specific, 
but correlated between the breeds. That is, a multivariate 
normal distribution was assigned for each sub-vector of 
SNP effects: 

[

βH ,s βR,s βJ ,s
]′| Bs ∼ N

(

0,Bs ⊗ I

)

 , where I is 
an identity matrix of size equal to ls if ls > 1 or a scalar of 1 if 
ls = 1.

The diagonals of Bs are the breed-specific SNP variances, 
and the off-diagonals are SNP covariances between 
the breeds. The Bs was assumed to follow an inverted 
Wishart distribution with a shape (vB) and a scale (VB) 
parameter: Bs | vB,VB ∼ IW (vB,VB).

In both models (1) and (2), residuals were assigned a uni-
variate normal prior, ei | σ 2

e ∼ N (0, σ 2
e ) , and the variance 

σ 2
e  was assigned a scaled inverse chi-square prior with a 

number of degrees of freedom (dfe) and a scale (Se) param-
eter: σ 2

e | dfe, Se ∼ χ−2(dfe, Se) . Fixed effects were assigned 
flat priors.

The hyper-parameters of the prior distributions for the 
variance components were derived from the simulated 
genetic (co)variances and residual variances at G0 as fol-
lows. For the analysis using model (2) assuming independ-
ent SNP effects among the breeds, dfj = 4 and 
Sj =

σ 2
j,s(dfj−2)

dfj
, where σ 2

j,s =
σ 2
u,j

∑

2pj,l
(

1−pj,l
) [31]. Here, σ 2

u,j is 
the genetic variance for breed j, and pj,l is the allele fre-
quency of lth SNP in breed j. Only one Sj was required for 
the analysis using model (1), which was computed using 
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using model (2) assuming correlated SNP effects between 
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residual variances, dfe = 4 and Se =
σ 2
e (dfe−2)

dfe
 , where σ 2

e  
is the residual variance at G0.

The Markov-chain Monte Carlo (McMC) algorithm 
was used to obtain samples of each parameter from its 
full-conditional posterior distribution. The chain length 
for the analyses consisted of 50,000 cycles, of which the 
first 10,000 were discarded as burn-in. Every 10th sample 
of the post burn-in cycles was kept for posterior analy-
sis, yielding 4000 posterior samples. The mean value of 
the posterior samples was used as the estimate of each 
parameter. All the analyses were performed using self-
written scripts in Julia [32].

Prediction accuracy
Prediction accuracy was assessed as the correlation 
between true and predicted breeding values of validation 
individuals (1050 individuals for HOL, RED, MIX, and 
220 individuals for JER) at G9. The accuracies of predic-
tion using different data sets and models to estimate SNP 
effects were compared for each trait, QTL correlation 
and region size, separately. The accuracies of prediction 
for different region sizes were compared for each data 
set and model, trait and QTL correlation, separately. All 
comparisons were performed using a two-sided paired 
t-test, for which accuracies were paired across each rep-
licate for the same validation population. A Bonferroni 
correction was used to control the type 1 error rate of 
0.05.

Results
Accuracies for all scenarios and all region sizes are 
given in Additional file  2: Tables S1–S4. For readability, 
only the core results obtained with a QTL effect corre-
lation of 0.50 are presented in the main text. Accuracies 
were higher for a high heritability trait than for a low 
heritability trait (Figs.  1 and  2). Within-breed predic-
tions for breeds with large reference populations (HOL 
and RED) were more accurate than for a breed with a 
small reference population (JER). For the high herit-

ability trait, within-breed predictions for HOL, RED 
and JER were 0.785, 0.747 and 0.629, respectively, when 



