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The placenta is a fetal-derived organ whose function is crucial for both maternal and fetal
health. The human placenta contains a population of fetal macrophages termed Hofbauer
cells. These macrophages play diverse roles, aiding in placental development, function
and defence. The outer layer of the human placenta is formed by syncytiotrophoblast
cells, that fuse to form the syncytium. Adhered to the syncytium at sites of damage, on the
maternal side of the placenta, is a population of macrophages termed placenta associated
maternal macrophages (PAMM1a). Here we discuss recent developments that have led to
renewed insight into our understanding of the ontogeny, phenotype and function of
placental macrophages. Finally, we discuss how the application of new technologies
within placental research are helping us to further understand these cells.
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INTRODUCTION

The placenta is the first and largest organ the fetus makes. It is the interface between the mother and
fetus, and a normal functioning placenta is crucial for successful pregnancy. The placenta carries out
a range of functions, including mediating the exchange of gases, nutrients and waste between the
fetus and mother. It is also a highly efficient barrier, preventing the transfer of many harmful
pathogens to the fetus. Hofbauer cells (HBC) are a population of tissue-resident macrophages found
within human placental villi. These cells appear very early during development and have been
identified at day 18 post-conception (1, 2). HBC are the only significant immune cell population
found within the normal healthy human placenta. In addition to fetally-derived HBC, a population
of placenta associated maternal macrophages (PAMM1a) have recently been characterized (3) that
can be found adhered to the surface of placental villi (Figure 1).

The properties of macrophages are determined by local physical and trophic signalling cues in
their given tissue niche, resulting in the expression of specialized transcriptional programs (4, 5) and
functional properties. Accordingly, both HBC and PAMM are thought to play niche-specific roles in
order to promote normal placental function and development.

A select group of pathogens are capable of crossing the placenta and causing congenital disease.
These pathogens are referred to as TORCH: Toxoplasma gondii, Other[(HIV, Listeria
monocytogenes, Candida Albicans, varicella zoster virus, amongst others including new emerging
pathogens such as the Zika virus (ZIKV)], Rubella, Cytomegalovirus and Herpes simplex viruses.
When maternal infection with a TORCH agent occurs during pregnancy the transplacental
infections rates are typically low, for example in utero HIV and CMV transmission rates are 7%
(6, 7) and 0.5-2% (8) respectively. The limited repertoire of pathogens capable of transplacental
infection and their low transmission rates suggest that the placenta has multiple mechanisms in
place to prevent infection. As the only immune cells found within the placental villi, HBC are likely
to have crucial functions in the prevention of transplacental infections. PAMM1a also may act to
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prevent microbe transmission at sites of damage to the
syncytium, in addition they could provide a route of infection
for microbes that survive and replicate in macrophages.
However, these roles have not yet been fully explored, and it is
unclear as to why HBC and PAMM1a are capable of preventing
the transmission of some pathogens but are permissive to others.

In this review we will discuss the ontogeny, phenotype and
properties of both HBC and PAMM1a, consider their roles in
homeostasis to promote normal placental function throughout
gestation, and their contributions to the defense against, or
susceptibility to a range of pathogens. Finally, we will discuss
Frontiers in Immunology | www.frontiersin.org 2
resources and experimental models that are available for the
further study of HBC and PAMM1a.
HBC

The Phenotype of First Trimester
Hofbauer Cells
The villous core of the human placenta consists of connective
cells embedded within an extracellular matrix. Mesenchymal
cells, or undifferentiated stromal cells, are the principal cell type
A B

D

C

FIGURE 1 | Human placental macrophages. (A) Illustration of the human placenta. (B) Hematoxylin and eosin stain of first trimester placental villi. (C) Cross-section
diagram of first trimester placental villi indicating the localization of placental macrophages. (D) Surface markers of monocyte and macrophage populations found in
first trimester placental digests. Hofbauer cells (HBC), PAMM1a (placental associated maternal macrophages).
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until the end of the second month of gestation, with fibroblasts
starting to appear from approximately the third month of
gestation (9). The long thin cytoplasmic processes of first
trimester mesenchymal cells connect with neighboring cells to
form a series of stromal channels (9, 10). These channels are
relatively large, 20-50 mm in diameter, and are thought to aid in
the diffusion of nutrients through the stroma. Within these first
trimester stromal channels, HBC can be found. Their
pleomorphic morphology reflects their dynamic migratory
properties, where electron microscopy imaging of first
trimester placenta have captured HBC migrating from one
channel to the next, to the steady-state (11).

