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Abstract
The simulation of growth processes within soft biological tissues is of utmost importance for many applications in the medi-
cal sector. Within this contribution, we propose a new macroscopic approach for modelling stress-driven volumetric growth 
occurring in soft tissues. Instead of using the standard approach of a-priori defining the structure of the growth tensor, we 
postulate the existence of a general growth potential. Such a potential describes all eligible homeostatic stress states that can 
ultimately be reached as a result of the growth process. Making use of well-established methods from visco-plasticity, the 
evolution of the growth-related right Cauchy–Green tensor is subsequently defined as a time-dependent associative evolu-
tion law with respect to the introduced potential. This approach naturally leads to a formulation that is able to cover both, 
isotropic and anisotropic growth-related changes in geometry. It furthermore allows the model to flexibly adapt to changing 
boundary and loading conditions. Besides the theoretical development, we also describe the algorithmic implementation 
and furthermore compare the newly derived model with a standard formulation of isotropic growth.

Keywords Anisotropic growth · Growth potential · Engineered tissue · Finite strain

1 Introduction

The production and use of artificially grown biological tis-
sue has become an important research topic in the medical 
context over the last two decades. Great progress has been 
made in implant research in particular, with the cultivation 
of biohybrid heart valves being just one example among 
many (Fioretta et al. 2019). Designing and constructing 
highly complex medical implants is a big challenge due to 
the biomechanical properties of the underlying cultivated 
tissue. Early works in the field of biomechanics have already 
pointed out that biological tissues adapt dynamically to the 
environment they are exposed to (see e.g. Fung 1995 and 
references therein). The goal of this process is to reach a 
homeostatic state in which e.g. a certain critical stress state 
is neither exceeded nor fallen below. From a physiological 

point of view this process, which we will call growth in the 
following, is mainly driven by a change in mass and internal 
structure of the given biological material. It is important 
to notice that since the model presented in this paper is a 
purely phenomenological approach, we disregard the micro-
mechanical effects of remodelling in the following and con-
centrate exclusively on the description of volumetric growth. 
Subsequently, the growth process leads to a change in the 
mechanical behaviour, which usually has a large influence on 
the performance of the given implant. In contrast to native 
tissue, these adaptive effects are particularly pronounced 
during the cultivation period of bioengineered tissues and 
must therefore be taken into account from the beginning 
of the design process. Within this context, computational 
modelling contributes to a deeper understanding and pre-
diction of such adaptation processes. An important aspect 
of modelling the mechanics of growth is the description of 
geometry changes which are due to contraction and expan-
sion of the material, respectively. Starting from the works 
of Skalak (1981), Skalak et al. (1982) and Rodriguez et al. 
(1994), many models have been developed over the last 
decades in order to describe such finite volumetric growth 
effects. Although being already successfully applied, e.g. 
in the modelling of finite plasticity (see e.g. Eckart 1948; 
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Kröner 1959; Lee 1969), it was the contribution of Rodri-
guez et al. (1994) which first adapted the multiplicative split 
of the deformation gradient to describe the inelastic nature 
of finite growth processes. For a detailed overview on the 
various modelling strategies, the interested reader is referred 
to the comprehensive overviews given e.g. by Goriely (2017) 
and Ambrosi et al. (2019). Most of the approaches based on 
the conceptually simple and computationally efficient frame-
work by Rodriguez et al. (1994) can be roughly divided into 
two different groups, isotropic (e.g. Lubarda and Hoger 
2002; Himpel et al. 2005) and anisotropic growth models 
(e.g. Menzel 2005; Göktepe et al. 2010; Soleimani et al. 
2020). It is important to outline that the terms isotropic and 
anisotropic which are used here in the context of describing 
the volumetric growth response must not be confused with 
the similar terminology of the underlying basic continuum 
mechanical models, where anisotropy is often used to denote 
an initially preferred direction within the material. In case 
of isotropic growth, the growth-related part of the deforma-
tion gradient tensor is often assumed to be proportional to 
the identity tensor (e.g. Lubarda and Hoger 2002), which 
yields a uniform expansion of a referential volume element. 
On the other hand, the term anisotropic growth describes 
a geometry change of a given volume element that is not 
uniform in all three spatial dimensions but rather has a dis-
tinct growth direction (e.g. Göktepe et al. 2010). Despite its 
widespread use, the approach of isotropic growth modelling 
has strong limitations with regard to describing the mechani-
cal behaviour of complex structures. Recently, (Braeu et al. 
2017, 2019) pointed out that in the context of relevant appli-
cations, anisotropic growth behaviour is more the standard 
case than an isotropic response. Classically, this intrinsically 
anisotropic growth behaviour is modelled using heuristic 
assumptions on the definition of preferred growth directions. 
This, unfortunately, yields the need to a-priori prescribe a 
certain structure of the growth-related deformation gradient. 
While this approach might be feasible for relatively simple 
problems such as fibre elongation and contraction, it is not 
well applicable for more complex applications. In order to 
cure the need for describing the structure of the growth-
related deformation gradient a-priori, more recent works 
(e.g. Zahn and Balzani 2017) have developed formulations 
in which the growth-related deformation gradient tensor is 
constructed with respect to the eigenvectors corresponding 
to the principal stress state. Nevertheless, defining general 
and flexible formulations that can adapt to various bound-
ary value problems remains a challenging task and ongoing 
topic of research, as pointed out already by e.g. (Menzel 
2005) or (Soleimani et al. 2020).

In addition to the phenomenologically motivated models 
described above, another class of models was established 
for describing growth processes. Originating from the the-
ory of mixtures, (Humphrey and Rajagopal 2002), among 

others, developed the constrained mixture theory. Instead 
of assuming that the volume as a whole is deformed during 
the growth process, this modelling approach describes the 
change of volume in terms of a continuous deposition and 
removal of mass increments. Since this approach is compu-
tationally very expensive, (Cyron et al. 2016) and (Cyron 
and Humphrey 2017) developed a homogenized version of 
the constrained mixture model. This is achieved by using a 
temporal homogenization of the mass increments alongside 
with the same multiplicative split as described by Rodriguez 
et al. (1994). Although this approach overcomes the limita-
tions of the classical constrained mixture theory in terms of 
computational costs, it still suffers from the need to a-priori 
define the structure of the growth tensor. Recent versions 
of this framework, as described e.g. in the work of Braeu 
et al. (2019), were able to modify this approach such that 
the growth tensor adapts automatically to the given bound-
ary value problem.

As an alternative to the just mentioned promising 
approach, this contribution presents a different way on tack-
ling the issue of predefined growth tensors. This novel and 
flexible framework for the description of stress-driven volu-
metric growth is able to cover both, isotropic and anisotropic 
growth behaviour, naturally. Section 2 covers the theoretical 
modelling ideas behind the proposed model. The numerical 
implementation of the derived material model is described 
in Sect. 3. Finally, numerical examples are given in Sect. 4.