Page 7 of 15Karaman et al. Genet Sel Evol           (2021) 53:46 	

the region size was 1 SNP (Fig.  1). For this high herit-
ability trait, combining data from multiple pure breeds 
(HOL  +  RED  +  JER) assuming homogenous SNP 
effects (multi-breed prediction) did not improve, or 
even decreased (but not always significantly) the accu-
racies for all breeds. Including the admixed population’s 
(MIX) data in multi-breed prediction, considering MIX 
as a different breed (HOL + RED + JER + MIX), yielded 
higher accuracies compared with combining only the 
data from pure breeds, and similar to or higher accura-
cies than using the single breed data alone (within-breed 
prediction), for genomic prediction of JER. When predic-
tion models were able to accommodate data of admixed 
individuals by accounting for breed origin of alleles 
(HOL + RED + JER + MIX uncor/cor), accuracies were 
generally improved compared to combining all avail-
able data, but this depended on the correlation scenario. 
Across-breed predictions yielded much lower accuracies 
than within-breed predictions.

Accuracies were lowest when using SNP effects from 
any of the pure breeds to predict the breeding values of 
admixed individuals. For the high heritability trait, pre-
dictions using SNP effects of HOL, RED and JER yielded 
accuracies of 0.411, 0.275 and 0.114, respectively, when 
the region size was 1 SNP (Fig. 1). For the same scenario 

and region size, estimating SNP effects separately for each 
breed, but accounting for breed origin of alleles in the 
prediction of breeding values (HOL/RED/JER) of MIX, 
improved accuracy up to 0.531. Combining MIX data 
with pure breeds’ data assuming common SNP effects for 
all breeds (HOL+RED+JER+MIX), improved accura-
cies compared to combining only three pure breeds’ data 
(HOL + RED +  JER) for the accuracy of admixed indi-
viduals (0.827 vs 0.560). Models that can use MIX data 
with breed origin of alleles (HOL + RED +  JER + MIX 
uncor/cor), improved accuracies compared to combin-
ing all available data, i.e., combining all purebred data 
or all purebred and admixed individuals’ data, although 
it depended on the correlation in the QTL scenario (see 
Additional file  2: Tables S1–S4). Accounting (0.877) or 
not (0.876) for correlations between the SNP effects of 
different pure breeds did not make any difference (Fig. 1, 
MIX). For a QTL correlation of 1.00 and predictions in 
MIX, (HOL+RED+JER+MIX) led to higher accuracies 
than (HOL + RED + JER + MIX uncor). Among the dif-
ferent region sizes considered here (1 SNP, 100 SNPs and 
the whole genome (WG)), the WG region size generally 
yielded the lowest accuracies for pure breeds and the 
admixed population (Fig. 3).

Fig. 1  Accuracies (horizontal axis) for the high heritability trait ( h2 = 0.40 ) in the scenario with a QTL correlation of 0.50, using different data 
sets or models (vertical axis), for a region size of 1 SNP. The predicted population is given on top of each plot. Letters in parentheses stand for the 
significance tests
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The efficiency of the methods considering breed ori-
gin of alleles in model training became more apparent 
as the correlation of the simulated QTL effects between 
the breeds decreased (see Additional file 2: Tables S1–
S4). For the high heritability trait and purebred popu-
lations, accuracies for (HOL  +  RED  +  JER  +  MIX 
uncor/cor) were significantly higher than those 

for (HOL  +  RED  +  JER  +  MIX) in the scenario 
with a QTL effect correlation of 0.25. For the MIX 
population, (HOL  +  RED  +  JER  +  MIX uncor/
cor) yielded significantly higher accuracies than 
(HOL +  RED +  JER +  MIX), for QTL effect correla-
tion of 0.25, and for both traits.

Fig. 2  Accuracies (horizontal axis) for the low heritability trait ( h2 = 0.05 ) in the scenario with a QTL correlation of 0.50, using different data sets 
or models (vertical axis) for a region size of 1 SNP. The predicted population is given on top of each plot. Letters in parentheses stand for the 
significance tests

