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Abstract: In this study, electrical characteristics of MoTe2 field-effect transistors (FETs) are investigated
as a function of channel thickness. The conductivity type in FETs, fabricated from exfoliated MoTe2

crystals, switched from p-type to ambipolar to n-type conduction with increasing MoTe2 channel
thickness from 10.6 nm to 56.7 nm. This change in flake-thickness-dependent conducting behavior
of MoTe2 FETs can be attributed to modulation of the Schottky barrier height and related bandgap
alignment. Change in polarity as a function of channel thickness variation is also used for ammonia
(NH3) sensing, which confirms the p- and n-type behavior of MoTe2 devices.
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1. Introduction

Since the discovery of graphene in 2004 [1], the two-dimensional (2D) layered materials have
attracted significant attention for device applications owing to their unique physical properties
and promising applications in nanoelectronic devices and circuits [1–5]. Due to lack of bandgap
structure, graphene-based transistors are difficult to switch off, which is critical for electronic
devices [6]. This limitation in graphene led researchers towards layered semiconductor transition metal
dichalcogenides (TMDs), which are now seen as promising candidates for next-generation transistors
due to their large variety of bandgap values [7,8], high charge-carrier mobility [9,10], and high on/off

current ratio (~106) [11]. Transition metal dichalcogenide (TMDC) compounds consists of one layer of
transition-metal sheet (Mo and W) sandwiched between two sheets of chalcogenide elements (S, Se,
and Te). Weak van der Waals interactions between the layers facilitate exfoliation of TMDCs crystals
down to a single layer [3].

Among all TMDCs, MoTe2 is the only material which can be grown in two phases: semiconducting
(2H-phase) and metallic (1T’-phase). The theoretical bandgap for bulk and single-layer MoTe2 in the
semiconducting phase (2H) is 0.81 eV (indirect) and 1.13 eV (direct), respectively [12–15]. The bandgap
of MoTe2 is close to that of Si (1.1eV), making it an attractive candidate for optoelectronic devices with
a range spreading from visible to near-infrared [1,11,16]. Recent literatures show that p- and n-type
carrier injection can be obtained by work-function engineering of the contact metals [17]. The high
work function of Pt and low work function of Ti metal contact can strengthen the p- and n-type
conducting behavior [17]. It has been demonstrated that the field-effect transistor (FET) polarity
can be electrostatically altered by dual top gate geometry [18]. The ambipolar behavior of MoTe2
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changing to n-type upon exposure to UV light for 2 h has also been reported [19]. It was also
observed that unipolar p-type behavior of MoTe2 flakes with Ti/Au metal contact and environmental
oxygen can tune the device from ambipolar to unipolar p-type [11]. 2D layered nanomaterials are
advantageous for gas-sensing applications due to their high surface-to-volume ratio, which facilitates
surface reactions [20–23]. For chemiresistive-type FET gas sensors, electrical resistivity or conductivity
are altered upon adsorption of target molecules on the surface of 2D nanomaterials [19,24,25]. It is
a well-known fact that NH3 acts as an electron donor (n-type doping), resulting in an increase of
resistance for p-type semiconductors based on the charge-transfer mechanism [26].

In this study, we demonstrate that the change in polarity of MoTe2 is a function of channel thickness.
From our measurements, we observed that MoTe2 FETs showed p-type, ambipolar, and n-type polarity
with increasing flake thickness. MoTe2 is intrinsically p-doped, but can also exhibit an ambipolar
behavior [27]. To date, no clear evidence about unipolar n-type behavior of MoTe2 FETs has been
reported. From our experimental results of thin (~5.6–12 nm), medium (~12–45 nm), and thick
(>45 nm) channel devices from tellurium tetrachloride (TeCl4)-based transport-agent devices showed,
p-, ambipolar-, and n-type conducting behavior, respectively. In this study we also highlighted the
effect of channel thickness on gas-sensing application of MoTe2 devices, which has not been mentioned
in early literature [19]. The NH3 gas-sensing results of MoTe2 FETs further confirms the change in
polarity as a function of flake thickness. No additional fabrication steps are required to obtain unipolar
p- or n-type FETs. This electrical property of MoTe2 can provide guidance to obtain p-type, ambipolar,
and n-type devices, merely by tuning the channel thickness.