Phenotypically, HBC have been characterized as CD14+

CD68+ cells that express a variety of macrophage markers
including scavenger receptor CD163, mannose receptor
CD206, Fc receptor CD64 and folate receptor 2 (FOLR2) (3).
Historically, microscopy analysis has demonstrated that HLA-
DR is not expressed in the first trimester villi (12). However,
analysis of placental digests yielded macrophages that are
heterogenous for HLA-DR (13), leading to confusion regarding
the true phenotype of HBC. A recent study using HLA allotype
antibodies to accurately distinguish fetal and maternal cells from
placental digests revealed that first trimester HBC do not express
HLA-DR. CD14+ cells expressing HLA-DR from first trimester
digests were found to be maternal in origin (3). The lack of HLA-
DR expression by first trimester HBC is unusual, as it is typically
described as a canonical marker of human macrophage identity
and its expression is reliably observed in adult and 2nd trimester
fetal macrophages across tissues (14). This could be attributed to
their ontogeny (discussed below) or to the unique environment
of the first trimester placenta, where T cell populations are not
found in the steady-state.
First Trimester HBC Ontogeny
The first wave of embryonic hematopoiesis is called primitive
hematopoiesis and in the mouse it occurs solely in the yolk sac.
Primitive hematopoiesis gives rise to erythrocytes, megakaryocytes
and macrophages. These macrophages are commonly termed
primitive macrophages and are distinct to those generated through
definitive hematopoiesis as they are generated independently of
monocytes. That is primitive macrophages arise directly from
primitive HSCs, also known as erythro-myeloid progenitors (15).
Murine fate-mapping models have demonstrated that yolk sac
derived primitive macrophages rapidly seed all embryonic tissues
and are crucial for embryonic development (15). When definitive
hematopoietic stemcells emerge subsequently indifferent anatomical
sites, such as the aorta-gonad mesonephros (AGM), fetal liver and
finally the bone marrow, monocytes are generated that can enter
tissues to differentiate into macrophages (16–18). Hence, by the end
of gestation the ontogeny of macrophages across tissues display
variable contributions from primitive and definitive hematopoietic
precursors, as has been extensively discussed elsewhere (15).

As HBC have been observed from day 18 post-conception, it
is predicted that first trimester HBC are derived from primitive
HSCs, as definitive hematopoiesis has not begun at this point of
Frontiers in Immunology | www.frontiersin.org 3
gestation (19, 20). This is supported by analysis of scRNAseq
data which demonstrated that first trimester HBC are a
homogenous population, and fetal monocytes are not found in
first trimester placenta data sets (3). Additionally, HBC and
primitive yolk sac macrophages have highly correlated gene
expression profiles and phenotypes, both expressing FOLR2
and lacking HLA-DR (3).

