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ABSTRACT

We developed a simple algorithm, i-Score (inhibi-
tory-Score), to predict active siRNAs by applying
a linear regression model to 2431 siRNAs. Our
algorithm is exclusively comprised of nucleotide
(nt) preferences at each position, and no other
parameters are taken into account. Using a valida-
tion dataset comprised of 419 siRNAs, we found that
the prediction accuracy of i-Score is as good as
those of s-Biopredsi, ThermoComposition21 and
DSIR, which employ a neural network model or
more parameters in a linear regression model.
Reynolds and Katoh also predict active siRNAs
efficiently, but the numbers of siRNAs predicted
to be active are less than one-eighth of that of
i-Score. We additionally found that exclusion of
thermostable siRNAs, whose whole stacking energy
("G) is less than 234.6 kcal/mol, improves the
prediction accuracy in i-Score, s-Biopredsi,
ThermoComposition21 and DSIR. We also devel-
oped a universal target vector, pSELL, with which
we can assay an siRNA activity of any sequence in
either the sense or antisense direction. We assayed
86 siRNAs in HEK293 cells using pSELL, and
validated applicability of i-Score and the whole "G
value in designing siRNAs.

INTRODUCTION

When we study the molecule of our interest, we up- and
down-regulate its expression either in cells or in bodies,

and analyze their effects by morphological, physiological
and biochemical modalities. Recently, RNA interference
(RNAi) has emerged as a simple and robust method to
specifically silence a gene expression (1–3). In mammals,
21- to 27-nucleotide (nt) double-stranded RNA or small
interfering RNA (siRNA), which is specific to a gene of
our interest, is introduced into cells to induce RNAi (4,5).
To achieve efficient and specific gene silencing by

siRNA in mammals, an accurate siRNA-designing algo-
rithm is crucial. Numerous algorithms have been reported
to date. The algorithm can be arbitrarily divided into
two categories: the first-generation algorithms that are
based on a small number of observations and the second-
generation algorithms that arise from a large number of
observations. The first-generation algorithms exploit
a variety of siRNA features such as the thermodynamic
stability (6,7), base preferences at specific positions (8–12),
mRNA secondary structures (13–16) and uniqueness
of the target site (17,18). These siRNA features are also
summarized in review articles (19–21). The first-generation
algorithms disclosed the fundamental requirements for
designing active siRNAs.
The prediction accuracies of the first-generation algo-

rithms, however, were not high enough to our satisfac-
tion (22). To improve the prediction accuracy, Huesken
and colleagues (23) developed a new algorithm, Biopredsi,
by applying an artificial neural network model to 2431
siRNAs. Biopredsi achieved a high correlation coefficient
of 0.66 between the observed and predicted siRNA
activities. The artificial neural network modeling, on
which Biopredsi depends, however, is ‘black box’ in
itself, and there is no sense in making further inspections
of each parameter.
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In the past two years, the second-generation algorithms
emerged by analyzing the Huesken’s dataset (24–29). Most
algorithms, however, employ complicated mathematical
models and depend on calculations that cannot be readily
traced, which also prevent us from evaluating these
algorithms. Matveeva and colleagues (29) recently com-
pared nine siRNA-designing tools, and concluded that
Biopredsi, as well as ThermoComposition by Shabalina
et al. (24) and DSIR by Vert et al. (27), are the best
predictors of active siRNAs. The ThermoComposition
and DSIR algorithms employ a linear regression model,
which directly indicates nucleotide preferences at each
position.
We developed here a simple siRNA prediction

algorithm, i-Score (inhibitory-Score), based on a linear
regression model. The i-Score algorithm can predict
active siRNAs to the similar extents as Biopredsi,
ThermoComposition and DSIR, and is better than the
six first-generation algorithms. The i-Score algorithm is
exclusively composed of the nucleotide preference
scores, and is more straightforward than any of the
second-generation algorithms. We also found that
the whole �G value, which represents the stability of the
siRNA duplex, ensures accurate prediction of siRNA
activities in the four second-generation algorithms, and
improves a correlation coefficient to more than 0.7.
Additionally, we developed a new validation vector,
pSELL, to assay an siRNA activity of any sequence in
either the sense or antisense direction simply by synthesiz-
ing a pair of oligonucleotides. The synthesized oligonu-
cleotides are inserted into both the pSELL validation
vector and the pDual effector vector (30). We validated
the efficacy of i-Score, as well as the thermostability
threshold, by analyzing 86 siRNAs in HEK293 cells.

