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Abstract

High-fat meal (HFM) consumption can produce acute lipemia and trigger myocardial infarction in 

patients with atherosclerosis, but the mechanisms are poorly understood. Erythrocytes (red blood 

cells, RBCs) intimately interact with inflammatory cells and blood vessels and play a complex role 

in regulating vascular function. Chronic high-fat feeding in mice induces pathological RBC 

remodeling, suggesting a novel link between HFM, RBCs, and vascular dysfunction. However, 

whether acute HFM can induce RBC remodeling in humans is unknown. Ten healthy individuals 

were subjected to biochemical testing and assessment of endothelial-dependent flow-mediated 

dilation (FMD) before and after a single HFM or iso-caloric meal (ICM). Following the HFM, 

triglyceride, cholesterol, and free fatty acid levels were all significantly increased, in conjunction 

with impaired post-prandial FMD. Additionally, peripheral blood smears demonstrated 
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microcytes, remodeled RBCs, and fatty monocytes. Increased intracellular ROS and nitration of 

protein band 3 was detected in RBCs following the HFM. The HFM elevated plasma and RBC-

bound myeloperoxidase (MPO), which was associated with impaired FMD and oxidation of HDL. 

Monocytic cells exposed to lipid in vitro released MPO, while porcine coronary arteries exposed 

to fatty acids ex vivo took up MPO. We demonstrate in humans that a single HFM induces 

pathological RBC remodeling and concurrently elevates MPO, which can potentially enter the 

blood vessel wall to trigger oxidative stress and destabilize vulnerable plaques. These novel 

findings may have implications for the short-term risk of HFM consumption and alimentary 

lipemia in patients with atherosclerosis.

Introduction

Chronic consumption of meals rich in calories and saturated fats promotes obesity and 

adversely impacts cardiovascular health by initiating a cascade of inflammation, insulin 

resistance, oxidative stress, dyslipidemia, endothelial dys-function, and atherosclerosis [1]. 

In humans, a single high-fat meal (HFM) has been shown to increase circulating lipids, 

inflammatory mediators, and free radical production while activating inflammatory cells and 

provoking endothelial dysfunction [2]. Indeed, consuming an HFM sufficient to promote 

lipemia has been reported to trigger acute coronary syndromes in patients with established 

atherosclerosis, likely in part through activation of inflammatory cells such as monocytes 

and macrophages [3].

Studies examining the impact of an HFM have focused heavily on inflammatory cells. The 

erythrocyte (red blood cell, RBC), however, is the most abundant cell in the circulation; on 

average, there are 700 RBCs for every circulating leukocyte. Although RBCs are widely 

recognized for their vital role in transporting and delivering oxygen to the tissues, they play 

a much broader role in cardiovascular pathophysiology. For example, RBCs regulate 

vascular function via releasing adenosine triphosphate (ATP) and modulating nitric oxide 

(NO)-dependent vasorelaxation [4]. In addition, RBCs regulate the levels of key circulating 

chemokines, such as monocyte chemoattractant protein (MCP)-1, through binding to the 

Duffy antigen receptor for chemokines (DARC), a non-signaling receptor that is thought to 

function primarily as a chemokine reservoir [5]. Moreover, the RBC membrane is host to 

myeloperoxidase (MPO) whose binding induces vascular remodeling and stiffness, and 

likely contributes to endothelial dysfunction [6, 7]. Notably, MPO is a potent inducer of 

oxidative stress via production of hypochlorous acid, and plasma levels of MPO have been 

positively linked to risk of acute coronary syndromes in humans [8]. However, the 

mechanisms that regulate circulating and RBC-bound MPO are poorly understood.

Structurally, RBCs are composed of biconcave membranes that contain large amounts of 

cholesterol and avidly bind to lipoproteins, resulting in lipid transfer and membrane 

remodeling [9]. Moreover, RBC cholesterol levels are strongly and independently predictive 

of acute coronary syndromes in patients with angina [10]. We reported that chronic high-fat 

feeding in mice induced structural, biochemical, and functional alterations in RBCs, 

suggesting a role for pathologically “remodeled” RBC that may accentuate inflammation 

and vascular dysfunction [11]. In the current study, we sought to examine the effects of a 
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single HFM, in comparison to a low-fat iso-caloric meal (ICM), on RBCs in a cohort of 

young healthy adults.

