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Abstract: In the minireview presented here, the authors discuss the evaluation of inhibitory effect
of substances in the phases of initiation and propagation of high-molar-mass hyaluronan oxidative
degradation. The experimental approach should be considered as original since on using a simple
experimental assay it is possible to prove both the so-called “preventive” and “chain-breaking”
antioxidant activity of investigated water-soluble endo- or exogenous substances.

Keywords: preventive antioxidants; chain-breaking antioxidants; reactive oxygen species

1. Introductory Remarks

The website “Free Radical School Presentations” [1] serves as “an archive” for many
of the Free Radical School Workshop and Virtual School lectures that were organized by the
Society for Redox Biology and Medicine and presented at SfRBM’s Annual Meeting within
15 years (the first one in 1997 and the last one in 2011). This website is intended to be a
source for basic education and reference material for a wide variety of important topics
in the field of redox research including the experimental methods to assess the substance
antioxidative profile.

In the 1990s, the research activities of many scientific teams directly or indirectly
focused on the thesis that antioxidants are the “miracle substances” that can effectively
intervene in both the acute and chronic phases of many diseases, including aging. Reaction
systems for evaluating the antioxidant activity of a substance also contain a generator of
oxidant(s) and a probe whose intactness during the reaction proves the antioxidant activity
of the substance assessed.

In this minireview the primary/initiating oxidants are the OH radicals, the secondary
oxidants are alkyloxy- and alkylperoxy- type radicals. The probe is the organism’s own
macromolecule, namely a high-molar-mass hyaluronan. The kinetics of the hyaluronan ox-
idative degradation has been most properly monitored by changing the dynamic viscosity
of the reaction solution.

2. Sequestration of Copper Cations with Ascorbate

The biogenic transition metal—copper—is found in the healthy human body as cupric
and cuprous cations, whereas 95% of the total copper content is bound to the blood
plasma protein—ceruloplasmin [2–4]. Each ceruloplasmin macromolecule binds eight
copper cations, of which two are readily released. The normal level of serum ceruloplas-
min concentration is in a range of 1.52–2.65 µmol/L. Thus, under physiological condi-
tions the concentration of loosely bound copper (cupric/cuprous cations) can reach up
to ≈0.66 µmol/L. The patho-physiological range of ceruloplasmin blood serum level is
significantly increased, since this metalloprotein belongs to the acute phase reactants, the
level of which rises during acute and chronic inflammations, infection, trauma, Alzheimer’s
disease, etc. Ascorbic acid/vitamin C, in the form of ascorbate, is ubiquitous in the human

Pharmaceutics 2021, 13, 1815. https://doi.org/10.3390/pharmaceutics13111815 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-8467-893X
https://doi.org/10.3390/pharmaceutics13111815
https://doi.org/10.3390/pharmaceutics13111815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13111815
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13111815?type=check_update&version=3


Pharmaceutics 2021, 13, 1815 2 of 13

body. The ascorbate molecule (Asc−) in a living organism functions also as a coordinat-
ing low molar mass ligand. In case of ascorbate-iron pair, ascorbate may serve both as
a Fe(III)/Fe(II) chelating agent and reductant of Fe(III) to Fe(II) cations. In latter case,
under the aerobic conditions ascorbate with ferrous cation forms a coordination complex:
ascorbate—Fe(II)—dioxygen [5]. This, the so called Udenfriend oxidative complex/system,
is a very efficient oxidative agent used, e.g., by organic chemists to hydroxylate aromatic
compounds, saturate hydrocarbons to alcohols, olefins to epoxides, etc. [6].