2. Materials and Methods

In this work, MoTe2 flakes were exfoliated from bulk crystals grown by a chemical vapor transport
(CVT) method. MoTe2 (2H-phase) crystal was prepared by mixing powders of MoTe2 and a small
amount (ca 5 mg/cm3) of transport agent (TeCl4), vacuum sealed in quartz ampoule for 140 h, and placed
inside a furnace with temperature gradient. The temperature of MoTe2 charge was maintained at
800 ◦C (hot zone), and the opposite end of ampoule was at 710 ◦C (cold zone). The ampoule was
slowly cooled after seven days of growth [28]. The schematic diagram of the setup used for MoTe2

crystal growth and an image of bulk crystal after CVT growth is shown in Figure 1a,b respectively.
This method is known to produce pure 2H-phase of MoTe2, as verified by X-ray powder diffraction
(XRD), Transmission Electron Microscopy (TEM) [29], and Raman spectroscopy (Figure 1c).

Figure 1. (a) Schematic diagram of the two-zone electric furnace used for the growth of 2H-MoTe2

crystal using TeCl4 as transport agent; (b) As-synthesized bulk of MoTe2 crystals after growth; (c) Raman
spectra of MoTe2 flakes of different thickness exfoliated from bulk MoTe2 single crystals grown by
chemical vapor transport (CVT) with TeCl4 transport agent. Inset shows plane-view optical image of
FET device with a 4.6 nm thick channel.
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Different thickness of flakes ranging from 5.6 nm to 60 nm were obtained from CVT-grown
bulk MoTe2 crystal, and transferred onto SiO2/Si substrate by mechanical exfoliation (Supplementary
Figure S1). The thickness of the SiO2 layer was 285 nm. The blank SiO2/Si substrate was patterned
with design having numbers, symbols, and alphabets using photolithography. For fabrication steps
involving photolithography, a bi-layer stack of positive photoresists LOR 3A and Microposit SPR 220.3
was used. LOR 3A was spin-coated at 4000 revolutions per minute (rpm), followed by a soft bake at
115 ◦C for 2 min. Next, Microposit SPR 220.3 was spin coated at 4000 rpm for 45 s and soft baked
at 115 ◦C for 2 min. The samples were then exposed to UV illumination using mask-aligner (MA6
SUSS Microtec) and developed in Microposit CD 26A for 30 s, followed by a rinse in deionized water.
Metal deposition in all fabrication steps was performed using an e-beam evaporator (Denton Infinity
22), and a lift-off process was performed by immersing the devices in remover 1165 at 80 ◦C for 30
min. These pattern marks were used for locating the desired MoTe2 flakes after mechanical exfoliation.
Prior to exfoliation, the patterned substrate was ultrasonically cleaned in acetone, iso-propanol (IPA),
and deionized water (DIW), followed by oxygen plasma cleaning to remove the adsorbates from the
surface [30]. Under the Olympus optical microscope, successful transfer of few layers of MoTe2 flakes
on SiO2/Si substrate was mapped out to pre-fabricated marking points for a source/drain contact pattern.
Fabrication steps shown in Supplementary Figure S2, was also used for patterning the source/drain
metal contact of MoTe2 devices. After fabrication, the devices were thermally annealed in a vacuum
environment at 350 ◦C for 5 min to reduce the contact resistance between metal and MoTe2 flake.
Further, atomic force microscopy (AFM) was used to confirm the exact channel thickness and verify
uniformity, absence of folds and cracks on the MoTe2 flake under investigation.

After exfoliation, back-gate FET measurement was done using a Lakeshore probe station.
The schematic of the back-gate FET connection is shown in Figure 2a. The silicon of substrate
was used as a back-gate electrode and the SiO2 layer acted as the gate dielectric in the back-gate
FET measurement. These devices were characterized by output (Figure 2b) and transfer (Figure 2c)
curves using back-gate FET measurement at room temperature. After the back-gate FET measurement,
the devices were verified by NH3 gas sensing for n- and p-type conducting behavior for the thick and
thin channel. The gas sensing was performed by exposing 100 ppm of NH3 concentration diluted with
N2 as carrying gas. N2 gas is used to dilute NH3 to the desired concentration at room temperature.
We used N2 as diluting gas due to its better recovery when compared with air environment. The gas
sensing performance of the device was evaluated by applying 5 V between source and drain, and ground
to the back-gate electrode.