Materials and methods

Participant recruitment

Ten apparently healthy, physically active male participants with no past medical history and 

taking no prescription medications were recruited for the study, which was approved by the 

Institutional Review Board of Augusta University. After obtaining informed consent, a 

comprehensive assessment of cardiovascular disease (CVD) risk factors, vital signs, and 

body composition was conducted and a cardiopulmonary exercise test was performed. The 

protocol consisted of two testing visits separated by a minimum of 7 days. For each visit, all 

participants were instructed to report to the Laboratory of Integrative Vascular and Exercise 

Physiology at Augusta University following an overnight fast having abstained from caffeine 

or strenuous physical activity for 24 h and vitamin supplementation for 72 h prior to 

investigation.

Experimental design

After arrival to the test center, pre-meal metabolic parameters and blood samples were 

collected, and flow-mediated dilation (FMD) testing was performed. After baseline 

assessments were performed and blood samples were collected, all participants consumed 

either an HFM in the form of a milkshake (1 g/kg fat, 0.5 g/kg carbohydrate, and 0.15 g/kg 

protein for a total of 11.6 Kcals/kg of body weight) or a low-fat ICM (0.04 g/kg fat, 2.54 

g/kg carbohydrate, and 0.28 g/kg protein for a total of 11.6 Kcals/kg of body weight). Four 

hours post-meal consumption, metabolic parameters, blood samples, and FMD data were 

collected again.

Flow-mediated dilation

Endothelial function was assessed using the brachial artery FMD test and performed 

according to the most recent methodological guidelines [12]. In brief, subjects rested in a 

supine position for ~20 min prior to baseline FMD measurements. A 12 MHz linear 

transducer connected to a LOGIQ 7 ultrasound imagining device (GE Healthcare, UK) was 

used to asses FMD. To verify that measurements were taken during the end-diastolic portion 

of the cardiac cycle, ECG gating (Accusync 72, USA; GE Medical Systems, China) was 

employed. The occlusion cuff was rapidly inflated to 250 mm Hg for a duration of 5 min. 

Post-occlusion measurements were initiated 30 s prior to cuff deflation and recorded for at 

least 2.5 min. Images were acquired using Vascular Imager software (version 6.0.3, Medical 

Imaging Application, USA) and arterial diameter was measured using offline edge detection 

software (Brachial Analyzer for Research Version 5.7.0, Medical Imaging Applications, 

USA). Pre-meal FMD measurements were initiated upon the subject’s arrival to the 

laboratory, and post-meal measurements were initiated 4 h after consumption of either the 

HFM or the ICM. After normalization to VO2 max and shear rate (AUC), ΔFMD was 

calculated by subtracting pre-meal FMD from meal FMD.
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Blood sampling

Venus blood samples were collected from all participants before (pre) and following (post) 

consumption of the HFM and ICM as previously described [13]. Briefly, blood was drawn 

into sodium citrate, lithium heparin, and EDTA tubes for individual biomarker testing. 

EDTA-collected blood was assayed for chemokines (described below) or separated by 

centrifugation at 3000 rpm for 10 min; plasma was removed, aliquoted, and stored at −80 °C 

for future analysis of lipids, glucose levels, and free fatty acids. The washed and packed 

RBCs were aliquoted and stored for future protein analysis. Lithium-heparin-collected blood 

was assayed for intracellular reactive oxygen species (ROS) via flow cytometry. For 

preparation of blood smears, blood was collected into sodium citrate tubes, and 3 μl of 

whole blood was then smeared onto a slide for analysis. Mean corpuscular volume (MCV) 

was estimated from hematocrit and concentration of RBCs. Estimated results were verified 

via blood smear.