MATERIALS AND METHODS

Datasets

Dataset A is comprised of 2431 siRNAs reported by
Huesken and colleagues (23). The quality of this dataset is
ensured by the Gaussian distribution of their potencies.
Dataset A is randomly divided into 1600 and 831 siRNAs
(Supplementary Table 3). We made five pairs of subsets
from dataset A. After confirming that all five pairs
gave rise to similar results, we chose a pair of subsets
A1600 and A831 without any bias. Dataset B is comprised
of 419 siRNAs reported in five other articles (6,8,9,31,32).
Each report shows a small number of siRNAs, and
the quality of their datasets is variable from report to
report.

Training and validation of prediction algorithms

For both modeling and validation analyses, we employed
the ‘standard least square fitting’ functionality of
the JMP-IN statistical software Ver. 5.1.1 (SAS
Institute, Cary, NC) with its default settings. i-Score and
i-Score1600 are trained using dataset A and subset A1600,
respectively. As the actual parameters of Biopredsi are
not published anywhere, we developed a similar scoring
system, s-Biopredsi for simulated Biopredsi, by applying

a single-node neural network model on 2182 siRNAs
in subset A (Supplementary Table 3), which is identical
to those employed to develop Biopredsi (23). We again
employed the ‘neural network modeling’ functionality
of the JMP-IN software. We found a high correlation
coefficient (R=1.0000) between Biopredsi and s-Biopredsi
with the remaining 249 siRNAs in dataset A. We also
obtained a total of 400 Biopredsi scores from two
independent genes with the Biopredsi web server (http://
www.biopredsi.org/), and compared them to our
s-Biopredsi scores. Correlation coefficients between
Biopredsi and s-Biopredsi were 0.9999 and 0.9995 for
these two genes. Hence s-Biopredsi is similar to Biopredsi.
s-Biopredsi1600 also employs a single-node neural net-
work modeling, but is trained using subset A1600, so that
subset A831 can be used for the validation analysis.

For the receiver operating characteristic (ROC)
analysis, we employed the ‘logistic regression’ function-
ality of the JMP-IN software, as well as the ‘ROC curve’
functionality of the SPSS 15.0.1 software (SAS Institute,
Cary, NC).

We developed i-Score designer (Supplementary Data)
with Excel VBA on Windows. We implemented 11
algorithms including i-Score by simulating published
algorithms and parameters, and confirmed that the
i-Score designer gives the same scores as those reported
by each article. s-Biopredsi is similar to, but different from,
Biopredsi as indicated above. For ThermoComposition19
and ThermoComposition21, the i-Score designer calls
executable files that have been developed by Matveeva
and colleagues (29).

Construction of pSELL and pDual vectors

To validate the prediction accuracy of i-Score, we
developed a universal target vector, pSELL, which can
accommodate any target sequences (Figure 5A). We first
excised EGFP from pIRES2-EGFP (Clontech, Mountain
View, CA, USA) and placed it upstream of IRES.
We then inserted the firefly luciferase gene downstream
of IRES, and made pCMV-EGFP-IRES-Luc. We addi-
tionally inserted a part of the LacZ gene between the
target-cloning site and IRES so that IRES-binding
proteins do not mask the upstream target sequence. We
next substituted the SV40 promoter for the CMV
promoter, and made pSV40-EGFP-LacZ-IRES-Luc
(pSELL). We mutated an extra HindIII restriction site
within IRES, and exploited the BglII, HindIII and BamHI
restriction sites between EGFP and IRES to accommo-
date a target sequence in either the sense or antisense
direction.

We also constructed an siRNA-generating vector,
pDual, according to Zheng and colleagues (30). Briefly,
we inserted the mouse U6 promoter and the human H1
promoter in opposite directions in pBluescript SK(-)
(Stratagene, La Jolla, CA, USA). We also introduced
a BglII site so that the siRNA sequence can be inserted
between the HindIII and BglII sites flanked by the U6 and
H1 promoters.
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Cell culture and transfection

Human embryonic kidney (HEK) 293 cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum. In all assays,
1.5� 105 HEK293 cells were plated on 24-well dishes 12 h
before transfection. Cells were subsequently transfected
with 0.3 mg of the pDual effector vector, 0.03mg of the
pSELL target vector and 0.03 mg of phRL-TK encoding
the Renilla luciferase (Promega, Madison, WI, USA)
using the FuGENE6 Transfection Reagent (Roche
Applied Science, Basel, Switzerland). After incubation
for 3 days, firefly and Renilla luciferase activities were
measured using the Dual-Luciferase Reporter Assay
System (Promega). Silencing activity (% inhibition) of
each siRNA is calculated by dividing the relative luciferase
activity in the presence of the pDual target vector by the
relative luciferase activity in the presence of a control
pDual vector lacking an insert.