Figure 2. (a) Schematic of back-gate field-effect transistor (FET) connection. Output characteristics of
MoTe2 FETs under different back-gate voltages, Vbg. FETs with channel thickness of (b) 10.6 nm and
(c) 56.7 nm showing p- and n-type conductivity, respectively.

3. Results

The flake-thickness scaling effect on MoTe2 so far has gained less attention for the use in electronics
compared with their thin counterparts. In this study, we have examined the conducting behavior of
MoTe2 FETs prepared using a TeCl4 transport agent by CVT method. Using Raman spectroscopy with
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532 nm laser source, we identified the lattice vibrational modes of mechanically exfoliated 2H-MoTe2

flakes. The Raman spectra in Figure 1c exhibits characteristic A1g at 170 cm−1, E1
2g at 235 cm−1, and B2g

at ≈288 cm−1 modes (the latter is active only in thin layers), which is in good agreement with studies
reported in the literatures [31]. This verifies the 2H-phase of MoTe2 and good crystalline quality used
in FETs. Inset in Figure 1c shows the optical image of 4.6 nm fabricated MoTe2 FET. Optical imaging
technique has been popular in the rough estimate of flake thickness [32].

To understand the channel-thickness effect of FET transport characteristics, we measured the
output (drain current (Ids) vs. drain voltage, (Vds)) and transfer (Ids vs. back-gate voltage (Vbg))
characteristics using Lakeshore probe station. The schematic diagram of circuit connection for back-gate
FET measurement is shown in Figure 2a. In Figure 2b, the output characteristics of the 10.6 nm MoTe2

FET shows an increase in conduction as gate voltage decreases from +40 V to –40 V, showing that the
majority of carriers are holes, since the channel is entering the ON state with a negative gate voltage.
Contrarily, the output characteristic of the 56.7 nm MoTe2 device, shown in Figure 2c, shows that the
majority of carriers in the channel are electrons (ON state with positive gate voltage) as gate voltage
decreases from +40 V to –40 V. Clearly, p-type and n-type transport behavior is observed for 10.6 nm
vs. 56.7 nm MoTe2 FETs, respectively. The nonlinear behavior of the output curve in Figure 2b,c can be
attributed to a small Schottky barrier at the metal/semiconductor junction due to difference between
the work function of Ti (4.33 eV) and the electron affinity of MoTe2 (4.3 ± 0.1 eV) [17,33].

We further studied the transfer behavior of the FETs at Vds = 2 V. The transfer characteristic
results showed that thick, medium, and thin channel are n-type, ambipolar, and p-type, respectively.
The gate leakage current (Igs) measured in the pA range (negligible). The maximum on/off current ratio
obtained was ~1 × 104, which increases with decreasing channel thickness. Figure 3 shows transfer
curves for varying channel thickness for different metal contacts. Multiple devices with various metal
contact (Ti/Au, Cr/Au, and Pd/Au), were fabricated which reproduced similar transfer characteristic
as a function of MoTe2 channel thickness [34]. The metal work functions (φm) of Ti, Cr, and Pd are
4.3 eV, 4.8 eV, and 5.1 eV, respectively. At least 10 devices from each metal type were fabricated and
tested to reproduce the transfer curves to verify the change in polarity based on channel thickness.
From transfer curves, we observed that MoTe2 FETs showed p-type behavior for very thin channels,
≈5–15 nm and ambipolar behavior for medium channel thicknesses, from ≈15 to 50 nm. For channels
thicker than ≈50 nm, FETs showed n-type unipolar behavior. Previous studies on TMDC (such as
WSe2, MoS2, and MoTe2) have presented the effect of channel thickness on various transport properties
in FETs [35–38] , but a wide range of channel thickness (~5–60 nm) and its effect on polarity of MoTe2

devices has not been highlighted until now.
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Figure 3. Transfer characteristics at Vds = 2V of TeCl4-grown and MoTe2 FETs with different channel 

thickness for (a) Ti/Au; (b) Cr/Au, and (c) Pd/Au. 