Fig. 3  Accuracies (horizontal axis) for the high ( h2 = 0.40 , left figure) and the low ( h2 = 0.05 , right figure) heritability trait using the BOA model 
with correlated SNP effects and different region sizes (vertical axis), in the scenario with a QTL correlation of 0.50. Blue, purple, red and green bars 
represent accuracies from HOL, RED, JER and MIX, respectively. Letters in parentheses stand for the significance tests
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Discussion
Within‑ and across‑breed predictions
A simple approach for avoiding the unfavourable impact 
of the difference in marker effects among different pure-
bred populations is to carry out separate evaluations for 
each of those pure breeds, as is the case for genomic 
evaluations in many countries [19]. Such an approach, 
however, comes with the cost of a potential loss of data 
information, and therefore, in the accuracy of SNP effect 
estimation. This is a limitation for genetic improvement 
in populations with a small genomic reference popula-
tion. In this study, accuracies from within-breed predic-
tions were higher for HOL and RED, compared to JER. 
Although there could be other reasons, one explanation 
is the small reference population size (660 vs 3150) set 
for JER. The accuracies for pure breeds differed between 
the two heritability levels for any QTL effect correlation 
scenario, with accuracies being higher for the high her-
itability trait than for the low heritability trait. The fact 
that genomic prediction accuracy is higher with large 
reference populations and/or for a high heritability trait 
has been reported in many other studies [3, 5, 33–35]. It 
should be noted that the accuracies for the same herita-
bility level fluctuated slightly for different QTL effect cor-
relation scenarios, because QTL effects were simulated 
using different multivariate normal distributions (the 
covariance matrices differed) for those scenarios.

Using SNP effects of one pure breed to predict the 
breeding values of individuals of the other breeds 
(across-breed prediction), yielded much lower accuracies 
than within-breed predictions. This was true even when 
the simulated QTL effects had a correlation of 1.00. It 
should be noted that, although the simulated QTL effects 
were identical in the scenario with a correlation of 1.00, 
some QTL were not segregating in each breed (Table 2). 
The results for across-breed prediction are in line with 
the study of Steyn et al. [36] in which several breeds were 
simulated assuming identical QTL effects, but across-
breed predictions were poor. Studies using real data also 
showed that using data from one breed to predict breed-
ing values in the other breeds results in accuracies as low 
as zero (e.g., [9, 10]). The prediction accuracy of MIX 
generally reflected the expected breed proportions of 
the validation individuals. Using SNP effects from HOL, 
for instance, led to the highest prediction accuracies for 
MIX, as HOL was the most recent ancestor population 
for MIX, and therefore, MIX individuals had a higher 
proportion of their genome from HOL.

For within-breed predictions, both family relationships 
and LD between SNPs and QTL contribute to accuracy 
[37–39]. For across-breed prediction, the relationships 
of the individuals of the target breed with the individu-
als in the reference population are lower than those with 

the members of the target breed. The relative contribu-
tions of the two factors, family relationships and LD, to 
accuracy of breeding value estimation were not studied 
as it was not within the scope of this paper. If we rely on 
the argument that low across-breed prediction accuracy 
is due to differences in LD patterns among the breeds, 
i.e., the differences in LD or the phase of the SNP and 
QTL alleles, then across-breed prediction can not com-
pete with within-breed prediction [15], even for closely-
related breeds. In addition to LD patterns, it is also 
possible that QTL effects and/or QTL allele frequen-
cies differ among the breeds, while some QTL may only 
segregate in one breed [25, 40]. Needless to say, even if 
the QTL properties were the same among the breeds, 
SNP effects would still be different to the extent that LD 
between SNPs and QTL differs between them [11, 12, 30, 
41].

Although the simulated traits in this study were rela-
tively polygenic, the variance structure at the SNP level 
may be different from that at the QTL level along the 
genome [42, 43], favouring models that can accommo-
date such heterogeneity [30, 44, 45]. The SNP panels 
tend to include SNPs with a high minor allele frequency 
(MAF), while generally the QTL have a low MAF [46, 47]. 
The LD between the two sets, SNPs and QTL, can not be 
perfect if their MAF differs. Because the SNPs within a 
region of the genome are likely inherited together, and 
also likely to be in LD with the same QTL, they may col-
lectively capture the genetic variance at the QTL [29, 45, 
48]. Hence, assuming a common variance for groups of 
adjacent SNPs is reasonable, while it allows more Bayes-
ian learning compared to assuming variance specific to 
every single SNP [49]. For regions with a size larger than 
an optimum level, the advantage of grouping adjacent 
SNPs will start to disappear as the assumption on (co)
variance will approach that of the whole genome region 
size (WG).