The origin of human HBC however remains unresolved.
There are three potential sources of origin of first trimester
HBC: 1) HBC are generated in the yolk sac and migrate to the
placenta, 2) HBC arise from precursors within the placenta, 3) a
combination of both. Unfortunately, murine studies cannot help
resolve this question as discussed further below. However, a
combination of techniques including immunohistochemistry
(21), analysis of somatic mutation acquisition using whole-
genome sequencing (22) and colony forming assays (21), have
helped elucidate the origin of human HBC. Studies using these
techniques have demonstrated that both the human placenta
(22) and yolk sac (23) arise from the extra-embryonic mesoderm,
which in turn is derived from the hypoblast. Macrophages have
been found to appear simultaneously within both organs at 16-18
days post conception (pp.). Finally, putative macrophage
precursors in the pre-circulation placenta have been identified
(21). These factors combined strongly suggests that HBC are
generated de novo in human placental villi.
The Functional Properties of First
Trimester HBC
The functional properties of HBC have been the subject of great
interest as they are the only immune cells found within the stromal
core offirst trimester placenta and are likely to display diverse roles
(Figure 2). Through their close association with endothelial
progenitors and primitive vessels (24), and secretion of factors
such as vascular endothelial growth factor (VEGF) (3, 25), sprouty
proteins (26) and osteopontin (3), HBC are thought to aid in early
placental vasculogenesis and angiogenesis, as well as regulating
branching morphogenesis of the villous tree. HBC also secrete
tissue inhibitor of metalloproteinase (TIMP-1) and matrix
metalloproteinase (MMP-9), factors involved in remodeling of
placental vessels (27, 28). A greater understanding of the
interaction potential of HBC with other placental cells can be
gained by combining HBC protein secretion data with scRNAseq
gene expression data for cognate receptors. This analysis reveals
that placental endothelial cells, through the expression of kinase
insert domain receptor (KDR) and neuropilin 1 (NRP1) are the
main target of HBC secreted VEGF-A. In addition, endothelial cell
expression of CD44 and integrin complexes make them the likely
responders to osteopontin (OPN) secreted by HBC (3). Indeed
these interactions have been shown to be important for the
endothelial biology and angiogenesis (29, 30). Additionally, HBC
are predicted to signal to placental fibroblasts via IL-6, and to
villous cytotrophoblast via both OPN and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (3). Hence it
can be seen through a range of factors they secrete that HBC
mediate the biology of other placental cell types, and are therefore
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likely to play a critical role in promoting and regulating placental
vascularization and growth.

HBC are also thought to aid in placental development through
the efficient clearance of debris, a process known as efferocytosis, as
the organ undergoes rapid growth. This is illustrated through their
high expression of a range of scavenger receptors including CD163,
CD68, AXL and TIM-1 (3, 31). AXL is a member of the TAM
(Tyro3, Axl and Mertk) receptor tyrosine kinase family that
recognizes phosphotidylserine (PtdSer) on the surface of
apoptotic cells. TAM receptors are important as they inhibit
inflammation during apoptotic cell efferocytosis via a negative
feedback loop involving activation of suppressor of cytokine
signaling-1 and -3 that inhibit cytokine and Toll-like receptor
(TLR) signalling pathways (32). In line with their high expression
of phagocytic receptors, HBC display elevated phagocytic capacity
in comparison with PAMM1a (3). In addition to the clearance of
debris, the enhanced phagocytic capacity of HBC is also likely to be
important for the clearance of harmful molecules that can enter the
placenta, such as immune-complexes and black carbon particles
(combustion-derived particulate matter) (33).
Frontiers in Immunology | www.frontiersin.org 4
The demonstration that HBC cluster at sites of fibrinoid
necrosis in vivo (12) and also to sites of villous damage in vitro
(34), indicates that the migratory capacity of first trimester HBC
is important for placental function, repair and defense. TGFb1
was found to be highly expressed at sites of tissue injury and
recruited HBC, suggesting it is involved in the placental wound
repair process (34). Hence, it can be seen that HBC are migratory
cells that are well equipped for the effective clearance of apoptotic
cells and potentially harmful molecules that may enter the
placenta without triggering inflammation, key processes for the
maintenance of homeostasis within the villous stroma.
The Impact Of The Changing Needs of the
Placenta on HBC Properties
The human placenta is a highly dynamic organ throughout
pregnancy, growing until birth and meeting the changing
needs of the rapidly developing fetus. By full-term the villous
cytotrophoblast layer becomes discontinuous and covers only
25% of the villous surface, whereby only a thin syncytial layer
FIGURE 2 | Human placental macrophages have diverse functional properties. Diagram demonstrating the diverse roles that placenta associated maternal
macrophages (PAMM1a) and Hofbauer cells (HBC) are thought to play in the steady-state. Vasculature endothelial growth factor, (VEGF); fibroblast growth factor,
(FGF); osteopontin, (OPN); matrix metalloprotease, (MMP); tissue inhibitor of metalloproteinase, (TIMP); Max-like protein X, (MLX); liver X receptor, (LXR); peroxisome
proliferator-activated receptor, (PPAR); endothelial growth factor receptor, (EGFR); macrophage migration inhibitory factor, (MIF); interleukin, (IL).
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separates most of the villous core from maternal blood (9). The
loose, open, stromal channel structures that are observed in the
first trimester placenta are replaced by a more compact and
denser stroma, with the placental blood vessels growing to take
up the majority of space within the villi. It is unclear as to how
these changes in the placental microenvironment impact on
HBC properties, as relatively few studies have compared first
trimester with full-term HBC.