RESULTS

Development of a simple algorithm, i-Score, for prediction
of siRNA activities

In order to develop a simple algorithm to predict active
siRNAs, we collated two datasets (Supplementary
Table 3). We applied a linear regression model to dataset
A comprised of 2431 siRNAs to construct a prediction
algorithm, i-Score for inhibitory score, and validated
it with dataset B comprised of 419 siRNAs. Although
dataset A is comprised of 21-nt siRNA sequences, we
eliminated 2-nt overhangs at the 30 end of the antisense
strand and employed 19 nt that make an siRNA duplex, in
order to validate our algorithm with dataset B, which is
comprised of 19-nt sequences. Our preliminary analysis
using subsets A1600 and A831 demonstrated that 19-nt
analysis is as good as 21-nt analysis in our linear
regression model (data not shown).

Our linear regression model determines nucleotide
preferences at each position of siRNA, which is then
used as scoring parameters to calculate i-Score
(Figure 1A). We normalized the scoring parameters to
give the best and worst i-Scores of 100 and 0, respectively
(Figure 1B and Supplementary Table 1). The scoring
parameters directly demonstrate which nucleotides are
preferred at which positions. Previous reports address the
importance of G/C at positions 18 and 19 on the antisense
strand, as well as a stretch of A/T at the 50 end on
the antisense strand (6,7). Our results also conform to this
notion. In addition, highly positive and negative scoring
parameters in our analysis are located at previously
reported preferred and unfavorable nucleotides, respec-
tively (6,23,24,27).

Comparison of i-Score with three other
second-generation algorithms of s-Biopredsi,
Thermocomposition21 andDSIR

To test how efficiently i-Score predicts siRNA activities,
we plotted 419 siRNA activities in dataset B against
i-Scores (Figure 2A). We similarly plotted the observed

and predicted siRNA activities with s-Biopredsi,
Thermocomposition21 and DSIR (Figure 2B–D). None
of these algorithms employs dataset B in the process of
training parameters. The correlation coefficients indicate
that i-Score is as good as the three other second-
generation algorithms (Table 1). For all the algorithms,
the correlation coefficients with dataset A are superior
to those with dataset B, implying possible overfitting with
the training dataset A.
The ROC curve is a plot of sensitivity versus

1-specificity, and is widely applied to compare efficiencies
of different algorithms in a variety of biomedical fields.
The ROC analysis with dataset B also demonstrates that
the prediction accuracies of the four algorithms are not
statistically different (Figure 2E).
We also examined the correlation coefficients among

i-Score, s-Biopredsi, ThermoComposition21 and DSIR,
and found that i-Score, s-Biopredsi and DSIR are close
to each other, whereas ThermoComposition21 is unique
compared to the other three algorithms (Supplementary
Table 2).

Comparison of the first- and second-generation algorithms

We next compared i-Score with s-Biopredsi, as well as with
six other first-generation algorithms of Reynolds, Ui-Tei,
Amarzguioui, Katoh, Hsieh and Takasaki, using subset
A831 (Supplementary Figure 1 and Table 2). Both i-Score
and s-Biopredsi are classified into the second-generation
algorithms, because these are based on dataset A.
As subset A831 is included in the training dataset A for
i-Score and s-Biopredsi, we employed i-Score1600 and
s-Biopredsi1600, which we trained with subset A1600, in
order to strictly avoid overfitting.
When we sort siRNAs in descending order of predicted

scores and choose siRNAs above a given threshold, the
ratio of active siRNAs among the selected siRNAs is
inversely correlated with the number of selected siRNAs
for all the algorithms (Table 2). Namely, if an algorithm
chooses more siRNAs, the chance of obtaining active
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Figure 1. Definition of i-Score (A) and scoring parameters at each
position (B). Parameters are normalized to give the best and the worst
i-Scores of 100 and 0, respectively. The average score at each position
is 2.60 (dotted line). Scores above 2.60 indicate preferred nucleotides.
‘P’ is a probability score of nucleotide ‘n’ at position ‘m’ on the
antisense strand (Supplementary Table 1).
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siRNAs becomes less. siRNAs with i-Score1600� 65.9
constitute 8.8% of subset A831, and 90% of the siRNAs
in this category are active. Similarly, siRNAs with
s-Biopredsi1600� 0.807 comprise 8.8% of subset A831,