For a high heritability trait and purebred analysis, accu-
racies obtained for different region sizes were generally 
ranked as 100 SNPs > 1 SNP > WG. It was shown earlier 
by simulations [30, 35] and real data analysis that assign-
ing priors to groups of SNPs may improve accuracies [44, 
45] compared to assigning a common prior for all SNPs. 
However, in a recent study, Liu et al., [50] reported neg-
ligible differences between several region sizes (one, 30, 
or 100 SNPs, and WG) for milk production and fertility 
traits in Danish Jersey, and using a model which is nearly 
identical to our model (1).

Combined data from multiple pure breeds
If the studied population is small, it might be challeng-
ing to establish a large reference population, and in 



Page 10 of 15Karaman et al. Genet Sel Evol           (2021) 53:46 

turn the accuracy of genomic prediction might also be 
limited [6]. For breeds with a limited reference popu-
lation size, incorporating data from other breeds may 
yield higher accuracies [26, 40, 51], although it depends 
on the relatedness between those breeds [9, 19]. When 
HOL and RED individuals were included in the refer-
ence population of JER (HOL+RED+JER), accuracies 
generally dropped. Similarly, using the combined ref-
erence population, accuracies for HOL and RED also 
generally dropped, but less compared to those for JER. 
When multiple purebred populations are combined 
to form a reference population, SNP effects are domi-
nated by the breeds that contribute more to the refer-
ence population. This may cause prediction models to 
pick up only the effect of SNPs that are in LD with QTL 
in all breeds, and/or only in the largest population, but 
not the effect of SNPs specific to small populations 
[14]. We had additional simulations where all breeds 
had the same number of individuals in the reference 
population (3150 for each), which resulted in accura-
cies for JER being also high and getting less affected 
from the joint analysis, as HOL and RED (results not 
given). These imply that the proportion of each single 
breed in a combined reference population of multiple 
breeds is important to achieve a sufficient accuracy for 
each breed, particularly when the breeds are genetically 
distant. This was more formally investigated in [40] 
using a high-density SNP chip ( ∼ 600,000 SNPs), where 
one of the two breeds (Holstein and Jersey) that formed 
a joint reference population had varying sizes, 0, 100, 
500 or 2000 animals, while the size of the other breed 
was kept constant at 2000 animals. As the number of 
individuals of a breed in the joint reference population 
decreased, accuracies for the candidates of the same 
breed also decreased [40].

In a study based on real genotypes of imputed sequence 
variants ( ∼ 1 million SNPs), van den Berg et  al. [52] 
simulated phenotypes for four dairy cattle breeds using 
identical QTL effects. They reported generally higher 
accuracies for multi-breed predictions, compared to 
within-breed predictions. In our scenario with a QTL 
effect correlation of 1.00, the difference in the accura-
cies from within- and multi-breed predictions were 
smaller compared to other (lower) QTL effect correlation 
scenarios. At long distances in the genome, LD differs 
between species and also between different cattle breeds, 
whereas it is relatively consistent at short distances [3]. 
The standard SNP sets, such as the one used here, are 
not sufficient to include all the SNPs that are in high LD 
with QTL across the breeds. Moreover, we selected QTL 
such that they had a relatively low MAF compared to 
SNPs, and this has an impact on LD between QTL and 
SNPs, whereas (randomly selected) QTL were included 

in the SNP set in [52]. These may partially explain why 
multi-breed genomic predictions generally had lower 
accuracies than within-breed predictions even when the 
simulated QTL effects were identical, compared to the 
findings of [52].