When definitive hematopoiesis begins in other anatomical sites,
it has beenproposed that other immune cells, suchasdendritic cells,
may enter the placental villi. Fetal blood flow to the placenta
becomes fully established from the 10th week of gestation, which
could permit the influx of dendritic cells from the fetal circulation.
However, very lownumbersofdendritic cells havebeen identified in
placental scRNAseq datasets (3, 35) and these cells in first trimester
samples are likely derived from maternal blood contamination, as
indicatedby the expression ofX-chromosome specificXIST inmale
fetal donor samples (3). Convincing localization data has not been
provided to demonstrate dendritic cells leave the fetal blood to enter
the placental villi at later time points during gestation. Given this,
the rarity of T cells (36) and the lack of lymphatic vessels in the
placenta, it is unlikely that dendritic cells play a role in placental
function in health.

In contrast, fetal blood monocytes are thought to enter the
placental villi when definitive hematopoiesis begins. HBC have
been shown to upregulate HLA-DR expression by full-term (12).
The elevated expression of HLA-DR by HBC may be due to fetal
blood monocyte-derived macrophages appearing in the placenta
and replacing the initial population of HBC derived from
primitive hematopoiesis; however this remains unclear. Further
changes that HBC undergo during gestation and how these
changes aid in placental function remain undefined.
The Role of HBC in
Transplacental Infection
As HBC are the only immune cells located within the placental
villi, they are expected to play a major role in helping to defend
the fetus from infection, should a microbe cross the outer
syncytium layer. A shared characteristic of many TORCH
agents is the ability to survive and replicate in macrophages.
Given this, it is surprising that there are relatively few studies that
have analysed the interaction of HBC with microbes and sought
to understand their role in transplacental infection. HBC must
strike a balance between adequately protecting the placenta from
infection and generating potentially damaging inflammatory
responses, which have been implicated in causing miscarriages
(37). HBC are often described as tolerogenic cells, however, the
response they initiate is highly dependent on signalling cues. For
example, in vitro assays have demonstrated that HBC secrete
pro-inflammatory cytokines in response to toll-like receptor
(TLR) stimulation. In comparison with PAMM1a, HBC have a
potent response to TLR-6 stimulation, reflective of their high
expression of this receptor, secreting high amounts of pro-
inflammatory mediators such as GM-CSF, IL-6, IL-8 and CCL-
3. HBC have potent microbicidal effector functions, with the
Frontiers in Immunology | www.frontiersin.org 5
capacity to produce high amounts of reactive oxygen species and
anti-microbial enzymes such as cathepsin B (3). In addition, the
containment of microbes by HBC in tetraspanin-positive
compartments that are accessible to neutralizing maternal-
derived antibodies, is thought to be important in preventing
the transmission of microbes to the fetal blood stream (38).

Of all the TORCH agents, the interaction of HBC with HIV
has been studied to the greatest extent. HBC express the HIV
entry receptors CD4 (39), CCR5, CXCR4 and DC-SIGN (7) and
are susceptible to HIV infection. During pregnancy the chance of
HIV crossing the placenta and infecting the fetus, when the
mother has no protective antiretroviral therapy, is ~20% (40). It
has been proposed that the unique properties of HBC play an
important role in sequestrating and neutralizing HIV. For
example, in vitro assays have demonstrated that HBC can limit
HIV-1 replication by induction of immunoregulatory cytokines
such as IL-10 (7). Also, the sequestration of HIV in acidic
compartments by HBC aids in HIV neutralization (38), as HIV
is sensitive to low pH and proteases (41). Cases of HIV infected
placenta are not associated with inflammation of placenta,
termed villitis, indicating that HBC act to regulate placental
HIV infection without triggering a pro-inflammatory response
which could be detrimental to the pregnancy (42).