The paramagnetic bivalent Cu(II) (outermost orbitals = 3d9) represents the most
stable oxidation state of copper. Since ascorbate acts as a powerful reducing agent with
a standard reduction potential E’◦ of +0.282 V for the redox couple Asc•−/Asc− at pH 7,
it should reduce Cu(II) to Cu(I). Thus, taking into account that the standard reduction
potential of the pair Cu(II)/Cu(I) is +0.16 V, Cu(I) should be able to reduce O2 molecules
to yield directly H2O2. However, as often claimed, the so called Weissberger system—
ascorbate—Cu(II/Cu(I)—dioxygen [7–9]—generates hydrogen peroxide molecules (cf.
Scheme 1) [10–13], or due to the decomposition of H2O2 by Cu(I) complex through Fenton
type reaction, the Weissberger system became one of the most potent generators of hydroxyl
radicals [14–16].
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Scheme 1. Generation of H2O2 via the Weissberger system composed of ascorbate and Cu(II) under
aerobic conditions. AscH− represents ascorbate anion and DHA represents dehydroascorbate.

When the Weissberger system has no additional oxidizable substrate, we speak about
ascorbate autoxidation [17]. In any case, it should be pointed out that the biological
consequences of interactions of vitamin C with biogenic transition metal cations of iron,
copper, or manganese have not been fully understood yet. Over the past decade, the
pro-oxidant properties of ascorbate have been investigated in addition to its better explored
antioxidant role.

When oxidizable substrates are simultaneously present, the reaction products con-
sist of both oxidized/decomposed substrate [18] and DHA—dehydroascorbate, whose
molecules in aqueous milieus hydrolyze fast to 2,3-diketo-L-gulonic acid [17]. Although for
the next sections of this minireview the complexation of ascorbate with another biogenic
transition metal is not essential, the reader could find some complexation kinetics and/or
equilibrium data between ascorbate and several metal cations, e.g., in the paper by Fornaro
and Coichev [19]. One of the frequently cited statements in literature is that copper cations
released from the ceruloplasmin macromolecule are extensively entrapped by albumin
present in the bloodstream. This tenet is naturally in part true, but it must also be admitted
that the anions of ascorbate are the most probably co-responsible for the release of copper
cations from ceruloplasmin. The charge–charge interaction between AscH− and, e.g.,
[CuCl]+ with a rate constant of 280 mol−1 L−1 s−1 [19] may outweigh the rate of grad-
ual dissociation of the complex between [AscH]− and [CuCl]+ followed by a subsequent
association of Cu(II) with a copper fixing/binding site on the albumin molecule.)
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3. Hyaluronan—Oxidizable Biological Substrate

Hyaluronic acid (hyaluronan; HA; Figure 1), or its salts, is a linear high-molar-mass
natural polysaccharide formed from disaccharide units of regularly alternating N-acetyl-
D-glucosamine (GlcNAc) and D-glucuronic acid (GlcA) units linked by β-(1→3) and β-
(1→4) linkages. The chemical structure of HA is regular, the only exception is a possible
replacement of N-acetyl-D-glucosamine by deacetylated glucosamine residues.
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Figure 1. Hyaluronic acid.

A human body weighing about 70 kg contains approx. 15 g of HA [20], whereas
one third of this amount is turned over every day. Such an unusually extensive de novo
synthesis of HA megadalton macromolecules suggests that the functions of both native
hyaluronan and its lower sized fragments in the body will be diverse [21]: In the body of
vertebrates HA is abundantly present in almost all body fluids and tissues. In a fibrous
tissue a capsule called synovium, one of the main components is the synovial fluid (SF),
functions as a lubricant [22–28]. The SF in a healthy human being, along with the blood
plasma filtrate, also contains the entangled macromolecules of HA {1.4–3.6 mg/mL [26]}.
While in SF and vitreous humor HA macromolecules are not associated with proteins, the
HA chains, filling the space between the collagen fibrils, provide elastic properties of these
soft tissues [29–31]. Yet, HA in extracellular matrices is linked with several proteoglycans
creating a scaffold in the forms of more or less hard tissues such as skin, umbilical cord,
and cartilage [32–36].

Two ways of HA decay must be denoted here: first, enzymatic depolymerization, by
which HA fragments of lower molar mass are formed, and second, oxidative degrada-
tion, a process which is of great interest to polymer chemists, biochemists and molecular
biologists [37–41].

