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Learning is a process which induces plastic changes in the
synapses and connections across different regions of the brain. It is
hypothesized that these new connections can be tracked with
resting state functional connectivity MRI. While most of the evi-
dence of learning-induced plasticity arises from previous human
data, data from sedated rats that had undergone training for either
1 day or 5 days in a Morris Watermaze is presented. Seed points
were taken from the somatosensory and visual cortices, and the
hippocampal CA3 to detect connectivity changes. The data
demonstrates that 5-day trained rats showed increased correla-
tions between the hippocampal CA3 and thalamus, septum and
cingulate cortex, compared to swim control or naïve animals.
Seven days after the training, persistent but reorganized networks
toward the cortex were observed. Data from the 1-day trained rats,
on the contrary, showed connectivity similar to the swim control
and less persistent. The connectivity in several regions was highly
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correlated with the behavioral performance in these animals. The
data demonstrates that longitudinal changes following learning-
induced plasticity can be detected and tracked with resting state
connectivity.

& 2016 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Value of the data:

� The datasets provided would serve as a basis platform to compare with other cohorts of disease.
The data sets that we have provided may form as control data sets for those investigating resting
state networks in disease cohorts.

� Additionally, the data can serve as a baseline from which others can build on to investigate brain
connectivity networks in learning and memory and investigate memory consolidation.

� Lastly, these data can be used to identify possible subgroups for further analysis or collaboration:
the given sample sizes can be used as important inputs for power calculations needed to determine
the feasibility of a substudy of this cohort.
1. Data

The data in this report represent a detailed characterization of the brain networks in a group of
normal Wistar rats after being trained on a spatial Morris Watermaze task. The data represents
resting state connectivity correlation coefficients between multiple selected regions of interest
extracted from animals that have either been trained for 1 day or for 5 days at both 1 days after
training or 7 days after training.
2. Experimental design, materials and methods

2.1. Experimental design

The study was comprised of 2 phases; in phase 1, rats were trained on a Morris Watermaze
(MWM) [1] for a period of 5 days or 1 day. In phase 2, the same rats were scanned using Magnetic
Resonance Imaging (MRI) at 1 day and 7 days after the last day of MWM training. In total, 45 male
adult Wistar rats (350–400 g) were included in the study and were subdivided into five groups: naive
control (n¼10), 5-day trained (n¼9), 5-day swim control (n¼8), 1-day trained (n¼9) and 1-day
swim control (n¼9). All experiments were compliant with the National Advisory Committee for
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Fig. 1. Location of ROI. The 34 ROIs chosen for calculating the correlation matrix and network plot.
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Fig. 2. Probe tests of medetomidine effect. Latency time of the probe tests conducted in animal injected with medetomidine or
saline infused on day 1 after 5-day of training (group A), on day 7 after training (group B), and on both day 1 and day 7 after the
training (group B). No difference was seen in the latency times between the saline (7.3670.13 s) and medetomidine
(6.6470.35 s; p¼0.6) injected rats in group A; between saline (6.4870.35 s) and medetomidine (6.970.4; p¼0.4) injected
rats in group B; and between saline (7.1270.31 s) and medetomidine (7.5470.58; p¼0.8) injected rats in group C.
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Fig. 3. S1 and V1 functional correlation maps of 5-Day MWM trained and control rats. (A) The correlation with respect to left
S1 (left column) and left V1 (right column) in rats (from top to bottom) on day 1 after 5-day training in MWM, day 7 after
training, day 1 after swim control, and home cage (naïve) control (po0.01, one-sample t-test, corrected by FDR). (B) The
difference of connectivity between the MWM trained and the swim control groups on day 1 and day 7 after the 5-day training
(po0.01, 2-sample t-test, corrected by FDR).
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Fig. 4. CA3 functional correlation maps of 1-Day MWM trained and control rats. The connectivity with respect to left CA3 (left
column) and right CA3 (right column) in rats (from top to bottom) on day 1 after 1-day training in MWM, day 7 after training,
day 1 after swim control, and home cage (naïve) control (po0.01, one-sample t-test, corrected by FDR).
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Fig. 5. S1 and V1 functional correlation maps of 1-Day MWM trained and control rats. (A) The correlation with respect to left
S1 (left column) and left V1 (right column) in rats (from top to bottom) on day 1 after 1-day training in MWM, day 7 after
training, day 1 after swim control, and home cage (naïve) control (po0.01, one-sample t-test, corrected by FDR). (B) The
difference of connectivity between the MWM trained and the swim control groups on day 1 and day 7 after the 1-day training
(po0.01, 2-sample t-test, corrected by FDR).
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Laboratory Animal Research guidelines and approved by the Institutional Care and Use Committee
(Biomedical Sciences Institutes, Singapore).
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Fig. 6. Correlation matrices of swim control and MWM trained rats. The correlation among the 34 ROIs from the swim control
(left column) and MWM trained rats (right column) with (from top to bottom) 1-day of training, 5-day of training, and 7 days
after 5-day of training (po0.01, one-sample t-test, uncorrected).
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Fig. 7. Connectivity matrix in 1-day and 5-day trained rats. The correlation matrix among 36 regions in the brain shows (A) low
connectivity at day-1, (B) extensive connectivity 1 day after 5 day training, and (C) reduced connectivity after 7 days in the
5-day trained rats compared to the swim control (po0.05, two-sample t-test, uncorrected).
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Fig. 8. Behavioral correlate with CA3 connectivity in 1-day trained rats. (A) CA3 correlation maps show regions with significant
correlation with the behavioral score in 1-day trained rats (po0.05, FDR corrected). (B) The connectivity strength (correlation
coefficient) between CA3 and SN, hypothalamus (Hyp), IC, Am, CPu, Pir are highly correlated with the learning performance.
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2.2. Probe tests for evaluation of medetomidine effect on memory