The response of HBC towards Zika virus has also been studied.
Zika virus (ZIKV) is an arbovirus of the Flavivirus genus. Few cases
of ZIKV infectionswere reported in humans before 2007.However,
this changed with the outbreaks in Micronesia, French Polynesia
and Brazil and the Americas from 2007 - 2015. In these naive
populations congenital ZIKV infection, especially during early
pregnancy, caused a variable syndrome of severe malformations
in the fetus, termed congenital Zika syndrome (CZS), that can
include microcephaly at delivery or postnatally, reduction in
cerebral volume, ventriculomegaly, subcortical calcifications,
ocular defects and neuro-muscular abnormalities (43). HBC
highly express the ZIKV entry receptors AXL and TIM1 (3, 44).
A combination of ex vivo (44) and in vitro (45) assays have
demonstrated that HBC can be infected with ZIKV and support
its replication. Once infected, HBCmay then disseminate the virus
to fetal blood vessels. ZIKV-infected placentas exhibit hyperplasia
ofHBC, potentially amplifying virusproductionby these cells in the
villous core, and lack classical signs of inflammation, necrosis or
scarring in the placenta. This is striking considering that the virus
can cause necroinflammatory reactions when it reaches the fetal
brain. This suggests that ZIKV has an ability to evade a pro-
inflammatory response that is specific to the placenta (42). In
contrast to these studies, HBC isolated from full-term placenta
(>37 weeks GA) infected with ZIKV in vitro do adopt a mildly
activated phenotype, increasing their expression of activation
markers CD80 and CD86 and secretion of pro-inflammatory
mediators IFNa, IL-6, MCP-1 and IP-10 (45). The differences in
findingsbetween these studies suggest that signalling cues specific to
the placental niche may act to prevent HBC from adopting a pro-
inflammatory phenotype in response to ZIKV infection, and these
are lost during in vitro assays. Hence, it is of interest to further
explore how other placental cells, such as trophoblast cells and
fibroblasts regulate HBC biology.
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Further developing our understanding of the interaction of
HBC with infectious microbes will help us to understand how
certain pathogens, such as cytomegalovirus, cause placental
malfunction, while others do not.
PAMM

Diversity and Phenotype of First
Trimester PAMM
Maternal leukocytes were first observed on the surface of the
placenta by electron microscopy (46, 47), however the phenotype
and properties of these cells remained unexplored until recently.
Placenta-associated maternal monocytes/macrophages (PAMM)
adherent to the placental surface were first characterized in-depth
using anti-HLA allotype antibodies in flow cytometric panels and
female-specific genes, such as XIST, in scRNAseq datasets derived
from male fetus placental digests (3). Further characterization of
PAMM by flow cytometry, led to the development of a flow
cytometric gating strategy that allowed the distinction of PAMM
subsets found in the intervillous space. These maternal subests are
HLA-DR+FOLR2-CD9-/intCCR2+ monocytes and a population of
HLA-DR+FOLR2-CD9+CCR2int/- macrophages termed PAMM1a.
The PAMM subsets were consistently found in first trimester
placental digests (7 – 11th week of gestation) (3). While
PAMM1a-like cells have been observed on full-term placental villi
(46), they have yet to be fully characterized.
PAMM Recruitment and Differentiation
As the placenta is a transient organ,PAMM1amustbederived from
maternal blood monocytes that are found in the intervillous space,
ultimatelyoriginating fromthebonemarrow. Fromthe10thweekof
gestationmaternal blood fills the intervillous space due tomaternal
spiral artery remodeling (9), providing a source of monocytes that
could in turn differentiate intoPAMM1a.However, PAMM1ahave
been observed in placental digests fromas early as 7wk EGA, before
this process becomes fully established. The early appearance of
PAMM1a may be due to a low level of maternal blood flow to the
intervillous space prior to the 10th week of gestation or due to
monocytesmigrating fromthedecidua,whichhasbeen shown tobe
enriched with monocytes during the first trimester of pregnancy
(35, 48). Explant culture assays have revealed that placental villi
constitutively secrete a diverse range of cytokines and chemokines
(49, 50).Macrophagemigration inhibitory factor (MIF) is amongst
the most highly expressed cytokine in both of these studies, which
has been shown to be a potent chemoattractant of monocytes (51–
53). Although the secretion of MIF could be an artefact of the non-
physiological conditions of explant cultures, it has been widely
reported as a factor highly expressed in the first trimester of human
pregnancy (54, 55).