2  Continuum mechanical modelling of finite 
growth

Let us first introduce the well-established multiplicative split 
of the deformation gradient � into an elastic and a growth-
related part (see e.g. Rodriguez et al. 1994), i.e.

Using this equation, the determinant of � , abbreviated 
by J ∶= det� = det�edet�g , is also multiplicatively split 
into two parts. While the change of volume due to elas-
tic deformations is described by Je = det�e , the growth-
related volume changes are represented by Jg = det�g . In 
analogy to the right Cauchy–Green tensor � = �T� as well 
as the left Cauchy–Green tensor � = ��T , the elastic right 
Cauchy–Green tensor and the growth-related right and left 
Cauchy–Green tensor can be defined as

(1)� = �e�g.

(2)

�e ∶= �T
e
�e = �−T

g
��−1

g

�g ∶= �T
g
�g

�g ∶= �g�
T
g
.
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Furthermore, the growth-related velocity gradient �g is 
introduced as

2.1  Balance relations

Growth processes within biological systems in general lead 
to a change of the systems mass as well as a change of its 
shape and volume, respectively. Within this contribution, 
the focus lies on the macroscopic description of changes in 
shape rather than a change of the systems mass. We therefore 
neglect the description of the balance of mass in terms of 
production or flux terms and assume that this balance rela-
tion is fulfilled implicitly. It is furthermore well established 
to assume that growth processes take place on a significantly 
larger time scale than mechanical deformations do. This 
standard argument is known as the slow growth assumption 
and yields a quasi-static setup of the well known balance of 
linear momentum

Here, � and �0 denote the second Piola–Kirchhoff stress 
tensor and the referential body force vector per reference 
volume, respectively. Following the idea of open system 
thermodynamics (see e.g. Kuhl and Steinmann 2003 and 
references therein), we describe the entropy production �̇� in 
terms of the Clausius–Duhem inequality

with the volume specific Helmholtz free energy density � 
defined more precisely in the following section. The addi-
tional referential entropy contribution S0 is capturing both, 
entropy fluxes through the boundary as well as entropy 
sources within the system itself. It is important to notice 
that we do not explicitly compute this particular contribution 
but introduce it to allow e.g. for a decrease in entropy due to 
the growth process itself.

2.2  Helmholtz free energy

We start from the general continuum mechanical framework 
laid down in Svendsen (2001). Within this context, the con-
stitutive equations are described with respect to a given but 
otherwise arbitrary configuration of the material body in 
question. Similar to the approaches made by Bertram (1999) 
and Svendsen (2001) in the context of finite plasticity, we 
choose the elastic part of the Helmholtz free energy to be 
stated in terms of quantities defined within the so-called 
grown intermediate configuration.

(3)�g = �̇g�
−1
g
.

(4)Div (��) + �0 = �.

(5)�̇� = � ∶
1

2
�̇ − �̇� + S0 ≥ 0,

When modelling finite volumetric growth, it is impor-
tant to ensure that the growth process will ultimately reach 
a homeostatic state. This must be the case even under the 
absence of growth restricting boundary conditions, since, 
otherwise, the growth process would continue ad infinitum. 
A common approach to limit the growth response is to intro-
duce a set of material parameters, which can be interpreted 
as the maximum possible growth induced stretches (see 
e.g. Lubarda and Hoger 2002). Such approaches may give 
computationally reasonable results, however, in the authors’ 
opinion, cannot be easily motivated by physical arguments. 
Within this contribution we much rather assume that an 
internal force must evolve during the growth process that 
consequently counteracts the deformation process and ulti-
mately yields it to stop. Since (engineered) biological tissue 
consists of high amounts of bound water, it is reasonable to 
assume that a growth-related change in volume is always 
accompanied by a change in internal pressure. Such pressure 
accumulations are consequently counteracting the expansion 
and contraction process, respectively. This growth-related 
internal pressure can be described by including an additional 
dependency on either �g or �g . Using the idea of interpreting 
�g as a so-called material isomorphism (see e.g. Noll 1958; 
Svendsen 2001), it follows that one has to choose �g in order 
to ensure that the kinematic quantities are located within the 
same configuration, i.e.

Note that this choice is strongly related to the general 
concept of structural tensors. In the present case, namely 
by choosing the structural tensor equal to �g , the relation to 
linear kinematic hardening becomes obvious. This is worked 
out in the paper of Dettmer and Reese (2004), where lin-
ear kinematic hardening is a special case of the so-called 
Armstrong–Frederick type of kinematic hardening. In the 
following, we choose an additive format, i.e.

for the Helmholtz free energy, which can be motivated easily 
by the rheological model shown in Fig. 1.

This model illustrates nicely that a growth-related expan-
sion or contraction directly results in an accumulation of the 
growth-related energy �g due to the loading of the associated 
spring element. Such an increase in growth-related energy 
clearly counteracts the growth deformation and ultimately 
leads to a decaying growth response. Please notice that the 
general idea of an energy contribution counteracting the 
growth process can also be found e.g. in Braeu et al. (2019). 
In the above publication, however, this is achieved by a 
change in elastic energy, which is enforced by an additional 
term considering the change in volume directly. The elasti-
cally stored energy �e is represented within this rheological 

𝜓 ∶= �̃�
(
�e,�g

)
.

(6)�̃� ∶= 𝜓e(�e) + 𝜓g(�g),
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model by the second spring element. It is obvious that this 
particular spring is influenced by both, growth-related and 
purely elastic deformations.

2.3  Thermodynamic considerations

To derive the constitutive equations representing finite 
volumetric growth, we next consider the isothermal Clau-
sius–Duhem inequality as given in Eq. (5). Inserting the 
Helmholtz free energy (Eq.  6) and differentiating with 
respect to time yields

By using the product rule as well as utilizing the identities 
̇

�−T
g

= −�−T
g

̇
�T
g
�−T
g

 and ̇
�−1
g

= −�−1
g
�̇g�

−1
g

 , the elastic defor-
mation rate can be expressed as

With the definition of the growth velocity gradient given 
in Eq. (3), the growth-related deformation rate can similarly 
be found as

As shown in detail in “Appendix 1”, the thermodynami-
cally consistent definition of the second Piola–Kirchhoff 
stress tensor can be derived by combining the equations 
above and making use of the standard procedure of Cole-
man and Noll (1963), such that

With this definition at hand, the reduced version of the 
C l a u s i u s – D u h e m  i n e q u a l i t y  i s  g i v e n  a s 
�̇�red =

𝜕𝜓e

𝜕�e

∶

(
�T
g
�e + �e�g

)
−

𝜕𝜓g

𝜕�g

∶

(
�g�g + �g�

T
g

)
+ S0 ≥ 0.

 If we furthermore let �e and �g only depend on the invar-
iants of �e and �g , their derivatives ��e

��e

 and ��g

��g

 are symmetric 

and commute with either �e or �g . Combining this with the 
properties of the double contracting product, the reduced 
Clausius–Duhem inequality can be written only in terms of 

(7)� ∶
1

2
�̇ −

(
𝜕𝜓e

𝜕�e

∶ �̇e +
𝜕𝜓g

𝜕�g

∶ �̇g

)
+ S0 ≥ 0.