For the analysis of data consisting of multiple breeds 
(or lines or populations), an appealing strategy is to apply 
multi-trait methods where the same trait in different 
breeds is considered as different but two correlated traits, 
e.g. [8, 25]. In those applications of multi-breed genomic 
prediction, however, a homogeneous genomic correla-
tion was assumed across the genome, for pairs of breeds. 
Lehermeier et  al. [41] applied a multivariate modelling 
approach, which is flexible in that both marker effects 
and their (co)variances are allowed to differ among mul-
tiple breeds, but it still assumes a homogenous correla-
tion across the genome of breed pairs. Chen et  al. [53] 
proposed a method which allows the estimation of SNP 
effects that are specific to each breed while accounting 
for heterogenous (co)variances across the genome. Their 
method, however, applies a variable selection procedure 
that aims at pinpointing the SNPs that have an effect in 
all the breeds involved, leaving out the SNPs that have an 
effect on only one or a subset of the breeds. It was fur-
ther extended by Calus et al. [10] so as to accommodate 
also the selection of SNPs that are breed-specific. Nev-
ertheless, both methods [10, 53], make limited use of the 
correlated information in the data, because, regardless of 
how the SNPs that are to be included in the model are 
selected, their effects are estimated separately within each 
breed. Furthermore, all those multi-trait approaches are 
pertained to situations where individuals can be assigned 
to certain pure breeds, and are not able to accommodate 
data of individuals with an admixed genetic background.

Genomic prediction including data from admixed 
individuals
If a large amount of commercial farm data for admixed 
populations becomes available, it can help to improve 
selection accuracy by expanding the data size for each 
pure breed population [12]. Such data can also allow to 
exploit heterosis due to dominance and can accelerate 
performance of crossbred animals in commercial farms 
[54]. How to use those data in genomic evaluations is still 
an open question. Naturally, all purebred and admixed 
individual data can be combined together, when homoge-
neous SNP effects are assumed.

Including the data of an admixed population (MIX) 
along with the data of pure breeds in the reference pop-
ulation led to higher accuracies than the combined ref-
erence population of pure breeds. The JER benefited 
relatively more from adding MIX data. Because we 
mimicked a rotational cross breeding system, at each 
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generation, admixed population dams were sired by a 
purebred individual. Consequently, when an admixed 
female was mated with a purebred male, the offspring had 
an entire paternal chromosome from a pure breed, and 
a maternal chromosome including large chunks of the 
(i) admixture of all breeds and (ii) the pure breed of the 
maternal grand-sire. This means that, at each generation 
following G1, pure breeds were not equally represented 
in the genome of admixed individuals. Consider a single 
admixed individual at generation 6. That individual has 
an expected breed composition for a maternal chromo-
some of roughly 28% JER, 16% HOL, and 56% RED, and 
for a paternal chromosome of %100 HOL. Those propor-
tions change to 14% JER, 58% HOL, and 28% RED for a 
maternal chromosome, and 100% JER for a paternal chro-
mosome at generation 7, and to 57% JER, 29% HOL, and 
14% RED for a maternal chromosome, and 100% RED for 
a paternal chromosome at generation 8. Because a full 
rotation cycle of three generations (G6–G8) was consid-
ered when forming the reference populations, each pure 
breed was represented in the MIX data almost equally. 
Thereby, the reference population size increased almost 
equally for all breeds by adding MIX data to the com-
bined data of three breeds, HOL + RED +  JER + MIX. 
As one would expect, JER benefited more from this 
increase in data size, since it is the breed with the small-
est pure breed reference population. It should be noted 
that the validation individuals of RED had the grand-
sires which were also the sires of MIX at G8, and G8 was 
included in the reference population. Hence, although 
the data size increased almost equally for each breed, the 
added value of this may not be equal for all the breeds.