Once monocytes adhere to the placental surface they can
differentiate into PAMM1a (macrophages). scRNAseq analysis
revealed a continuous transcriptomic differentiation trajectory
from intervillous maternal monocytes to PAMM1a, resulting in
Frontiers in Immunology | www.frontiersin.org 6
the upregulation of a transcriptional program and phenotype
specific to the placental surface (3). The precise signalling cues
from the placenta that govern this process are yet to be fully
elucidated. Notably, the syncytiotrophoblast which forms the
outer layer of placental villi have been reported to secrete M-CSF
(49) a critical mediator of the monocyte-to-macrophage transition.
The Functional Properties of First
Trimester PAMM
The observation that PAMM1a are embedded onto the synctiumof
placentas from healthy pregnancies suggests that these cells have
important roles in healthy placental function, including the repair
and development of the placenta (Figure 2). The syncytium always
contains sites of damage and fibrin deposition during healthy
pregnancy (47). This poses a significant risk to the fetus during
pregnancy, as the syncytiumformsahighly effectivephysical barrier
to infection and breaks in its surface may permit the passage of
opportunistic infections from mother to child. PAMM1a were
found to be localized to sites of damage on the surface of the first
trimesterplacenta andwere found to secretematrixmetalloprotease
(MMP)-9 and fibronectin, both critical regulators of tissue repair.
This suggests that PAMM1a play a role in the maintenance and
repair of the placenta during healthy pregnancy. Furthermore,
PAMM1a are loaded with lipid droplets (3) and highly express
the transcription factors peroxisomeproliferator-activated receptor
(PPAR)g and liver X receptor (LXR)a that are associated with lipid
metabolism and storage [determined through analysis of whole-
genome sequencing data, deposited at ArrayExpress E-MTAB-
6701 (35)]. Both of these are hallmarks of macrophages that are
engulfing cellular debris and apoptotic cells via phagocytosis (56–
58). Cell-cell communication network analysis also revealed that
PAMM1a might signal to villous cytotrophoblast and
syncytiotrophoblast in an EGFR-dependent fashion, through the
secretion of amphiregulin (AREG), epiregulin (EREG) and
heparin-binding EGF-like growth factor (HBEGF) [determined
through analysis of whole-genome sequencing data, deposited at
ArrayExpress E-MTAB-6701 (35)]. These factors are known to be
important in driving trophoblast proliferation and differentiation
(59–64). Therefore, PAMM1a are likely driving both the repair and
regeneration of the placental surface in the first trimester of
human pregnancy.

Interestingly, the transcriptional program upregulated in
PAMM1a upon differentiation showed significant overlap with
gene signatures from other recently described macrophages in
various disease states, including adipose tissue during obesity
(65), the liver during metabolic-associated fatty liver disease
(MAFLD) (66, 67) and cirrhotic fibrosis (68), and atherosclerotic
plaques (69). All of these populations are locally derived from
monocytes upon the onset of disease, and their presence across
tissues suggest a conservedmacrophage transcriptional program in
response to these fatty or scar-tissue related diseases, including the
following genes; SPP1, FABP5,TREM2,APOC1,GPNMB,LGALS3,
CD9, LPL, LIPA, APOE, LGALS1, LSP1, PLIN2, SDS, MATK,
PPARG, NR1H3. Despite adopting this conserved transcriptional
program, PAMM1a are unique among this group of macrophages
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as they are the only ones to arise in a healthy tissue. This has
interesting implications for our understanding of macrophages in
these states, as some of the features that are negatively attributed
with disease, are actually important for tissue repair and function.
Hence, PAMM1a provide valuable insight into the mechanisms
thatmacrophagesuse to repair tissues inhealth and the steady-state.
Further comparison of PAMM1a with macrophages found in
diseased tissues will aid in the development of our understanding
of how repair processes can, in certain circumstances, lead
to disease.
The Role of PAMM in Transplacental
Infection and Intervillositis
The localization of PAMM1a at sites of damage on the syncytium
makes them ideal candidates for the defense of the placenta
against infections. In line with this, PAMM1a have been shown
to respond potently to TLR stimulation (3). The specificity of
responses to inflammatory challenges by PAMM1a is
complementary and non-redundant with those of HBC. HBC
were found to be highly responsive to TLR6 stimulation, but not
TLR7 stimulation, but the inverse was found for PAMM1a. This
suggests that HBC and PAMMmight act cooperatively to defend
the placenta from bacteria and single-stranded RNA viruses.