The half-life of HA depolymerization (by hyaluronidases) is in the range of 1–3 weeks
in cartilage, 1–2 days in skin and only 2–5 min in blood plasma [42,43]. In contrast, in SF
of healthy individuals, whose fluid lacks any hyaluronidases, the half-life of HA ≈ 12 h is
suggestive of other than enzymatic decay [44]. Such a rapid turnover of HA in SF could
be elucidated by a mechanical pumping-out of a part of SF through the lymphatic system
during the day-time moving activity of a person. Another proposed mechanism is an
oxidative degradation of several megadalton-HAs in SF of healthy individuals [45–48].
This tenet is supported indirectly by the fact that under physiological conditions, the
concentration of ascorbate in SF of healthy humans reaches the values closely to those in
blood plasma, i.e., 40–140 µmol/L [49,50].

Figure 2 illustrates the action of oxidative system comprising complex of ascorbate—
Cu(II/Cu(I)—dioxygen: As evident, a megadalton-HA sample progressively degrades to
intermediate-sized polymer fragments, which mean molar mass is reduced by one or even
two orders of magnitude.

3.1. Hyaluronan Oxidative Degradation by Free-Radical-Chain Reaction
3.1.1. Initiation Reaction(s)

As shown in the sub-section “Sequestration of copper cations with ascorbate” for
the generation of •OH radical(s) the so called Weissberger biogenic oxidative system can
produce a continual flux of hydroxyl radicals [15,16]. (To simplify some reaction sequences
appearing in this minireview, HA abbreviates the hyaluronan macromolecule. The A•

denotes a C-centered hyaluronan macroradical, a peroxy-type macroradical AOO• along
with a highly unstable alkoxy-type macroradical AO• represents O-centered intermediate
macroradicals).
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The following Scheme 2 describes structural chemical formulae the phase of initiation
reaction(s) of high-molar-mass HA oxidative degradation:
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Scheme 2. An intact HA macromolecule (upper panel) reacts with •OH radical yielding an interme-
diate A•, i.e., a C-centered hyaluronan macroradical (lower panel), which immediately reacts with a
molecule of oxygen resulting in a peroxy-type macroradical AOO•.

The macroradical AOO• can undergo the reaction with Cu(I) complex (cf. Scheme 1)
yielding a highly unstable alkoxy-type macroradical. It is comprehensible that either AOO•

macroradical or that of AO•, along with the parent A• intermediate macroradical, form a
collection of highly reactive compounds, i.e., the initiators of subsequent self-perpetuating
free-radical degradation of high-molar-mass HA.

3.1.2. Transfer of the Free-Radical Centre and Fragmentation Reaction(s)

As is well-known in macromolecular chemistry, a long chain alkoxy-type macroradical
freely undergoes the strand scission due to the β-cleavage. Thus the scission at, e.g., C(1) on
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the ring of D-glucuronic acid, yields polymer fragments, namely a macromolecule bearing
a terminal C=O group and a novel alkoxy-type macroradical (cf. Scheme 3). As a rule of
such a degradation reaction both fragments have reduced molar mass.
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Scheme 3. The long chain alkoxy-type macroradical AO• undergoes a transfer of one electron at,
e.g., C(1) on the ring of D-glucuronic acid (upper panel). The decay of the native chain alkoxy-type
macroradical AO• yields two polymer fragments (lower panel) having reduced molar masses. The
newly formed alkoxy-type macroradical of shorter molar size (AO•) naturally could act as the
initiator of the self-perpetuating free-radical HA degradation.

The initiating •OH radical(s) (cf. Scheme 1) can react with the D-glucuronate/D-
glucuronic acid and N-acetyl-D-glucosamine functional moieties by opening the alkyl
rings [52–55] without breaking the HA chain.

3.1.3. Termination Reaction(s)

The free-radical degradation reactions of the native high-molar-mass hyaluronan
belong to self-perpetuating reactions. One of the most effective procedures terminating the
self-perpetuating reactions is to scavenge this sequence in the very phase of their initiation.
Reactions represented in Scheme 1, subsequently followed by H2O2 decomposition, can
be terminated by a so-called preventive antioxidant, e.g., a substance freely donating an
atom of hydrogen, i.e., •H: In such a case the substance, classifiable as HAT—hydrogen
atom transferring, terminates the action of the •OH radical and thus it interrupts the
generation of A• macroradical. (It should be claimed here that at pH 7.4, more than 99.9%
of ascorbic acid (AscH2) is present dissociated as AscH−. Thus, the antioxidant chemistry
of vitamin C is the chemistry of ascorbate, which freely donates a hydrogen atom to an
oxidizing radical).