More elaborative ways to include individuals with 
admixed genetic background in the genomic evaluations, 
were proposed. Makgahlela et al. [11] fitted a multi-trait 
random regression model to account for interactions 
between marker effects and breed proportions, where the 
breed proportions were inferred from pedigree data in 
Nordic Red Dairy cattle. They reported, for some traits, 
higher prediction accuracies for the model accounting 
for breed proportions, than a GBLUP model treating 
the data as a single homogeneous population. Another 
example of admixture is admixture due to different popu-
lations, instead of breeds. Danish Jersey dairy cattle, for 
instance, include animals with different proportions of 
their genome from original Danish and US Jersey popu-
lations [19, 21]. Although both originate from a single 
breed, they have been separated long ago, and the persis-
tency of phase was shown to differ between the two, par-
ticularly at long distances between loci [21]. Hence, the 
accuracy of genomic prediction for Danish Jersey may 
not be challenged only by the small reference popula-
tion size, but also by its admixed population structure. In 

order to overcome the negative impact of admixed popu-
lation structure in Danish Jersey on genomic prediction 
accuracy, Thomasen et  al. [21] applied a set of random 
regression models that included proportions of popula-
tion origin for each animal. Contrariwise, Thomasen et al. 
[21] did not find any strong evidence that a model which 
accounts for proportions of population origin, estimated 
either from pedigree or markers, is superior to a model 
which ignores them. A possible explanation could be that 
admixture due to different breeds may be a more serious 
problem than admixture due to subpopulations of the 
same breed, in genomic prediction. Nevertheless, there 
are at least two limitations with both [11, 21] approaches. 
First, breed proportions of an individual were average 
values along their whole genome, which were computed 
based solely on pedigree or markers. This may not be 
appropriate, as two individuals with exactly the same 
breed proportions may have very different admixture 
patterns over their genome depending on which chro-
mosomal region is inherited from which pure breed [21, 
22]. Second, their models are somewhat restricted in that 
the correlations between the breeds were assumed to 
be homogenous across the whole genome [21], or those 
correlations were even set to zero to account for difficul-
ties in the estimation [11]. When the breeds are in dif-
ferent SNP-QTL LD, the (co)variances of SNP effects 
are expected to differ along the genome, and across the 
breeds [11, 21, 22, 41].

Genomic prediction considering breed origin of alleles
Models accounting for breed origin of each SNP allele, 
rather than genome-wide breed proportions estimated 
from pedigree or markers, have been proposed, and were 
shown to improve genomic predictions for simple 2 or 
3-way crosses. Those studies applied either univariate 
whole genome regression models at the SNP level ignor-
ing that the SNP effects might be correlated between the 
pure breeds [27, 55], or rather computationally demand-
ing multi-trait genomic BLUP models with “partial” 
relationship matrices at the individual level [22, 56, 57]. 
It was claimed that considering genomic correlations 
between pure breeds had limited relevance in models for 
predicting crossbred performance [57].

Our results did not show any clear evidence of the 
benefit of accounting for correlations among the breeds 
when MIX data were used with the BOA approach, even 
for the breed (JER) with a small reference population, for 
which one would expect more gain in accuracy compared 
with breeds with a large reference population (HOL and 
RED). A possible explanation of the unobserved benefit 
for JER could be due to this breed being genetically dis-
tinct from HOL and RED [58], and therefore, the pat-
tern of SNP effects along the genome being different 
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from HOL and RED. In addition, the information in the 
data may be too weak to estimate correlations among the 
breeds. The MIX data also increased the within-breed 
data size to some extent, which may lower the impor-
tance of correlated information from other breeds [41]. 
For the scenario with a QTL effect correlation of 1.00, 
analysis with HOL+RED+JER+MIX was competitive 
with or even superior to the analysis using BOA without 
accounting for correlations between the breeds, particu-
larly in predicting breeding values for individuals of MIX. 
This may be due to the MIX individuals being included in 
the reference population, which simply increases the data 
size in a combined analysis, whereas BOA with uncorre-
lated analysis uses only the information in a single breed 
(component).