The activation of PAMM1a however, can also potentially
contribute to disease. For example, inflammation of the
intervillous space, known as intervillositis, is defined as a diffuse
infiltration of mononuclear cells (lymphocytes and monocytes) of
maternal origin into the intervillous space of the placenta. This can
result in intrauterine growth restriction which can lead to
miscarriage or stillbirth. Maternal infection is the most common
cause of intervillositis, althoughcasesofunknownetiologyhavealso
been described (70). Intervillositis is commonly seen in malaria
infections, where increased fibrin deposition and prominent
syncytial knots are frequently observed. Maternal monocytes and
macrophages are the most abundant population of the
inflammatory infiltrate and may prolong inflammation in the
intervillous space, negatively impacting on pregnancy (71).
The properties of trophoblast cells also change in intervillositis,
such as the upregulationof intercellular adhesionmolecule (ICAM)
expression (72), which could in turn lead to increased PAMM1a
adhesion through lymphocyte function-associated antigen
(LFA)-1 expression.

PAMM1amay also provideopportunistic pathogenswith amode
of entry into the placenta. Syncytiotrophoblast cells are resistant to
infectionwithmanyTORCHagents and it remains unclear as to how
various microbes, such as HIV, cross the syncytium to infect the
placenta. It has been proposed that infected circulating leukocytes
may adhere and fuse to the syncytium, resulting in a route of
pathogen transmission. This may occur through syncytin, the
envelope glycoprotein of human endogenous retrovirus family W1
expressed by trophoblast cells, and the syncytin receptorASCT2, that
is expressed by some immune cells, such as T cells. It was recently
found that HIV infected T cells, fuse with trophoblast cells and
thereby transmit the virus to trophoblast cells (73). While it remains
unclear as to whether PAMM1a express ASCT2, given that they are
Frontiers in Immunology | www.frontiersin.org 7
known to interact with syncytiotrophoblast cells it can be expected
that if infected PAMM1a cells adhere to the placenta they can also
contribute to transplacental infection.

Hence, it can be seen that while PAMM1a play an important
role in mediating placental biology in health, they may also
contribute to disease by driving inflammation and providing a
route of entry for microbes.
CHALLENGES AND EXPERIMENTAL
MODELS FOR THE FUTURE STUDY OF
PLACENTAL MACROPHAGES

Across species placentas vary in structure, cellular subtypes and the
extent to which the placenta mediates fetal-maternal exchange (74).
The structure of the murine placenta, for example, is similar to the
human as it is discoid in shape and hemochorial, meaning the fetal
trophoblast cells are directly bathed in maternal blood (75)
(Figure 3). However, there are a number of differences between the
murine and human placenta, that are excellently reviewed elsewhere
(76). Of relevance here are differences between murine and human
placental macrophages. Murine placental macrophages have been
proposed to be analogous to human HBC, hence they have been
termedHBC-like cells (77).However,murine placentalmacrophages
that have been characterized thus far are not like human HBC in
terms of ontogeny and localization. Human HBC first appear at day
18 post conception, when primitive hematopoiesis is still ongoing. In
contrast, murine placental macrophages that have been identified,
emerge from the placental vasculature at E10 HSC (78), coinciding
with when definitive hematopoiesis has also begun in the murine
AGM. The timing of their appearance suggests that human and
murine fetal placental macrophages are derived from distinct waves
of hematopoiesis, however, this has yet to be confirmed via fate
mapping ofmurine placentalmacrophages. That is, humanHBC are
derived fromprimitiveHSCwhilemurine labyrinthmacrophages are
derived from definitive HSC. In terms of localization, the murine
placental labyrinth has a greatly reduced to no interstitial space
between the trophoblast layers and fetal endothelial cells in
comparison with the human placenta (Figure 3). Murine labyrinth
macrophages are primarily located within placental blood vessels
(78). This is in stark contrast to human HBC that are found in
abundance in the interstitial space between the trophoblast cells and
the fetal endothelial cells. The highly divergent physical niches in
which these cells reside strongly implies that murine and human
placental macrophages have distinct functional roles. Due to these
differences in ontogeny, localization, and likely function, we suggest
that murine labyrinth macrophages should not be termed HBC-
like cells.