According to the cascade of reactions showed in Schemes 2 and 3 it is obvious, that
to prevent the propagation phase of the free-radical HA degradation one must apply an
antioxidant which acts as HAT. Such a property is attributed to the so-called chain-breaking
antioxidants. It is comprehensible that the antioxidant acting as chain-breaking should
effectively scavenge both the AOO• and AO• radicals. In case of these two O-centered
radicals, although their standard reduction potential is lower than that for hydroxyl radical
•OH, H+/H2O (+2.31 V) [56], they are still very oxidative—similar to those of an aliphatic
peroxyl radical ROO•, H+/ROOH (≈ +1.0 V) or an aliphatic alkoxyl radical RO•, H+/ROH
(≈ +1.6 V) [57–59].

3.2. Assessment the Substance Antioxidative Profile by Hyaluronan Plus the Weissberger System

The idea to use high-molar-mass HA for the evaluation of antioxidants can be traced
to the year 1994 [60,61]. At present, the experimental set-up uses the physiologic solution
of the HA sample with an average molar mass ≈ 1.5 MDa. The time-dependent changes in
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dynamic-viscosity values after the application of CuCl2 and ascorbic acid are monitored
by a rotation viscometry device [62]. In the experimental design when the application
of the test substance precedes the addition of ascorbic acid, one examines the preven-
tive antioxidant properties of the substance. On assessing the substance chain-breaking
antioxidant properties the addition of substance examined follows the application of ascor-
bic acid after a properly selected time interval, i.e., during the steady state phase of HA
degradation propagation. The panels in Figure 3 schematically illustrate the types of
functional time dependencies on dynamic viscosity (η). (Other methods used were infrared
spectroscopy [34,35], thermal chemiluminescence [34,35,63] and EPR spectroscopy [35,64],
the last one to identify the formation of radicals in selected oxidation systems.) To com-
ment the below represented experimental results it should be claimed that, as repeatedly
proved [15–18,45,51,65,66], the decrease in dynamic viscosity values reflects the decrease
in average molar mass of the HA sample with respect to the existing functional dependence
η = f (M).
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Figure 3. Panels (A–D) represent the results of assessing the substance functioning as a preventive
antioxidant. Panel (E) schematically shows the η functional dependence observed when applying a
chain-breaking antioxidant.

The time dependence of the decrease in the value of dynamic viscosity marked in
black on panels A to E of the experimental set-up is as follows: CuCl2 and ascorbic acid
solution are gradually applied to the HA solution so that the actual concentrations of these
components are 2 mg/mL, 1 and 100 µmol/L, respectively. It should also be noted here that
the experiments were performed under aerobic conditions, i.e., the concentration of oxygen
in aqueous solutions, at standard barometric pressure has been ≈250 µmol/L at 25 ◦C.
When verifying whether a given substance acts as a preventive antioxidant, it was applied
in several doses, so that the actual concentration of the substance within the experimental
vessel was usually 100 (red), 10 (blue), and 1 (green curve) µmol/L, respectively. The
results of antioxidative profile assessment of several substances are given in Table 1.
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Table 1. Antioxidative profile assessment of several substances.

Substance Preventive Action Chain-Breaking Action B C D Reference/Note

N-Acetylcysteine Effective Effective Effective a [67–69]

Acetylsalicylic acid Effective Effective [70]

Arbutin Effective Effective [71]

Aurothiomalate Effective Effective [72]

Bucillamine Effective Effective [63,73–77]/It is a dithiol.

Captopril Effective Effective Effective [56,78]

Carnosine Effective Effective [79]

Cemtirestat Effective Effective Effective b [59]

Cysteamine Effective Effective [80]

L-Cysteine Effective Effective Effective a [73,81]

Dithiothreitol Effective Effective [77]/It is a dithiol.