and 90% are active. In the current analysis, Reynolds and
Katoh reach a �90% success rate, whereas Ui-Tei,
Amarzguioui, Hsieh and Takasaki do not (Table 2).
siRNAs with Reynolds� 9 constitute 1.1% of subset
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Figure 2. Observed siRNA activities in dataset B are plotted against predicted siRNA activities by i-Score (A), s-Biopredsi (B), ThermoComposition21
(C) and DSIR (D). ‘R’ values represent the Pearson correlation coefficients, which are also indicated in Table 1. (E) ROC curves of the four
algorithms. Areas under the curves (AUC) of i-Score, s-Biopredsi, ThermoComposition21 and DSIR are 0.776 (95% confidence interval, 0.732–0.820),
0.770 (0.726–0.814), 0.795 (0.753–0.837) and 0.781 (0.738–0.825), respectively. There are no statistical differences of AUCs among the four algorithms.
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A831, and 88.9% are active. Similarly, siRNAs with
Katoh> 101.1 comprise 0.7% of subset A831, and 90%
are active. Therefore, when we design siRNAs expecting
a �90% success rate, i-Score1600 and s-Biopredsi1600
would be able to predict at least eight times more numbers
of siRNAs compared to Reynolds and Katoh. This likely
represents the most beneficial advantage of the second-
generation algorithms over the first-generation ones.

Whole "G value, as an indicator of thermostability
of siRNA duplex, is a key determinant of accurate prediction

We next sought for another parameter that potentially
improves the correlation coefficient between the observed
and predicted siRNAs with i-Score. In the scattered
plot of the observed and predicted siRNA activities,
we observe a subgroup of effective siRNAs in which
i-Scores are falsely low (area L in Figure 3A and B). As
siRNAs in area L make the correlation coefficient low,
we searched for a shared feature among siRNAs in area L.
For this purpose, we calculated 12 parameters for each
siRNA: stacking energy (�G) of the secondary structure
of siRNA (38), maximum GC stretch within siRNA,%GC
contents spanning the antisense positions 1–19, 3–7 and
1–17, and stacking energies (�G) spanning the antisense
positions 1–19, 3–17, 11–19, 1–9, 11–17, 3–9, 1–5 and
1–17. We divided the 419 siRNAs in dataset B into two
subsets by gradually changing the threshold for each
parameter, and analyzed the correlation coefficients
between the two subsets.

This analysis revealed that siRNAs with a stable
stacking energy at positions 1–19 (the whole �G value)
tend to give rise to a low correlation coefficient. A contour
plot of the whole �G values also illustrates that siRNAs in
area L have stable stacking energies of ��37 kcal/mol
(Figure 3A and B). The contour plot further demonstrates
that thermodynamically unstable siRNAs with the whole
�G values >�31 kcal/mol tend to stay close to the linear
regression line, which also points to the notion that
exclusion of thermostable siRNAs makes the correlation
coefficient high. Indeed, the correlation coefficient goes
higher, when we gradually exclude thermostable siRNAs
by elevating the threshold of the whole �G values from
�52.0 up to �34.6 kcal/mol for i-Score, s-Biopredsi,
ThermoComposition21 and DSIR (Figure 3C). The corre-
lation coefficient, however, goes down when the whole �G
threshold goes further up, likely because only a limited
number of siRNAs can be included in the analysis.
Although the whole �G values are well correlated

Table 2. Comparison of eight algorithms using subset A831

Threshold % of
effective
siRNAsa

No (%) of
siRNAs matching
the threshold

Pearson
correlation
coefficient

i-Score1600b,c 0.592
�65.9 90 72 (8.8%)
�63.0 80 117 (14.1%)
�59.4 75 166 (20.0%)
s-Biopredsi1600b,c 0.618
�0.807 90 73 (8.8%)
�0.767 80 141 (17.0%)
�0.734 75 197 (23.7%)
Reynoldsd N.D.
�9 88.9 9 (1.1%)
�8 80.4 46 (5.5%)
�7 71.0 107 (12.9%)
Ui-Teid N.D.
Ia 73.4 64 (7.7%)
Ia+Ib 68.0 125 (15.0%)
Amarzguiouid N.D.
�5 81.0 21 (2.5%)
�4 61.3 80 (9.6%)
�3 64.8 179 (21.5%)
Katohc 0.427
� 101.1 90 6 (0.7%)
� 87.5 80 31 (3.7%)
�79.5 75 80 (11.1%)
Hsieh N.D.
=4 50.0 2 (0.2%)
�3 51.2 41 (4.9%)
�2 52.7 184 (22.1%)
Takasaki 0.174
n.a.e 90 n.a.e