In other species, such as non-human primates (79) and sheep
(80), HBC-like cells have been found within the interstitial space
between the trophoblast cells and the fetal endothelial cells of the
placental villi. However, these macrophage populations remain
poorly described. Due to the lack of an easily manipulatable
animal model to study HBC, human placental samples remain
the best resource for studying this cell type. To overcome the
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inherent limitations of working with human samples a number
of approaches can be taken.

We now possess the means of isolating viable HBC and
PAMM1a with a high degree of accuracy and precision for in
vitro functional assays (3, 81). Profiling the responses of placental
macrophages to a wider range of pathogens in vitro should help
provide further mechanistic insights into the basis of
transplacental infections. Placental explant cultures have been
used in a number of studies to provide an experimental model for
placental function in response to damage (34) and infection (49).
These models are an attractive prospect for studying placental
macrophage function, however there are issues relating to cell
viability (82). A consistent problem with working with primary
human fetal samples is the scarcity of samples. To maximize the
output from these rare samples, studies often employ high-
dimensional techniques. Recently the placenta has been
profiled at both the first trimester and full term by scRNAseq
(35, 83–85), which has provided significant insight into the
properties of placental macrophages in homeostasis. Coupling
these techniques with new methods to profile spatial
Frontiers in Immunology | www.frontiersin.org 8
transcriptomics from tissue sections (86, 87) will provide
further insight into the local cell-cell communication networks
which govern placental macrophage function. However, the
combination of these techniques with either primary samples
from pathological pregnancies, or with in vitro infected placental
macrophages and whole explants are likely to provide the most
significant advances in the field of placental macrophage research
in the future. Using these high-dimensional methods to
understand how both HBC and PAMM1a phenotypes,
transcriptomes and metabolism vary under different conditions
will help to develop our understanding of the roles of these cells
in homeostasis and disease.
CONCLUSIONS AND PERSPECTIVES

With newly emerging pathogens it is important that we continue
to develop tools to understand the mechanisms the placenta has
in place to protect it from disease. The ability to rapidly
determine if newly emerging microbes are a risk to pregnant
A B

FIGURE 3 | The cellular composition of the human and murine placenta. (A, B) Illustration of 2nd trimester human placenta (A) and murine placenta (B). (i) Both have
a discoid shape and are hemochorial (bathed in maternal blood). (ii) Cross section of the placental villus region. The human placenta is hemo(mono)chorial (one layer
of trophoblast separates fetal and maternal blood). The murine placenta is hemo(tri)chorial (three layers of trophoblast separate fetal and maternal blood;
syncytiotrophoblasts-I, syncytiotrophoblasts-II and sinusoidal trophoblast giant cells). (iii) Close up of the hemochorial barrier separating fetal and maternal blood. In
the human placental HBC are found within the stroma between trophoblast and fetal endothelial. In the murine placenta, macrophages have been found in the
placental blood vessels. JZ, Junctional Zone; S. Trophoblast Giant Cells, Sinusoidal Trophoblast Giant cells.
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women and their offspring is essential. HBC and PAMM1a are
likely to be crucial components in the defense of the fetus against
infection, as well as the normal function of the placenta. A caveat
of furthering our understanding of HBC and PAMM1a is the lack
of suitable models to study these cells. Without the ability to
design an experiment that can manipulate their properties in
vivo, it is difficult to determine the essential role of HBC and
PAMM1a. However, the recent development of protocols that
allow the study of primary human placental cells in vitro, will
allow us to rapidly develop our understanding of these cells in
both health and disease.
Frontiers in Immunology | www.frontiersin.org 9
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