The differences in LD pattern and phase persistency 
across different breeds [43] may result in marker effects 
being highly correlated in regions, where LD and SNP-
QTL phase are constant between the breeds [41]. Hence, 
we have anticipated that correlations between the popu-
lations at the region level might improve the accuracy 
of genomic predictions, although the correlations at the 
whole genome level do not. In this study, the differences 
in accuracies from 100 SNPs and 1 SNP region sizes were 
generally negligible, whereas WG generally yielded the 
lowest accuracies. However, it is worth noting that the 
fixed-length of 100 SNPs as region size was arbitrarily 
chosen to give an insight on the impact of grouping SNPs 
in within-, across- and multi-breed genomic prediction 
accuracy, and there may exist other region sizes that yield 
higher accuracies than 100 SNPs. In analyses that aim at 
using correlations between breeds, such as the analysis 
using the BOA approach, the knowledge of the LD pat-
terns and persistence of phase among the breeds may be 
useful for grouping SNPs.

van den Berg et  al. [14] showed that prediction of 
breeding values and genomic correlations across popula-
tions can be more accurate if a carefully selected set of 
causal variants or SNPs that are very close to causal vari-
ants from sequencing data are used together with com-
mercial SNP panels. Doing so may alleviate the issue of 
SNP-QTL LD being different in different breeds. In a 
recent study, Liu et al. [6] showed that integrating addi-
tional selected sequence variants to the standard 54K 
SNP chip led to significant improvements of reliabilities 
for the genomic evaluation of milk production traits in 
Danish Jersey. They reported that the benefits of using 
selected sequence variants in genomic prediction for 
milk and protein remained significant even in the sce-
nario in which the largest reference population consisted 
of animals from Danish and US Jersey populations. In 
order to eliminate the impact of LD differences between 
the breeds on the comparison of accuracy when using 

the two BOA approaches (correlated and uncorrelated 
SNP effects), we ran additional analyses for the scenario 
with a QTL correlation of 0.50, and the low heritability 
trait (h2 = 0.05) , using only the 250 QTL as SNPs and 
the region size of 1 SNP (see Additional file 2: Table S5). 
Accuracies using the BOA approach with correlated SNP 
effects between the breeds were higher than those with 
uncorrelated SNP effects between the breeds (Fig. 4). In 
light of these results and the results of [6, 14], one can 
argue that integrating selected sequence variants may be 
an efficient way of using correlated information from the 
breeds, and that in this case taking the correlation of SNP 
effects between breeds into account may allow for greater 
accuracy, in genomic evaluations with data from multi-
ple purebred and admixed individuals using the BOA 
approach.

Estimation of the breed composition of individuals 
with admixed genomic background is of relevance for 
genomic prediction, because if it is not accounted for, it 
may lead to spurious estimates of SNP effects [59]. In real 
life applications, pedigree records and/or parentage vali-
dation can be used to distinguish purebred and admixed 
animals, but any error in the pedigree may lead to inaccu-
rate consideration of individuals as pure or admixed [18]. 
Nevertheless, genomic prediction should rely on local 
ancestry (i.e., breed of origin) for each of the SNP alleles, 
rather than a genome-wide (global) ancestry computed 
from pedigree or markers [60]. Methods exist to esti-
mate local ancestry in a population of admixed individu-
als (e.g., [61]). In this simulation study, breed origin of 
admixed individuals were known without error, but those 
could also be estimated from the data of purebred indi-
viduals. Due to mimicking a systematic crossing scheme 
with well-defined purebred individuals in our simula-
tions, such estimates are expected to be highly accurate 
(Ana C. Guillenea, personal communication). However, 
for populations in which admixture is more complex, 
first one needs to find the number of pure breeds in the 
gene pool, and then to assign breed origin to each SNP 
allele for all animals in the population. This may intro-
duce another source of error, and the models requiring 
breed origin of alleles, with or without accounting for 
correlations, may suffer from such errors to the extent 
where simply combining all available data (multiple pure 
and admixed breeds data) might become highly competi-
tive. It was shown that a larger number of animals would 
be required to distinguish closely related breeds than to 
distinguish distantly related breeds [62], when the breed 
origin of an animal is needed to be inferred from the 
genotypic data. To the best of our knowledge, there is no 
information on the number of purebred animals required 
to correctly assign breed-origin of alleles of the crossbred 
animals.
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Genetic background, as well as environment, alters the 
effects of QTL [10, 19]. Thus, the substitution effect of a 
QTL may not be stable between the admixed population 
and the pure breed it originates from. Although consid-
ering interactions between QTL and background in the 
simulation of substitution effects may be more realistic, 
it is not straightforward to make a decision on a realis-
tic genetic background. Hence, in this study, such inter-
actions were ignored, thereby breeding values of MIX 
were simulated using the substitution effects of the pure 
breeds. The BOA models used here can account for breed 
differences in allele substitution effects, however, they 
make no distinction on the basis of the genetic back-
ground, that is whether a QTL is expressed in a purebred 
or admixed individual’s genome. Further study may be 
needed to explore if and how interactions between QTL 
and background can be accommodated in BOA models, 
combining data from multiple pure breeds and admixed 
individuals.