n.a.e 80 n.a.e

�17.1 75 4 (0.5%)

Note that i-Score1600, s-Boipredsi1600, Reynolds and Katoh predict
active siRNAs with �90% accuracy, but the chances of predicting such
active siRNAs in a given mRNA with Reynolds and Katoh are �1/8 and
�1/12, respectively, of those with i-Score1600 and s-BoiPredSi1600.
ThermoComposition21 andDSIR are not included in this analysis, because
we cannot avoid overfitting for these two algorithms for subset A831.
aRatios of experimentally proved active siRNAs among siRNAs
predicted to be active according to variable thresholds of eight different
algorithms. The experimentally proved active siRNAs are arbitrarily
defined to those suppressing the gene expression levels to less than 25%
of a control.
bThe i-Score1600 and s-Biopredisi1600 scores are different from i-Score
and s-Biopredsi. In order to avoid overfitting for these two algorithms,
the modeling algorithms of i-Score and s-Biopredsi are applied to subset
A1600 to calculate scoring parameters for i-Score1600 and
s-Biopredisi1600, respectively. The Pearson correlation coefficients
between i-Score and i-Score1600, and s-Biopredsi and s-Biopredsi1600
are 0.990 and 0.985, respectively.
cAs i-Score1600, s-Biopredsi1600, Katoh and Takasaki are continuous
numeric scores, thresholds are arbitrarily set so that 90, 80 and 75%
siRNAs above the threshold are experimentally proved active. For
example, for i-Score1600, all the 831 siRNAs in subset A831 are sorted in
descending order of i-Score1600. The ratio of experimentally proved
active siRNAs decreases with decreasing i-Score1600. When the lower
limit of i-Score1600 is set to 65.9, 72 siRNAs are included in this category
and 65 suppress the gene expression levels to less than 25% of a control.
This is how we set an i-Score1600 threshold for 90% (65/72). The 72
siRNAs comprise 8.8% of the 831 siRNAs in subset A831. This indicates
that when we synthesize an siRNA with i-Score1600 of 65.9 or higher, we
can expect that the chance of obtaining an active siRNA is 90%.
dFor algorithms yielding ordinal or nominal numbers, the indicated
ranks are used as the thresholds. For example, for Reynolds, the
number of siRNAs equal to or higher than the score of 9 is 9, which
comprises 1.1% of the 831 siRNAs, and 8 (88.9%) of the 9 siRNAs
suppress gene expression levels to less than 25% of a control.
eNo subgroup of siRNAs matches the criteria of �90% or �80%
prediction accuracy.

Table 1. Pearson correlation coefficients between observed and

predicted siRNA activities by four second-generation algorithms

Dataset A Dataset B

i-Score 0.635 0.557
s-Biopredsi 0.665 0.546
ThermoComposition21 0.635 0.577
DSIR 0.687 0.554

Dataset A is used to train all the algorithms, whereas dataset B is not
used as a training dataset in any algorithms.
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with%GC contents (R=0.98), the whole �G value is a
better discriminator than the%GC content (data not
shown).

We found that siRNAs with the whole �G value of
�34.6 kcal/mol and higher result in a correlation coeffi-
cient of 0.723 (Figure 4A), whereas the remaining
thermostable siRNAs give rise to a correlation coefficient
of 0.514 for dataset B (Figure 4B). ROC analysis also
demonstrates that a data subset comprised of unstable
siRNAs (��34.6 kcal/mol) gives rise to a markedly higher
AUC than that of stable siRNAs (Figure 4C). These
analyses all point to the notion that exclusion of
thermostable siRNAs improves the correlation between
the observed and predicated siRNA activities in all the
algorithms.