(8)�̇e = �−T
g
�̇�−1

g
− �T

g
�e − �e�g.

(9)�̇g = �g�g + �g�
T
g
.

(10)� = 2�−1
g

��

��e

�−T
g
.

the symmetric part �g = sym�g of the growth velocity gra-
dient, i.e.

where the Mandel stress tensor is denoted by � = 2�e
��e

��e

 
and the back-stress tensor is given as � = 2�g

��g

��g

 . Similar to 

classical plasticity theory, see e.g. (Vladimirov et al. 2008), 
one can identify the difference of the Mandel stress tensor 
� and the back-stress tensor � as the conjugated driving 
force for the evolution of growth. It is therefore natural to 
describe the evolution equation for �g in terms of these 
quantities. Notice that � and � are located within a grown 
intermediate configuration, where they can be clearly identi-
fied as stress like quantities. This becomes clear by the fact 
that � has the same invariants as the Kirchhoff stress tensor 
� and, thus, has a clear physical meaning (see “Appen-
dix 1.2”). Pulling � and � back to the reference configura-
tion will yield a loss of such clear physical interpretation. 
Nevertheless, from a conceptual and computational point of 
view, a pullback of these quantities to the reference configu-
ration is desirable (for details see e.g. Dettmer and Reese 
2004 and Vladimirov et al. 2008). Taking into account the 
relation �g =

1

2
�−T
g
�̇g�

−1
g

 one can rewrite the Clau-
sius–Duhem inequality purely in terms of quantities located 
within the reference configuration, i.e.

Similar to the formulation given with respect to the grown 
intermediate configuration, it is reasonable to define the evo-
lution of the growth-related right Cauchy–Green tensor �g 

in terms of the thermodynamically conjugated driving forces 
� = �−1

g
�� and � = 2

��g

��g

 . It is important to mention that 

using �g as the internal variable yields the fact that �g must 
never be computed in the first place. Such an approach is in 
clear contrast to the standard formulations in volumetric 

(11)�̇�red = [� − �] ∶ �g + S0 ≥ 0,

(12)

�̇�red =

(
�−1
g
��−T

g
− �−1

g
��−T

g

)
∶
1

2
�̇g + S0

= (� − �) ∶
1

2
�̇g + S0

= � ∶
1

2
�̇g + S0 ≥ 0.

Fig. 1  Rheological model corre-
sponding to the given volumet-
ric growth model. Growth is 
denoted by the element includ-
ing the character G
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growth modelling, where the growth tensor itself is usually 
explicitly prescribed.

2.4  Evolution of growth

Up to this point, the framework presented is very general 
and could be used to describe a wide variety of inelastic phe-
nomena in finite deformations. It is therefore the choice of 
evolution equations for �g that explicitly defines a particular 
kind of inelastic material model. For the most simple model-
ling assumption of a purely isotropic growth response, the 
inelastic part of the deformation gradient is usually defined 
as �g = �� , where � describes the growth induced stretch 
(see e.g. Lubarda and Hoger 2002; Himpel et al. 2005; 
Göktepe et al. 2010). Using the thermodynamic framework 
described above, this assumption naturally leads to an evolu-
tion equation of �g , which can be written as

Within this context, a scalar valued evolution equation 
�̇� = f (𝜗,�,� , ...) is used to determine the overall growth 
response (see “Appendix 1.3” for a more detailed example). 
Although the a priori assumption of �g being a diagonal 
tensor is tempting due to its computational simplicity, it 
was already pointed out in various publications that such an 
assumption is not reasonable for many applications (see e.g. 
Soleimani et al. 2020; Braeu et al. 2019, 2017). This is espe-
cially the case for scenarios in which the body cannot grow 
freely but is restricted by complex boundary conditions. To 
overcome this issue, a new volumetric growth model is pro-
posed in the following.

2.4.1  Finite growth using a growth potential

As described in the introduction, cell-mediated expansion or 
compaction of engineered tissues takes place in such a way 
that a preferred homeostatic stress state is reached within the 
material. In the present work, it is assumed that this homeo-
static state can be described in terms of a scalar equivalent 
stress. Thus, growth always takes place, if this equivalent 
stress is not equal to the preferred stress state of the biologi-
cal material. These considerations lead us to the introduction 
of a general growth potential

which is a function of the conjugated driving forces as well 
as a set of material parameters �i . Similar to the represen-
tation used in classical plasticity theory, this potential can 
be represented as a surface, located within the principal 
stress space, which contains all eligible homeostatic stress 
states. It will therefore be named homeostatic surface in the 

(13)�̇g ∶= 2
�̇�

𝜗
�g.

(14)Φ ∶= Φ̃
(
�,� , 𝛼1, ..., 𝛼n

)
,

following. An example for such a homeostatic surface can 
be found in Fig. 2. The overall goal of this process is to 
approach Φ = 0 over time and therefore reach a stress state 
that lies on the homeostatic surface. Furthermore, it seems 
natural that such growth processes always try to minimize 
the amount of energy needed to reach the homeostatic state. 
Hence, the direction of growth response will be described 
by the derivative of the growth potential, i.e. � =

�Φ

��
 . It 

is furthermore obvious that homeostasis is never reached 
instantaneously but rather approached over a certain period 
of time. To account for this temporal effect, we introduce 
the growth multiplier �̇�g ∶= �̇�g

(
Φ, 𝜂, 𝛽1, ..., 𝛽n

)
 defined as an 

explicit function of the growth potential, the growth velocity 
� and a set of material parameters �i . Subsequently, the con-
siderations above lead us to an associative growth evolution 
law that is postulated as

In general, we do not want to restrict the choice of Φ to only 
positive homogeneous potentials of degree one. This has the 
side effect that ||�|| = 1 cannot be guaranteed, which yields 
the need to normalize the growth direction tensor to assure 
that only �̇�g has an influence on the amount of accumulated 
growth deformations. As before, we furthermore can define 
the given evolution equation in terms of quantities located 
purely within the reference configuration. To achieve this, a 
pullback operation is performed that yields

including the general second order tensors � = 2

||�||�
T
g
��g 

as well as � = ��−1
g

.

Remark The same result for Eq. (16) could also be obtained 
following (Reese et al. 2021) and the procedures proposed 
therein. Therefore, this evolution law could be interpreted 
in the broader context of a theory describing the evolution 
of general structural tensors.

Since this approach is very similar to the classical mod-
els of visco-plasticity, the attentive reader may ask how far 
these approaches differ. In the case of plasticity, the yield 
criterion is used to clearly distinguish between the purely 
elastic and elasto-plastic state, i.e. the yield criterion must 
always be less than or equal to zero. In contrast, the growth 
potential Φ does not serve to distinguish between an elastic 
and inelastic region, since an ‘elasto-growth’ state is present 
for both Φ < 0 and Φ > 0 . Only in case of Φ = 0 no further 
growth has to take place, since homeostasis has already been 
reached. This behaviour is also reflected by the growth mul-
tiplier, which in contrast to plasticity can also have negative 

(15)�g ∶= �̇�g
�

||�|| .