Medetomidine, an α2 adrenergic agonist, was used as sedative during the rsMRI experiments.
Because alpha2 agonists have been reported to impair learning and memory, probe tests were con-
ducted in 3 groups of rats after 5 days of MWM training to evaluate the effect of medetomidine on
memory: Group A. Rats were injected with 0.1 mg/kg/h medetomidine (n¼5) for 1 h or saline (n¼5)
on day 1 after the training. Probe test was conducted in the watermaze without the platform on day 2.
Group B. Rats were injected with 0.1 mg/kg/h medetomidine (n¼5) for 1 h or saline (n¼5) on day
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Fig. 9. Behavioral correlate with CA3 connectivity in 5-day trained rats. (A) CA3 correlation maps show regions with significant
correlation with the behavioral score in 5-day trained rats (po0.05, FDR corrected). (B) The connectivity strength (correlation
coefficient) between CA3 and SN, hypothalamus (Hyp), IC, Am, CPu, Pir are highly correlated with the learning performance.
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7 after the training. Probe test was conducted in the watermaze without the platform on day 8. Group
C. Rats were injected with 0.1 mg/kg/h medetomidine (n¼5) for 1 h or saline (n¼5) on both day
1 and day 7 after the training. Probe test was conducted in the watermaze without the platform on
day 8. (refer to Fig. 2 for results).
3. Materials and methods

3.1. Behavior

The trained rats underwent a hidden platform task for 1 day or 5 consecutive days, with the swim
control rats matching the swimming time of the trained rats in the MWM without the platform. The
rats were habituated to the pool one day before training. During the training, rats were randomly
placed in one of the four quadrants of the pool and underwent 10 trials per day in an interleaved
fashion. Each trial lasted for 60 s and the rat was left to rest on the platform for 30 s. Latency time and
path length reaching the platform were recorded and calculated using the WatermazeTM software
(Actimetrics Inc., IL, USA).
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Fig. 10. S1, V1, and CA3 functional correlation maps of Home Cage Control rats. The connectivity with respect to (A) left S1 (left
column) and left V1 (right column) and (B) left CA3 (left column) and right CA3 (right column) in rats from the home cage
(naïve) control group scanned on day 1 and day 7 (po0.01, one-sample t-test, corrected by FDR). (C) The difference of con-
nectivity between the day 1 and day 7 (po0.01, 2-sample t-test, corrected by FDR).
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3.2. MRI

MRI was acquired on a 9.4 T system using a volume coil (Rapid Biomedical GmbH, Germany) for
transmission and a custom-designed 1.5-cm surface coil for reception. Initially, the rats were anes-
thetized with 2–3% isoflurane in air and O2 (47% O2) mixture. After securing the head in a MRI
compatible stereotaxic holder, 0.05 mg/kg medetomidine (Dormitors, Pfizer, USA) was given intra-
peritoneally after which sedation was maintained with 0.1 mg/kg/h continuous infusion and iso-
flurane was switched off 15 min after. Respiration rate was monitored and rectal temperature was
controlled at 37 °C using a MRI-compatible air heater (SA Instruments Inc., NY, USA). The rsMRI was
acquired 40 min after the start of medetomidine infusion using single-shot spin-echo EPI with
TR/TE¼500/30 ms, thickness¼1 mm, gap¼0.1 mm, matrix¼64�64, FOV¼25.6�25.6 mm2 and
6 axial (i.e. coronal in rodent brain) slices centered at the hippocampus. This leads to an in-plane
resolution of 0.4�0.4 mm2. A total of 1200 volumes were acquired in 10 min. High-resolution
(0.1�0.1 mm2, thickness¼1 mm, gap¼0.1 mm) structural MRI was acquired over the whole brain
using fast spin-echo with TR¼2.5 s and TE¼40 ms. The total time under sedative in MRI was o1.5 h.

MRI was processed using FSL (http://fsl.fmrib.ox.ac.uk/fsl) and Matlab (Mathworks, MA, USA). Data
was then filtered at 0.01–0.1 Hz. Signal from the ventricle was regressed to suppress physiological
artifacts. An ROI of 2�2 pixels was manually selected from a ventricle of large enough size in each
slice. The averaged EPI of each animal was first registered to its own structural MRI and then a ste-
reotaxic MRI template of 0.2 mm isotropic resolution [2] using linear and nonlinear registration. Then
spatial Gaussian smoothing (FWHM¼0.4 mm) was applied. Seed-based correlation analysis was used
to detect functional connectivity. Thirty-two a piori regions-of-interest (ROIs) of 2�2 pixels were
defined on the stereotaxic template based on anatomical structures comprising the spatial memory
networks [3], including the left and right lobes of primary somatosensory (S1), secondary somato-
sensory (S2), cingulate (Cg), retrosplenial (RSC), parietal (PC), entorhinal (Ent), piriform (Pir), insular

http://fsl.fmrib.ox.ac.uk/fsl
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(IC), motor (M1), visual (V1) cortices, as well as, amygdala (Am), thalamus (Th), mammillary nuclei
(Mm), habenula (Hb), lateral septal nucleus (LS), dentate gyrus (DG), and hippocampal CA3 (CA3)
(Fig. 1). The reference time courses from the 34 ROIs were then correlated with the time courses
throughout the brain to generate the functional correlation maps (Fig. 2).

For group statistics, correlation was transformed by Fisher z-transform. Group functional corre-
lation maps was calculated by one-sample t-test on the z maps in the group. Second-level analysis
was conducted by two-sample t-test between groups. All maps were thresholded at po0.01, cor-
rected by False Discovery Rate for multiple comparison [4]. (Figs 3–10).
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Supplementary data associated with this article can be found in the online version at http://dx.doi.
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