Genome-wide prediction of active siRNAs with i-Score

As shown in Table 2, 90% of siRNAs are active, if we
choose siRNAs with i-Score1600 �65.9 for subset A831.
Additionally, as shown in Figure 4, the whole �G value of
�34.0 kcal/mol differentiates between successfully and
falsely predicted siRNAs. We can thus expect that more
than 90% of siRNAs are active, if we set the thresholds
of i-Score> 66 and the whole �G value >�34.0 kcal/mol.

In order to test if i-Score can indeed predict active
siRNAs in human genes even after we impose a threshold
for the whole �G value, we applied variable thresholds
of i-Score and the whole �G value to all the transcripts
in the NCBI RefSeq Database Build 35.1 (Table 3). When
we choose siRNAs with i-Score> 65 and the whole �G
value >�34.0 kcal/mol, we expect to predict 65 active
siRNAs per mRNA. Under these conditions, 89.2% of
human transcripts are expected to have one or more active
siRNAs. These results suggest that i-Score potentially
predicts active siRNAs in most human genes.

i-Score designer

We developed an Excel VBA program, the i-Score
designer (Supplementary Data), which calculates 11
different siRNA-designing scores including i-Score for all
possible siRNA sequences within a gene of our interest
or for individually entered siRNA sequences. The
program also calculates the whole �G value and five
other parameters.

A new validation method for siRNA activity

To validate the prediction accuracy of i-Score, we
developed a universal target vector, pSELL, which
accommodates any target sequence in either the sense or
antisense direction (Figure 5A). We also constructed
the pDual effector vector (30). With pSELL and pDual,
a single pair of synthesized oligonucleotides can be
inserted into both the target and effector vectors. We
constructed 86 pairs of pSELL and pDual vectors
(Supplementary Table 4), and assayed their effects in
HEK293 cells by measuring the luciferase activities. As
expected, i-Score predicted siRNA activities more accu-
rately for those with thermodynamically unstable siRNAs
(Figure 5B) than those with thermostable siRNAs
(Figure 5C).
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analysis.
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DISCUSSION

A simple algorithm, i-Score, to predict active siRNAs

We developed a simple siRNA-designing algorithm,
i-Score, by applying a linear regression model to 2431

siRNAs. The correlation coefficient that we achieved
with dataset B was as high as those of s-Biopredsi
(23), ThermoComposition21 (24,29) and DSIR (27).
Comparison of i-Score with s-Biopredsi, as well as with
Reynolds (8), Ui-Tei (9), Amarzguioui (11), Katoh (33),
Hsieh (12) and Takasaki (10), using subset A831 demon-
strated that i-Score, s-Biopredsi, Reynolds and Katoh can
readily predict active siRNAs with �90% accuracy.
Additionally, both i-Score and s-Biopredsi predict at
least eight times more numbers of active siRNAs than
Reynolds and Katoh. We analyzed the prediction efficien-
cies under conditions where no overfitting is allowed.
The advantage of i-Score over the others is that i-Score

only takes into account the nucleotide preferences at each
position and employs no other parameters, which makes
the calculation of i-Score simple and easy to trace.
In addition, we can visually inspect which nucleotides
are better than the others at a specific position. Teramoto
and colleagues (34) report that short motifs of 1–3 nt
without positional information provide enough para-
meters for designing siRNAs. Vert and colleagues (27)
also report that inclusion of short motifs in addition to the
position-specific nucleotide preferences improves the
prediction accuracy, and made the DSIR scores
using a subset of our dataset A. DSIR is indeed superior
to i-Score for dataset A according to our analysis
(Table 1). With dataset B, however, prediction accuracy
of DSIR is not as good as that of i-Score (Table 1).
This may represent overfittings of DSIR with dataset A.
Otherwise, either i-Score or DSIR is applicable to specific
datasets but not to the others, but the underlying causes
remain elusive.

Exclusion of thermostable siRNAs improves
the prediction accuracy

Ladunga (28) reports that the whole �G values are
correlated with siRNA activities. We also observe
a correlation coefficient of R=0.279 between the whole
�G values and the siRNA activities for dataset A.
Inclusion of the whole �G value as an independent
parameter in our linear regression model, however, fails to
improve correlation coefficients for our validation datasets
(data not shown). This is likely because the whole �G
value is already represented in i-Score, and indeed the
correlation coefficient between these two parameters
is 0.445.
We found that exclusion of thermostable siRNAs is