(16)�̇g =
2�̇�g

||�||�
T
g
��g = �̇�g� = �̇�g��g,
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values. In the authors opinion, this modelling approach has 
several advantages: (1) As stated earlier, the direction of 
growth does not have to be prescribed a priori, (2) the com-
plexity of the material model is reduced and (3) due to the 
strong similarities to plasticity, one can rely on a large rep-
ertoire of knowledge from this field, both from a modelling 
and numerical point of view. For instance, one could argue 
that the preferred stress can not only be described by only 
one smooth growth potential. Having e.g. the concept of 
multisurface plasticity in mind, it would be easy to adopt 
the growth potential by a more sophisticated approach. In 
addition, it is also possible, for instance, to take into account 
a changing preferred stress using an approach similar to the 
concept of isotropic hardening.

Remark It is important to point out that while the model 
developed here is strongly inspired by the methods of 
classical plasticity theory, the micromechanical interpre-
tations of these purely phenomenological approaches do 

not correspond to each other in any way. Furthermore, it is 
important to note that in reality, instead of a sharply defined 
homeostatic state, a fuzzy state or possibly even a multitude 
of such states might occur.

Before defining a specific form of the growth potential, 
we first take a closer look at the structure of such a potential. 
It has already been pointed out above that it is reasonable to 
assume that growth in biological tissues tends to be of iso-
tropic nature only in the absence of restricting boundary 
conditions. This idea leads us to the definition of the growth 
potential as a function of the volumetric invariant 
I1 ∶= tr(� − �) = tr

(
��g

)
 . To allow also for an anisotropic 

growth response, we furthermore include the deviatoric 
invariant J2 ∶=

1

2
tr
(
dev(� − �)2

)
=

1

2
tr
(
dev

(
��g

)2) (see 
“Appendix 1.4”), where we use the deviatoric projection 
given as dev(∙) = (∙) −

1

3
tr(∙)� . With these considerations at 

hand, we propose a general form for the growth potential as

Fig. 2  Schematic representa-
tion of the homeostatic surface 
defined by Eq. (18) displayed 
in principal stress space. The 
hydrostatic axis p = tr(� − �) 
is shown in orange. The eigen-
values of � − � are denoted 
by �i

(a)

(b) (c)
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Here, the material parameter �hom describes a stress like 
quantity defining the state of homeostasis. It is important to 
emphasize that the combination of I1 and J2 is crucial for the 
proposed material model. If the potential was merely defined 
in terms of the volumetric invariant I1 , the growth direc-
tion tensor would become proportional to the identity ten-
sor which consequently yields an evolution equation that is 
similar to the isotropic evolution law given in Eq. (13). It is 
the dependency on J2 that introduces an anisotropic growth 
behaviour, since the growth direction tensor no longer nec-
essarily has to correspond to the identity. Nevertheless, in 
case of purely volumetric stress states, the dependency on I1 
ensures the desired isotropic growth response. This consid-
eration yields an exclusion of any purely deviatoric potential, 
e.g. of von Mises-type potentials. Furthermore, any suitable 
potential must fulfil �Φ

��
≠ � for all (� − �) ∈

(
ℝ

3 ×ℝ
3
)
 in 

order to guarantee a well-defined growth direction for any 
arbitrary loading condition.

2.4.2  Choice of the growth potential and growth multiplier 
evolution

The form of a specific potential depends strongly upon the 
needs of the given application. Unfortunately, there is cur-
rently a lack of meaningful experimental data regarding the 
mechanics of volumetric growth. We therefore choose a 
potential that proofed to be able to predict our macroscopical 
observations and further satisfies the general requirements 
stated above. For this purpose, the quadratic potential as 
described e.g. by Stassi-D’Alia (1967) and Tschoegl (1971) 
is used in the following. This potential can be expressed in 
terms of �hom = m�2

g
 including the material parameters m 

and �g , i.e.

As shown in Fig. 2a, the homeostatic state defined by this 
particular growth potential forms a hyperbolic surface within 
the principal stress space. The tipping point of this parabola 
is located on the hydrostatic axis, where its precise location 
is determined by the parameter m (see Fig. 2b, c). From 
Eq. (18) it is obvious that both parameters must always be 
greater than zero. It is furthermore important to notice that 
the opening side of the parabolic potential lies within the 
compressive regime for m < 1 and in the tensional regime 
for m > 1 , respectively. Since a choice of m = 1 describes 
a von-Mises-type model such a choice of this parameters 
must be avoided. It is worth noticing from Fig. 2 that this 
particular form of the growth potential leads to a different 
material response in the compressive and tensional regime, 

(17)
Φ ∶= Φ

(
I1, J2,�hom

)
= �1

(
I1
)
+ �2

(
J2
)
− �hom.

(18)Φ = 3J2 − (1 − m)�gI1 − m�2
g
.

respectively. Using this form of the growth potential yields 
the growth direction tensor as

It is important to notice that this quantity can be reformu-
lated with respect to quantities located within the reference 
configuration by using the identities from “Appendix 1.4”. In 
this case, Eq. (16) can be written solely in terms of �e since 
�T
e
��e = �e

(
3dev

(
��e

)
− (1 − m)�e�

)
 . To complete the set 

of equations needed to describe the evolution of the growth-
related right Cauchy–Green tensor, we furthermore define 
a particular form for the evolution of the growth multiplier 
�̇�e . From a physically motived point of view, it seems natural 
that the growth response increases with the deviation of the 
current stress state from homeostasis. We therefore assume 
the change in accumulated growth stretch is proportional to 
the current value of the growth potential. This furthermore 
ensures that the growth process stops as soon as homeostasis 
is reached. With these assumptions in mind, we choose the 
well-established approach proposed in Perzyna (1966) and 
Perzyna (1971), i.e.

Herein the growth multiplier is defined in terms of the 
growth relaxation time � as well as a nonlinearity parameter 
�.

2.4.3  Choice of Helmholtz free energy

Until this point, the constitutive framework presented herein 
has been described without defining a particular form of the 
Helmholtz free energy. In general, the choice of the energy 
potential depends upon the specific type of material one 
would want to model. For the time being, we choose a com-
pressible Neo-Hookean-type model to describe the elastic 
response of the material. Therefore, the elastic energy �e is 
written in terms of the Lamé constants � and Λ as

Following the argumentation in Sect. 2.2, we furthermore 
define the growth-related Helmholtz free energy �e in terms 
of a stiffness like material parameter �e such that

This particular choice of the growth-related energy obvi-
ously fulfils the general requirements for the definition of 
a strain energy density, i.e. �e(Je → 0) → ∞ as well as 

(19)� = 3dev(� − �) − (1 − m)�g�.