 

Figure 3. Transfer characteristics at Vds = 2V of TeCl4-grown and MoTe2 FETs with different channel
thickness for (a) Ti/Au; (b) Cr/Au, and (c) Pd/Au.

In reference to n-type conducting behavior, the n-type doping has been observed in TMDCs
when TeCl4 is used as the transport agent in CVT growth [39] and during post-growth chloride
molecular doping of TMDC compounds [40]. In this work, we assume that the Cl doping is playing
a dominant role for n-type behavior in thick channel devices. In thin-channel FETs, conductivity
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switches to p-type, indicating the diminishing of Cl doping. We attribute it to the increase in surface
defects and adsorbates in ultra-thin layers, which is also exemplified in atomically thin MoS2 FETs [35].
In addition to the possible effect of reduced MoTe2 channel thickness on n-type doping efficiency,
we also speculate that the polarity switching from n- to p-type in thinner layers may be caused by the
modulation of Schottky barrier height (SBH) and corresponding band alignment and band-bending
at the metal/MoTe2 interface. The effective barrier height for Ti, Cr, and Pd contacts are 41.1, 40.3,
and 10.2 meV, respectively [41,42].

We also investigated the field-effect carrier mobility (µFE) of fabricated devices extracted from
the transfer curve of Figure 3a and MoTe2 devices with Ti/Au as metal contact. Mobility, µFE of the
back-gated MoTe2 FETs is defined as follows:

µFE = (dIds/dVbg) {L/(W COX Vds)} (1)

where COX (=ε0·εr/d) is silicon oxide capacitance per unit area, d is the oxide thickness, ε0 and εr are
the relative permittivity of free space and the relative permittivity of SiO2, respectively, L and W are
the channel length and width, respectively, Vds is the drain-source voltage, and (dIds/dVbg) is the
inverse slope of transfer characteristic in the linear region of the ON state. The mobility increases with
increasing channel thickness, as shown in Figure 4. A thicker channel has higher mobility compared
with thinner MoTe2 devices. The influence of channel thickness in MoTe2 devices can be associated
to Coulomb scattering and quantum confinement, as reported in early literatures [43,44]. Coulomb
interactions weaken the scattering of carriers, resulting in higher mobility for thicker FETs compared
with thinner counterparts, which was also demonstrated for both MoTe2 [35] and MoS2 [45] FETs.

Figure 4. Field-effect mobility of electrons and holes vs. channel thickness for MoTe2 FETs. Encircled
pairs of data points correspond to the ambipolar devices that exhibit ambipolar conductivity.

To further confirm the change in polarity of FET devices, their response in the presence of gas
molecules was measured. Figure 5 shows the gas-sensing setup used for NH3 sensing in this work.
Nitrogen (N2) as diluting gas is connected to MFC2 and mixed with NH3 target gas (connected to
MFC1). Both MFC1 and MFC2 are mixed in MFC mixer for the required concentration. The output
of MFC1 and MFC2 is connected to MFC mixer for the required concentration of NH3 to flow in the
gas-sensing stainless steel chamber for measurement. The MFC mixer is also connected to a pressure
controller used to vent out extra gases. The MoTe2 device is packaged on ceramic chip carrier (inlet of
Figure 5) and placed inside the stainless steel chamber, and a source/drain is connected to probes of a
National Instrument (NI) for data collection. The gas sensing data from the NI instrument is analyzed
using LabView program by transient curve.
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Figure 5. Schematic of gas-sensing setup.