beneficial in i-Score, s-Biopredsi, ThermoComposition21
and DSIR (Figure 3C). We also found that even after we
impose a threshold of the whole �G values, we can predict
enough numbers of active siRNAs for all the human
transcripts with i-Score (Table 3). Our analysis demon-
strates that the whole �G value rather serve
as a determinant for successful prediction of siRNA
activities.
In addition, our analysis demonstrates that some

thermostable siRNAs are indeed active (area L in
Figure 3A and B), and that no current algorithm can
accurately predict their activities. This likely represents the
presence of another cluster of siRNAs that potentially
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Figure 4. Scattered plots of observed and predicted siRNAs categorized
by the whole �G values for datasets B. The threshold of whole �G
values is indicated on top of each panel. i-Score predicts activities of
thermodynamically unstable siRNAs (A) more accurately than those of
thermostable siRNAs (B). (C) ROC curves of thermodynamically
unstable (��34.6 kcal/mol) and stable (<�34.6 kcal/mol) siRNAs in
dataset B using i-Score. AUCs of unstable and stable siRNAs are 0.882
(95% confidence interval, 0.814–0.950) and 0.750 (0.697–0.803),
respectively. AUC of the whole dataset B is 0.776 (0.732–0.820).
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requires unidentified parameters to precisely predict their
activities. Indeed, Krueger and colleagues (35) recently
reported that, in addition to the siRNA sequence and
its concentration, unidentified characteristics specific to
the target gene are likely to have a significant influence on
the siRNA activities.

i-Score designer

i-Score predicts on average 65 active siRNAs per mRNA
in the genome-wide analysis (Table 3). Other algorithms
would also predict similar numbers of active siRNAs.
Among these siRNAs, we usually choose a single
algorithm and synthesize one or two siRNAs with the
best scores. As no algorithm has achieved �100%
prediction accuracy, we usually wonder if the selected
siRNAs are indeed active or not. If all the siRNAs,
whose scores of an algorithm of our choice are above
a predefined threshold, can be analyzed by the other
algorithms, the chance of obtaining active siRNAs would
become high. Most of the currently available siRNA-
designing programs, however, do not provide scores of
all available siRNAs within a given gene. To overcome
this problem, we implemented 11 different scores and
six parameters in i-Score designer (Supplementary Data).
The i-Score designer readily demonstrates how siRNAs
selected by an algorithm of our choice are evaluated by the
other algorithms. As far as we know, no siRNA-designing
program offers such functionality.

pSELL and pDual as a new validation tool of siRNA activity

To validate the prediction accuracy of siRNA-designing
algorithms including i-Score, we developed a universal
target vector, pSELL, in which the target sequence can be
inserted in the sense or antisense direction. A combination
of the pSELL target vector and the pDual effector vector
(30) is cost-effective, because a single pair of oligonucleo-
tides spanning an siRNA sequence of our interest can be
inserted into both vectors. Hung and colleagues (36)

report a similar cost-effective strategy employing pDual.
Their target vector carries a reporter gene of either
EGFP or luciferase followed by a target sequence in its
30 untranslated region. On the other hand, pSELL carries
EGFP, the target sequence IRES and the luciferase gene
(Figure 5A). First, with pSELL, we can substitute our
gene of interest for EGFP, and can quantify the siRNA
activity against the full-length mRNA by measuring the
expression level of the target mRNA as well as the
luciferase activity. Second, pSELL enables us to measure
both EGFP and luciferase activities in a single experiment.
Third, a unique feature of pSELL is that it accommodates
the target sequence in either the sense or antisense
direction, which facilitates analysis of an effect of an
siRNA on the antisense strand. As a large proportion of
mammalian genes harbor antisense transcripts, which
regulate the expression levels of the sense transcripts (37),
the ability to assay an effect of an siRNA on the antisense
strand will become more and more essential when we
knock down a gene of our interest.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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i-Score Whole �G siRNAs/kba siRNAs/mRNAb Best i-Scorec 10th i-Scored
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>65 >�30 26.7 33 (89.2%) 81.8 � 5.9 72.8 � 7.8
>70 –e 34.0 53 (98.8%) –f –f

>70 >�34 24.2 33 (94.0%) –f –f

>70 >�30 14.1 19 (86.9%) –f –f

aAverage number of active siRNAs per kb of the human RefSeq mRNAs. The NCBI RefSeq Database Build 35.1 includes 40 768 mRNAs, and
we analyzed each alternatively spliced transcript as an independent mRNA. The total number of nucleotides that we analyzed is 100 738 984, and the
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