(20)�̇�e ∶=
1

𝜂
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Φ

m𝜎2
e

) 1

𝜈

.

(21)�e =
�

2

(
tr�e − 3

)
− �lnJe +

Λ

4

(
J2
e
− 1 − 2lnJe

)
.

(22)�e =
�e

2

(
J2
e
− 1 − 2lnJe

)
.
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�e(Je = 1) = 0 and �e(Je → ∞) → ∞ . With these definitions 
at hand, the second Piola–Kirchhoff stress tensor and the back-
stress tensor can be derived as

Notice that the conjugated driving force � can be easily 
computed, if �e and � are known (see Sect. 2.3).

3  Numerical implementation

To incorporate the volumetric growth model at hand into a 
finite element simulation framework, a suitable time integra-
tion technique has to be used for evolution Eq. (16). As shown 
for example by Weber and Anand (1990), Simo (1992), Reese 
and Govindjee (1998), Vladimirov et al. (2008) and discussed 
in further detail by Korelc and Stupkiewicz (2014), the expo-
nential mapping algorithm is a very suitable choice for the 
treatment of the given evolution equation. We will therefore 
briefly describe this approach in the following.

Starting with the discrete time increments Δt = tn+1 − tn , 
we introduce the growth increment Δ𝜆gn+1 = Δt�̇�g as the dis-
cretized version of the growth multiplier. With this at hand, the 
exponential integration scheme for the evolution Eq. (16) can 
be written in terms of the general second-order tensors � and 
� as introduced in context of Eq. (16), e.g.

Notice that subscript n + 1 will be dropped in the following 
for notational simplicity, which means that any discrete quan-
tity without subscript will be associated with the current time 
step. Following the argumentation within (Vladimirov et al. 
2008) and (Dettmer and Reese 2004) Eq. (24) can be reformu-
lated to ensure the symmetry of �e . Furthermore, the authors 
mentioned above show that the exponential function within 
this equation can be expressed in terms of the growth-related 
right stretch tensor �e =

√
�e . Consequently, this leads to the 

discretized evolution equation given as

In order to complete the set of discrete constitutive equa-
tions, the discrete growth multiplier Δ�g must be determined. 
This can be achieved by reformulating Eq. (20) (see e.g. Simo 
and Hughes 1998 and de Souza Neto et al. 2008), i.e.

Since both of the discrete constitutive equations are nonlin-
ear in their arguments, a local iterative solution algorithm must 

(23)
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2
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J
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)
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.

(25)�−1
gn
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exp
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Δ�e�

−1
e
��−1

e

)
�−1

e
.

(26)Φ = m�2
g

(
Δ�g�

)�
.

be applied at integration point level to solve for both, the inter-
nal variable �−1

g
 as well as the growth increment Δ�g . It is 

convenient for such algorithms to write the evolution equations 
in terms of a set of coupled residual functions, which read in 
the case of this material model

Due to the symmetry of �g , the tensor valued residual 
function �g can be transformed into Voigt notation, which is 
computationally more efficient than solving the full tensorial 
equation. When applying a Newton–Raphson procedure to 
solve Eq. (27), the increments of the equations’ arguments 
can be found by solving a linearized system of equations, i.e.

During the solution process, these increments are recom-
puted for every iteration step in which they are used to update 
the local iteration procedure. The partial derivatives used 
herein are not computed analytically but rather calculated by 
means of an algorithmic differentiation approach. For this, the 
software package AceGen, as described e.g. in Korelc (2002) 
and Korelc (2009), is being used to automatically generate 
source code for the computation of the tangent operators.

Since the local material response is implicitly included 
within the global material tangent operator of a finite element 
simulation, we furthermore need to derive this tangent in a 
consistent manner. Otherwise, quadratic convergence of the 
global iteration scheme would not be reached. For this, one 
should bear in mind that the second Piola–Kirchhoff stress 
is a function of the right Cauchy–Green tensor as well as the 
internal variables. Within the given framework, the material 
tangent operator can be expressed as

Similar to the local tangent operator, these partial deriva-
tives are computed using the software package AceGen. For 
this, the partial derivative of the growth-related stretch tensor 
�g with respect to the right Cauchy–Green tensor can be deter-
mined from the following relation

(27)
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Here, we reuse the fully converged residual and Jacobian 
from the local solution process. Then, the desired partial 
derivative is given as the corresponding 6 × 6 submatrix 
located in the upper left corner of the right-hand side matrix 
product.

4  Numerical examples

In the following section, numerical examples are presented 
to examine and discuss various aspects of the material model 
introduced above. First, we show the influence of bound-
ary conditions on the development of the volumetric growth 
process using a simple block model. For this purpose, volu-
metric growth in the absence of geometrically constraining 
boundary conditions is evaluated as well as the impact of 
both temporal constant and time-dependent constraining 
boundary conditions. Next, we investigate the influence of 
the introduced set of material parameters, before showing 
structural examples of a shrinking tissue stripe and com-
paring its growth-related response to an isotropic growth 
formulation. Finally, we show a qualitative comparison of 
our model with experimental data from the literature. For the 
finite element simulations, we implemented the presented 
material model as well as the element formulation itself into 
the FEAP software package (Taylor and Govindjee 2020) 
in terms of a user-element routine. For meshing and visu-
alization of the structural examples we have used the open 
source software tools GMSH (Geuzaine and Remacle 2009) 
and Paraview (Ahrens et al. 2005). Furthermore, the open 
source parallelization tool GNU Parallel (Tange 2011) was 
used during evaluations of the examples shown below.

4.1  Geometrically unconstrained growth

As a first example, we use the geometrical model shown in 
Fig. 3 without applying any time-dependent displacement 
boundary condition uz(t) . Therefore, the specimen is able 
to expand or contract freely throughout the whole simula-
tion, which should result in an isotropic growth response. 
We furthermore use the set of material parameters given 
in Table 1. The growth response for a choice of m = 1.2 
is visualized in Fig. 4. Shown by the stretches of point P1 
located in the upper corner of the given block geometry, it 

is obvious that the specimen contracts as expected. Since no 
constraining boundary conditions are applied, the overall 
stress within this system should always be equal to zero and 
therefore could never reach a state of tensional homeostasis. 
It is the additional growth-related free energy, which leads 
to the limitation of the otherwise infinite shrinking process. 
One can observe this influence really well in Fig. 5a, where 
lower values of �g lead to a more pronounced shrinking of 
the specimen. It is worth noticing that 𝜅g > 0 must hold for 
any simulation, since neglecting the contribution of internal 
pressures would lead to non-physical behaviour and conse-
quently to an unstable simulation.