Genome scaling
Approximations for genomic prediction accuracy [3, 63] 
use the size of the reference population ( nR ), trait herita-
bility (h2), and the effective number of chromosomal 

segments segregating in the population ( Me ), where Me is 
a function of the genome length and the effective popula-
tion size ( Ne ). Following those studies [3, 63], within-
breed prediction accuracy can be estimated with 
√

h2nR
(h2nR+Me)

 . In this study, only the first five chromosomes 
were simulated, which is roughly a quarter of the cattle 
genome. Those approximations suggest that, if we scale up 
the genome size (and the number of QTL) to that of the 
whole genome, and the size of the reference populations 
accordingly, our results will still hold, in within-breed pre-
dictions. For across-breed prediction, Wientjes et al. [64], 
suggested the use of rg

√

h2nR
(h2nR+Me)

 , where rg is the genetic 
correlation between breeds. They further suggested that 
Me values of 20,000 and 40,000 may be used when the 
populations are closely and distantly related, respectively. 
On the one hand, combining different breeds together will 
increase Ne [65], and thereby Me , requiring a larger refer-
ence population size to compensate this increase in Me , to 
avoid a reduction in accuracy [36, 52]. On the other hand, 
models accounting for BOA make use of single-breed 
data, while taking advantage of an increase in nR by using 
data from admixed individuals. The BOA model that 
includes correlations further uses correlated information 

Fig. 4  Accuracies (horizontal axis) for the low heritability trait ( h2 = 0.05 ) in the scenario with a QTL correlation of 0.50, using different data sets or 
models (vertical axis), when only the QTLs are considered with region size of 1 SNP. The predicted population is given on top of each plot. Letters in 
parentheses stand for the significance tests
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from other breeds. It is worth noting that those approxi-
mations assume a single homogenous target (validation) 
population.

Conclusions
The aim of this simulation study was to provide a model 
allowing the inclusion of data from individuals with an 
admixed genetic background in genomic evaluations, 
while accounting for the differences in marker effects for 
each purebred population in the gene pool. Combining 
pure breeds’ and admixed population’s data in a multi-
breed reference population was beneficial for the esti-
mation of breeding values for pure breeds with a small 
reference population. For the admixed population, com-
bining all available data (from purebred and admixed 
individuals) and realizing a combined genomic evaluation 
led to higher accuracies than considering BOA for selec-
tion candidates only and using breed-specific SNP effects 
estimated separately in each pure breed. Including data 
from admixed individuals in the reference population 
of multiple breeds by considering BOA, accuracies were 
further improved. Our findings are relevant for breeding 
programs in which crossbreeding is systematically applied 
(e.g., ProCROSS system, http://​www.​procr​oss.​info), and 
also for populations involving different subpopulations 
between which exchange of genetic material has become 
routine practice (e.g., Nordic Red dairy cattle).
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