The schematic of NH3 sensing on n- and p-type is shown in Figure 6a–c. Figure 6a shows
the schematic of process flow for NH3 gas sensing. We selected NH3 as the target gas since it is a
strong electron donor and will produce opposite behavior in n-type (Figure 6b) and p-type (Figure 6c)
devices. When NH3 is adsorbed on the n-type MoTe2 (Figure 6b) surface, an increase in current is
observed due increase in electron charge carriers on the MoTe2 surface. When NH3 gas is switched off,
NH3 molecules are desorbed from the surface and the current value of pristine-state MoTe2 surface is
obtained. Similarly, when NH3 is adsorbed on the p-type MoTe2 surface, a decrease in current value is
seen, due to a decrease in hole-charge carriers on the MoTe2 surface, as shown in Figure 6b. A single
pulse of 100 ppm concentration of NH3 was introduced to the MoTe2 devices, and the current response
of devices was measured.

Figure 6. (a) Mechanism of NH3 sensing. Schematic showing current–time curve of NH3 sensing by
(b) n-type and (c) p-type MoTe2 surface.
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Figure 7a,b shows the gas-sensing response of 100 ppm NH3 of 60 nm and 6.1 nm MoTe2 flakes.
We were able to detect the NH3 concentration as low as 1 ppm for thin MoTe2 channels. We couldn’t
go below 1 ppm due to a limitation of the mass-flow controller. The lowest concentration detected
by thicker channel devices was 100 ppm. Hence, for comparison purpose of n- and p-type MoTe2

devices, 100 ppm NH3 sensing was used in this work. The thick (60 nm), n-type MoTe2 FET showed
an expected increase in current, and the thin, p-type MoTe2 FET showed a corresponding decrease in
current. The response is calculated using Equation (2) for Figure 7.

Response (%) = [(Igas − Ibaseline)/Ibaseline] × 100 (2)

where, Igas and Ibaseline are currents when NH3 is on and the baseline current, as shown in
Figure 6b,c. This experiment verifies the change in polarity in MoTe2 flakes due to variation in
channel thickness. Thin flakes show higher sensitivity (~12 %) compared with thick flakes (~5%) due
to high surface-to-volume ratio. The current values of NH3 sensing by thin and thick MoTe2 flakes is
shown in Supplementary Figure S3. The low value of sensitivity and baseline drift in devices can be
due to the limitations of the custom-built gas-sensing setup. In this work, we showed that electrical
properties of MoTe2 are dependent on flake thickness, which is also verified by NH3 sensing of thin
and thick flakes. No extra fabrication steps are required to obtain the n- or p-type conduction behavior
in MoTe2 FETs. We predict that with further experiments and modifications in our gas-sensing setup, a
similar change in polarity of MoTe2 device as function of channel thickness can also be shown for NH3

sensing in an air environment.

Figure 7. Response to 100 ppm NH3 in air of (a) 60 nm and (b) 6.1 nm thick MoTe2 devices, confirming
n- and p-type conductivity, respectively. Note much faster recovery time for the thin flakes.

4. Conclusions

In this work, we demonstrated a simple and effective way to fabricate p-type, ambipolar, and n-type
MoTe2 FETs just by tuning the channel thickness. FETs were fabricated from mechanically exfoliated
flake from CVT-grown single-crystal 2H-MoTe2. The electrical properties of devices prepared from
2H-MoTe2 flakes were examined for varying thickness (~5–60 nm) using the output and transfer curves.
FETs showed polarity switching from n-type through ambipolar to p-type with decreasing channel
thickness from 60 nm to ~5.6 nm. The n-type transfer behavior in thick-channel MoTe2 FET is attributed
to chlorine doping from the TeCl4 transport agent used in CVT growth of bulk crystals. The switching
of polarity by thinning the FET channel may be associated with the increasing role of surface states in
ultra-thin layers, which can influence charge-carrier concentration by modulating the Schottky barrier
height between metal and semiconductor interface. This study also showed the NH3 gas-sensing
application of p- and n-type MoTe2 devices, indicating the change in polarity due to channel thickness.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/11/2551/s1,
Figure S1, Process steps for plasma–assisted mechanical exfoliation; Figure S2, Process steps showing fabrication of
source/drain contacts on exfoliated samples; Figure S3, Transient curve (current-time) of (a) 60 nm and (b) 6.1 nm
MoTe2 flakes for NH3 sensing.
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