It is furthermore shown in Fig. 5d that the growth rate 
parameter � has only an impact on the speed at which the 
volumetric growth process approaches the desired homeo-
static state but not on its magnitude. However, as shown in 
Fig. 5b, c a change in magnitude of the homeostatic state can 
be achieved by variation of m and �g . As already described in 
Sect. 2.4.2, the material parameter m defines the location of 
the growth potential’s tipping point on the hydrostatic axis. 
For values of m < 1 this point lies in the compressive regime, 
while a choice of m > 1 pushes this point into the tension 
regime. As a result, the specimen approaches homeostasis 

Table 1  Material parameters for 
numerical examples

� Λ �g m �g � �[
N

mm2

] [
N

mm2

] [
N

mm2

]
[−]

[
N

mm2

]
[s] [−]

Geom. unconstrained growth 40 400 150 1.2 70 20 1.0
Geom. constrained growth 40 400 250 1.2 200 100 1.0
Clamped tissue stripe 100 800 150 2.0 250 100 1.0

Fig. 3  Geometrical block model with uniform side length of 1 mm . 
Uniaxial boundary conditions are given in grey, and time-dependent 
displacement uz(t) is denoted in red. Evaluation points P1 = (1, 1, 1) 
and P2 = (1, 1, 0.5) are given in blue
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either by expansion or by shrinkage. This behaviour is really 
well reflected within Fig. 5b. It is furthermore important to 
point out that for a choice of m = 1 the homeostatic potential 
introduced in Eq. (18) becomes a von-Mises-type criterion, 
which must not be applied due to its purely deviatoric nature. 
Therefore, this particular choice of m should be avoided 
when using the potential introduced above.

4.2  Geometrically constrained growth

For the next example, we choose a stepwise time-depend-
ent displacement uz(t) to which the block given in Fig. 3 
is subjected. For the first 250 time steps, the displacement 
is held constant at uz(t) = 0 mm before being raised to 
uz(t) = 0.3 mm and held constant for another 200 time steps. 
Next, we apply compression by setting uz(t) = −0.1 mm and 
holding it constant for another 250 time steps. At last, uz(t) is 
reset to zero again. The material parameters for this example 
are given in Table 1.

When applying this stepwise alternating stretch to the 
given block specimen, it can be seen in Fig. 6 that the 
material shrinks and expands depending on the current 

Fig. 4  Isotropic growth behaviour resulting in a uniform contraction 
in all three spatial dimensions. No constraining boundary conditions 
are applied (i.e. no uz(t) ). Stretches are evaluated at point P1 (see 
Fig. 3)

Fig. 5  Growth-induced stretch 
due to contraction of a block 
specimen for various sets 
of material parameters. No 
constraining boundary condi-
tions are applied (i.e. no uz(t) ). 
Stretches are evaluated at point 
P1 (see Fig. 3)

e

(a) (b)

(c) (d)
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loading state, respectively. During the first loading 
period, the accumulated Cauchy stress �zz rises to a value 
of approximately 300 MPa , which is due to a contrac-
tion induced by the volumetric growth process. This 
effect is represented by the evolution of the growth mul-
tiplier as shown in Fig. 6a. Since the multiplier is nega-
tive, the specimen approaches homeostasis by shrinking. 
Once the displacement is raised to uz(t) = 0.3 mm , the 
Cauchy stress �zz also rises abruptly before decaying and 
approaching the same homeostatic stress state as before. 
This kind of stress reduction is achieved by an expansion 
of the specimen, which is represented by a positive value 
of the growth multiplier. The following compression of 
the specimen causes a negative jump in the overall stress 
response. This again induces shrinkage of the specimen 
in order to regain the homeostatic state of approximately 
300 MPa . It is important to notice that this homeostatic 
state is slightly higher than the state reached in the load-
ing cycles before. This change is due to the accumulated 
internal pressures described by the growth-related energy 
�g . Consequently, this results in a shift of the homeostatic 
surface similar to kinematic hardening in plasticity. To 
what extent this effect corresponds to experimental stud-
ies is still unclear due to the lack of available data. How-
ever, there is no question that this effect can be adapted 
to any experimental data without further problems by 
extending the model, e.g. by a nonlinear formulation. 
When setting uz(t) = 0 mm in the last loading cycle, the 
Cauchy stresses overshoot this new homeostatic state 
slightly. This again results in an expansion of the speci-
men in order to release the excessive stresses.

4.3  Growth of a clamped tissue stripe

In the next example, we consider the volumetric growth pro-
cess within a tissue stripe that is clamped at both ends such 
that no stresses are induced at time t = 0 . Under these condi-
tions, the tissue stripe is expected to shrink, which induces a 
homeostatic stress state that is dominated by tension. Such 
effects have been shown experimentally e.g. by Ghazanfari 
et al. (2015) among others. As illustrated in Fig. 7, symmet-
ric properties are exploited such that only a quarter of the 
full specimen is used for the following simulations. The elas-
tic and growth-related material parameters applied in this 
example are chosen in such a way that the desired shrinkage 
of the specimen is achieved. These parameters are given in 
Table 1. For the spatial discretization, a standard linear (Q1) 
finite element formulation is adopted with various meshes 
containing 360 , 408 , 450 , 1000 and 3000 elements (see 
Fig. 8). Since the most pronounced stresses are expected to 
occur in the lower right corner of the symmetric specimen, 
the mesh is refined with a focus on this particular region.

When considering the reaction force Fx evaluated over 
time at z = 0 , Fig. 9 shows good convergence behaviour for 
increasing number of elements within the mesh. Similar 
results can be obtained when evaluating the reaction forces 
in y and z direction, respectively. Although the solution of a 
mesh containing 450 elements has already reached conver-
gence, for visualization purposes, the finest discretization 
containing 3000 elements is used in the following.

To show the capabilities of the newly introduced material 
model, we next compare its response to the growth behaviour 
of a well-established model for isotropic volumetric growth. 
For this, we adapted the model of Lubarda and Hoger (2002) 
such that it is capable of reaching a prescribed homeostatic 
state. Details about the evolution equations for this particular 

(b)(a)

Fig. 6  Evolution of Cauchy stress �zz and growth multiplier Δ�g 
during stepwise loading of block specimen with uz(t) . Both quanti-
ties are evaluated at point P1 (Fig.  3). Right: The stress response is 
always converging towards a homeostatic state. This state is slightly 

different, after coming out of the compressive regime. This can be 
explained by the accumulated internal pressures described by the 
energy �g . Left: Growth multiplier indicating that the specimen is 
either expanding or shrinking to reach homeostasis
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model are given in “Appendix 1.3”. Within this formulation, 
we use the material parameter Mcrit = 80 MPa to describe 
the homeostatic stress state that shall ultimately be reached. 
For the positive and negative growth velocities k+ = 0.1 
and k− = 0.1 are chosen, respectively. The upper and lower 
growth boundaries are set to �+ = 2.0 and �− = 0.25 , while 
the shape factors are given as �+ = 2 and �− = 3.