Dithioerythritol Effective Effective [77]/It is a dithiol; SH groups’ pKa
values = 9.2 and 10.1.

D-Mannitol Effective Effective [61]

Edaravone Effective Effective [82]

Ergothioneine Effective Effective [83]

Isatin Effective Effective Effective b [59]

L-Glutathione Effective Effective Effective a [15,35,67,84–86]

Glutathione disulfide Effective Effective [67]/It is the oxidized L-glutathione.

Hercynine Ineffective Ineffective [83]

Histidine Effective Ineffective [83]

Homocysteine Effective Effective At neutral pH it is a zwitterion.

Ibuprofen Effective Not investigated [87]/RS-(±)-, R- and S-enantiomers
were evaluated.

Levamisole Ineffective Ineffective [78]
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Table 1. Cont.

Substance Preventive Action Chain-Breaking Action B C D Reference/Note

Methotrexate Effective Effective [79]

Methylsulfonylmethane Ineffective Effective [88]/Chain-breaker in extremely
high dose.

Mn(III)-porphyrins c Effective c [89]

Naproxen Effective Effective [70]

D-Penicillamine Ineffective Effective [90,91]/SH group’s pKa value = 10.5

Phosphatidylcholine
dihydroquercetin Ineffective Ineffective [92]

Stobadine Effective [59,93,94]

Taxifolin Ineffective Ineffective Dihydroquercetin, belongs to a
subgroup of flavanols

Tiopronin Effective Effective [56,78]

Vanillin Effective Effective Phenol-type compound

Vinpocetine Effective Effective [61]
a N-Acetylcysteine, L-cysteine, and L-glutathione are weak acids, which pKa values of their −SH group equal to 9.52, 10.78, and 9.65, respectively. Due to dissociation of thiol a minute fraction of thiolate
anions along with the generated thiyl radicals act both like the reductants of O2 molecules yielding superoxide anion radicals, which subsequently participate in reaction with in situ generated H2O2 molecules
according to the reversible Haber-Weiss reaction O2

•− + H2O2 ↔HO• + HO− + O2 [95]. b Since both substances, i.e., cemtirestat and isatin strongly intercalate cupric ions, no redox active Cu(II) was available to
form ascorbate—Cu(II)/Cu(I)—dioxygen complex even at the lowest substance concentration (1/100). c Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+), in phase II clinical trials,
accepts one electron from AscH− and subsequently the Mn(II) center acts as a reductant of O2 molecules yielding superoxide anion radical, which subsequently participate in reaction with in situ generated H2O2
molecules according to the above mentioned reversible Haber-Weiss reaction.
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4. Concluding Remarks

We have reported evidence to support our thesis regarding the assessment of the
antioxidative efficiency of an endo- or exogenous water soluble substance by exploit-
ing a reaction system comprising high-molar-mass hyaluronan along with cupric cations
and ascorbate. The ascorbate level in body fluids of healthy individuals is in the range
of 40–140 µmol/L [50]. The total concentrations of copper ions in healthy human be-
ings may reach micromolar levels [96]. Thus during ascorbate (auto)-oxidation in the
presence of trace levels of cupric ions as catalysts, direct transformation of O2 to H2O2
happens [7,8,10–13]. Subsequently, the produced hydrogen peroxide is decomposed by
the action of the transition metal counter cuprous cations, which are site-specifically fixed
by the HA polyanionic chain and thus •OH radicals interact with HA macromolecules.
The generated hydroxyl radicals, and/or mainly the C-centered hyaluronan macrorad-
icals, if not scavenged by a proper preventive antioxidant, continue their subsequent
self-perpetuating free-radical degradation up to the moment of their reaction with a chain-
breaking antioxidant.
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75. Baňasová, M.; Sasinková, V.; Mendichi, R.; Perečko, T.; Valachová, K.; Juránek, I.; Šoltés, L. Free-radical degradation of high-
molar-mass hyaluronan induced by Weissberger’s oxidative system: Potential antioxidative effect of bucillamine. Neuroendocrinol.
Lett. 2012, 3 (Suppl. S33), 151–154.
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