First of all it is important to notice that the given isotropic 
formulation shows severe stability problems for the exam-
ple at hand. More precisely, as soon as material parameters 
are chosen such that a similar homeostatic stress state shall 
be reached within the specimen, the simulation becomes 
unstable after a finite number of time steps and eventually 
breaks. When taking a closer look at the evolution of the 
growth process as it is shown for three distinct time steps in 
Fig. 10, it is obvious that the starting point of the instability 
can be located at the clamping of the tissue stripe. Due to the 
initial contraction of the overall tissue stripe, a multi-axial 
stress state is induced at the clamping. In this region, the 
stress state soon exceeds the desired homeostatic state which 
yields an expansion of the material in order to release exces-
sive stresses. While the newly derived growth model reduces 
this stress state by expanding anisotropically, the isotropic 
formulation seems not to be able to deal with this effect. This 
is due to the fact that an isotropic growth formulation can 
only predict expansion or shrinkage uniformly in all three 

spatial dimensions. Such a uniform expansion at the foot of 
the specimen results in a passive compression of the speci-
men’s middle part, reducing the overall stress within this 
region and therefore inducing further contraction. This again 
triggers an increasing expansion in the foot of the specimen. 
A vicious cycle is born, which eventually leads to the hour-
glass like shape of the specimen as it is shown in Fig. 10a. 
Ultimately, this leads to instabilities and a failing simulation 
at t = 93 . For sure, it is possible to reduce such unwanted 
behaviour by variation of the material parameters. Never-
theless, the general problem of a non-physical expansion 
in the foot area could not be cured with such an approach. 
This example shows clearly how restrictive and, therefore, 
unsuitable the assumption of isotropic growth is, even for a 
relatively simple structure as the one shown in this exam-
ple. Taking a closer look at the stress response of the newly 
derived model, one can observe the exceeding maximum 
principal Cauchy stresses �max located at the clamped foot 
of the specimen (see Fig. 11) being released due to the ani-
sotropic expansion process. This effect can also be observed 
in Fig. 9, where the reaction forces reach a maximum at time 
t = 100 and decrease afterwards to approach a converged 
state. Unfortunately, this effect also leads to a pronounced 
distortion of the associated elements within the corners of 
the clamped stripe. Figure 11 shows that this artefact is even 
noticeable for the finest mesh evaluated. Nevertheless, it is 

Fig. 7  Geometric model of 
clamped tissue stripe with thick-
ness of t = 2 mm . The overall 
structure is also supported in the 
x direction

(b)(a)
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important to emphasize that this effect so far does not have 
an influence on the stability of the given simulation. Due 
to the incompressible nature of the material, it is possible 
that such behaviour is also amplified by shear or volumetric 
locking effects and would not occur in such a pronounced 
manner if locking would not play a role. However, the influ-
ence of possible locking effects is out of scope for this work.

4.4  Comparison with experimental data

Next, we are comparing our newly derived model to experi-
mental data for the growth response of a clamped engineered 
tissue stripe. As an experimental reference, we are using the 
data published just recently in Eichinger et al. (2020), which 
was kindly provided to us by the authors. In this study, the 
authors used a cell seeded collagen gel to create the test 
specimens. For the experiment, those specimens are clamped 
tension-free at the ends and are cultivated for 27 h within a 
nutrient solution. After 17 h, a positive or negative perturba-
tion of the measured reaction force in longitudinal direction 
is applied. The displacement achieved by this perturbation is 
kept constant in the following course of the experiment. For 
our simulations, we used a geometric representation of the 
clamped tissue stripe that is similar to the example shown 
in Fig. 8 but has a width, height and thickness of 10 mm , 
60 mm and 2 mm . We again used only the symmetric part of 
the specimen in order to reduce computational effort. Since 
the microstructure of the collagen gel is somehow similar 
to polymeric materials, we decided to exchange the elas-
tic strain energy density �e in order to better capture the 
stress stiffening behaviour that can be observed within the 

Fig. 8  Mesh refinements for 
symmetric part of clamped tis-
sue stripe

(f) (g)

(b)(a) (c) (d) (d)

Fig. 9  Reaction force of a clamped tissue stripe evaluated at z = 0 for 
various mesh sizes. Mesh convergence can be observed nicely
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experimental data. Here we used the well-known formula-
tion of Arruda and Boyce (1993) (see “Appendix 1.5” for 
details on the form of the energy).

Figure 12 shows a comparison of the measured nor-
malized reaction force in longitudinal direction versus the 
results gained from our simulation. A perturbation of ±10% 
of the homeostatic reaction force at time t = 17h is shown 
in Fig. 12a, b, respectively. Here, it is clearly visible that the 
simulation is close to the experimental results both before 
and after perturbation and is mostly within the error tol-
erance. In particular, it can be observed in 12a that both 
the experiment and the simulation strive towards a new, 
somewhat higher homeostatic state after the perturbation. 
In contrast, the homeostatic state in Fig. 12b settles back 
in approximately the same range as before, which also fits 
the behaviour observed in the experiment. Figure 12c, d 
shows the results for a perturbation of ±20% . Here, with 
the material data we use, the results of the experiment are 
also very well matched up to the point of perturbation. Only 
after that the simulation results do deviate quantitatively 
from the measured data. Here, it is particularly noticeable 
that a higher gradient is achieved in the result curve of the 
experiment directly after the perturbation. This leads to a 
faster convergence towards the new homeostatic state. This 

deviation could possibly be related to the fact that we assume 
a constant growth rate parameter � in our model. However, 
it cannot be ruled out that this parameter itself should be 
dependent on other constitutive variables such as the driv-
ing force (� − �) . Overall, however, it can be stated that the 
simulation results represent the experimental data very well 
in a qualitative sense.

5  Conclusion and outlook

In this paper, we developed a novel model for the descrip-
tion of stress-driven volumetric growth. This approach 
is based on the well-established multiplicative split of 
the deformation gradient into an elastic and a growth 
related part. Furthermore, we made the assumption that 
the given material adapts to its surroundings such that 
a certain homeostatic stress state is induced within the 
material. For this homeostatic state, we assume that it can 
be described in terms of a scalar valued stress like quan-
tity, which led us to the definition of a growth potential. 
With this idea in hand, we defined an evolution law for the 
growth related right Cauchy–Green tensor by means of a 
time-dependent associative rule. This approach is similar 

Fig. 10  Comparison of an 
isotropic growth model with 
the newly introduced formula-
tion. The response of a clamped 
tissue stripe differs significantly 
in both, shape as well as the dis-
played stress response (Cauchy 
stresses �zz)

(a) (b)

Fig. 11  Pronounced distortion 
of elements at the clamped 
corner due to growth-related 
reduction of exceeding stresses. 
Maximum principal Cauchy 
stresses are plotted for four dif-
ferent snapshots in time
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but not identical to those often used in the field of finite 
visco-plasticity. To overcome the issue of infinite growth 
response, we made use of a similar idea as Braeu et al. 
(2019) and introduced an additional energy contribution 
that subsequently counteracts the growth process. In con-
trast to the latter approach, we use the inelastic part of the 
volume change, which leads us to a formulation similar 
to that of kinematic hardening. With these basic model-
ling assumptions, we were able to show that this approach 
is capable of simulating both, isotropic and anisotropic 
growth behaviour within one singular formulation. The 
distinction between isotropic and anisotropic response 
is merely a question of the applied boundary conditions 
and not a-priori prescribed by the structure of the growth 
tensor. The advantages of this approach have been shown 
by comparing it to a standard formulation of isotropic 
growth. In the authors’ opinion, the results of the evalu-
ations shown within this publication are very promising. 
We furthermore were able to show that our simulations are 
able to reproduce experimental results published in Eich-
inger et al. (2020) to a reasonable extend. Since the overall 
framework of the model is quiet general, it seems possible 
to easily adapt the growth behaviour to fit various experi-
ments. For this, the choice of alternative descriptions for 

the growth potential as well as the evolution equation for 
the growth multiplier could be investigated. To this point, 
our formulation makes use of a purely isotropic elastic 
ground model, i.e. Neo-Hooke. Since biological tissue by 
its very own nature is composed of various components, 
such as collagen and elastin, the assumption of material 
isotropy is not ideal. Therefore, we suggest that the given 
elastic ground model could be extended to also capture 
the anisotropic nature of the underlying material response 
properly. This could be achieved by introducing an addi-
tional dependency within the Helmholtz free energy that is 
defined by means of structural tensors describing e.g. the 
direction of collagen fibres. Furthermore, the investigation 
of locking effects triggered by the nearly incompressible 
material behaviour of biological tissues might also be of 
interest. Since standard low-order finite element formula-
tions are particularly vulnerable in this area, the finite ele-
ment implementation should therefore be considered more 
closely. Investigating the influence of reduced integration 
finite elements seems to be of high benefit. Especially the 
element formulations Q1SP (see Reese 2005) or Q1STx 
(see Schwarze and Reese 2011; Barfusz et al. 2021) could 
improve the computation in terms of computational accu-
racy as well as computational speed.

Fig. 12  Comparison of simula-
tion results with experimental 
data of an initially tension-free 
clamped tissue stripe that is 
perturbed at time t = 17h with 
±10% and ±20% of the homeo-
static reaction force measured 
at this point. Experimental data 
are plotted as the mean value of 
all experiments with error bars 
denoting the SEM [taken with 
permission from Eichinger et al. 
(2020)]

(b)(a)

(c) (d)
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Appendix 1

Appendix 1.1: Derivation of stresses

To determine the second Piola–Kirchhoff stress tensor, we 
start with the isothermal Clausius–Duhem inequality as 
given in Equation (7), i.e.

When inserting the identities given in Eqs. (8) and (9) 
into the equation above, one can find

By reformulating the second term in this equation such 
that

the Clausius–Duhem inequality becomes

Following the standard argumentation of Coleman and 
Noll (1963) and assuming that the stress response shall be 
independent of the rate of � , we find the second Piola–Kirch-
hoff stress tensor to be defined as

Appendix 1.2: Invariants of Mandel stress tensor 
and Kirchhoff stress tensor

The Kirchhoff stress tensor is defined as

Making use of the identity �e�g = �−T
g
� and using a push 

forward operation on the second Piola–Kirchhoff stress ten-
sor � , the definition of the Mandel stress tensor can be 
rewritten as

� ∶
1

2
�̇ −

(
𝜕𝜓e

𝜕�e

∶ �̇e +
𝜕𝜓g

𝜕�g
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+ S0 ≥ 0.
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2
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(
�g�g + �g�

T
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)
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(
�T
g
�e + �e�g

)
−
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��e
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.

� = ���T .

� = �e�g��
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= �−T
g
���T

g
.

With this at hand, it is easy to show that the main invari-
ants J� with � ∈ 1, 2, 3 are identical for both, the Mandel and 
the Kirchhoff stress tensor, i.e.

Appendix 1.3: Isotropic growth model 
for comparison

The isotropic growth model used for comparison with the 
anisotropic growth model developed herein is based on the 
formulation of Lubarda and Hoger (2002). It uses the multi-

plicative split of the deformation gradient, i.e.

where the growth-related deformation gradient is defined as

with � describing the growth induced stretch. The evolu-
tion equation of this particular model is defined in terms 
of the Mandel stress tensor � as well as a set of material 
parameters, i.e.

Here, the driving force � is defined as

where Mcrit describes the desired homeostatic stress state 
that should be reached by the material. Furthermore, the 
growth velocity is described by

J� = tr(��)

= tr
((

�−T
g
���T

g

)�)

= tr
(
(��)�

)

= tr
((
���T

)�)
= tr(��).

� = �e�g,

�g = ��,

�̇� ∶= k(𝜗)𝜙(�).

� ∶= tr� −Mcrit,

k(𝜗) ∶=

⎧⎪⎨⎪⎩

k+
�

𝜗+−𝜗

𝜗+−1

�𝛾+

if 𝜙 > 0

k−
�

𝜗−𝜗−

1−𝜗−

�𝛾−

if 𝜙 < 0,
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with k+ , k− denote the expansion and contraction speed, 
respectively. To restrict the growth process, the parameters 
�+ and �− are introduced as upper and lower thresholds of 
the growth induced stretch. Finally, two shape factors for the 
evolution are described by �+ and �− . For further information 
on this particular model, the reader is kindly referred to the 
original publication.

Appendix 1.4: Transformation of invariants 
from intermediate to reference configuration

Reformulating the definition of the referential driving force, 
i.e.

directly yields the new definition for the volumetric invari-
ant, i.e.

Making use of this relation, the deviatoric part of the driv-
ing force is given by

Utilizing the properties of the trace operator, the deviatoric 
invariant can be rewritten as

Appendix 1.5: Arruda–Boyce model

By introducing the volumetric deviatoric split of the elastic 
right Cauchy–Green tensor, i.e. �e = J

2

3

e �̄e , one can describe 
the elastic energy of the well-known hyperelastic material 
model of Arruda and Boyce (1993) as

� − � = �g��
T
g
,

I1 = tr(� − �)

= tr
(
�g��

T
g

)

= tr
(
��g

)
.
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T
g
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T
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1

3
tr
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g
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−1
g

−
1

3
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1

3
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(
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(
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�−1
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J2 =
1

2
tr
(
dev

(
��g

)2)
.

𝜓 = U(Je) +W(�̄e)

=
𝜅

4

[
J2
e
− 1 − 2ln

(
Je
)]

+ 𝜇

K∑
k=1

Ck

Nk−1

[
Īk
1
− 3k

]
.

Here, � , � and N  are material parameters and 
Ck =

[
1

2
,

1

20
,

11

1050
,

19

7000
,

519

673750

]
 are coefficients resulting from 

an approximation of the inverse Langevin function. Further-
more, Ī1 = tr

(
�̄e

)
 describes the first invariant of the devia-

toric part of �e . For further information on this model, the 
reader is kindly referred to the comprehensive overview of 
Steinmann et al. (2012)
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