Erythrocyte sedimentation rate (ESR)

Blood drawn into a sodium citrate tube was separated by centrifugation at 600 RCF for 10 

min. ESR was then measured following a standard protocol using an EZ-Rate pipette kit 

(Globe Scientific Inc.). ESR (mm/h) was measured in RBC from both the HFM and ICM 

pre-meal and post-meal blood draws, and ΔESR was calculated by subtracting the pre-meal 

value from the post-meal value.

Blood smear analyses

To examine the effects of an HFM on RBC morphology, whole blood smears were prepared 

for each participant at both pre and post HFM and ICM. Whole blood was smeared onto 

glass cover slips using an automated device to ensure even and consistent coverage for 

counting morphology across samples and conditions. The smear was then stained using 

modified Wright–Giemsa staining. RBC morphology was scored by the blinded investigator 

according to Bessis et al., and is presented as raw score without weighted group average 

[14].

Milliplex bead array

Blood collected in EDTA tubes was split into two equal volume aliquots; one was treated 

with 50 U/ml of heparin to liberate chemokines from the RBCs [7] while the other aliquot 

was left untreated to measure chemokines circulating in plasma. After heparin treatment, 

blood was separated and plasma was aliquoted and snap frozen using liquid nitrogen. Using 

a Milliplex MAP Human Chemokine Magnetic Bead Panel (EMD Millipore), plasma was 

assayed for MCP-1, IL-8, and IP-10 levels at both pre and post HFM and ICM.

Flow cytometry

Measurement of intracellular ROS was measured as previously described [11]. Briefly, 

packed RBCs were washed and treated with 5-(and-6)-chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA, Invitrogen), then passed 

through an Acuri C6 flow cytometer. Quantification and comparison was performed using 
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the mean fluorescent value. Treatment with hydrogen peroxide (H2O2) was used as a 

positive control.

RBC lysis and western blot for nitrotyrosine

Protein lysates for quantification of nitrotyrosine levels in the RBC membrane were 

prepared as described previously [13]. In brief, packed and washed RBCs were thawed and 

lysed for 20 min in ice-cold lysis buffer containing 1% Triton X-100, 50 mM HEPES (pH 

7.4), 137 mM NaF, and 1× protease inhibitor cocktail set III (Calbiochem-Novabichem 

Corp.). After an overnight incubation at 4 °C of the Triton X-100 soluble fraction with 

nitrotyrosine antibody at 2 μg/ml final concentration, samples where incubated with protein 

G sepharose beads. After washing immunoprecipitated proteins in lysis buffer three times, 

concentrated samples were loaded onto a 4−20% SDS-PAGE gel, transferred onto a PVDF 

membrane (Millipore) and blotted with anti-Band-3 antibody (Abcam).

Plasma MPO activity

MPO activity was assayed using a colorimetric assay kit (ABCAM) as per the 

manufacturer’s specifications. To reduce lipemic interference in the post-HFM samples, 

and/or any interference of heparin (Fig. 1b), all samples were diluted 1000-fold in the kit 

provided buffer and assayed in triplicate. One unit of MPO activity was defined as is the 

amount of MPO to consume 1.0 μmol of substrate per minute at 25 °C and was normalized 

to plasma protein levels.

Determination of Cl-HDL

MPO-induced modification of HDL was quantified using ELISA in which plasma HDL was 

captured using mouse anti-human HDL IgG (ProGen), and chlorotyrosine content was 

labeled using rabbit anti-chlorotyrosine (HyCult), and quantified with donkey anti-rabbit 

conjugated to horse-radish peroxidase (Abcam).

Monocytic cell studies

THP-1 monocytic cells (5 × 105/ml) were incubated for 4 h with 0.5% (volume/volume) 

triolein in complete media. The supernatant was collected, allowed to separate into aqueous 

and lipid phases, and the aqueous phase collected and assayed for TNF-α and IL-8 via 

ELISA (R&D) and MPO activity (Abcam). For fatty acid studies, the same number of cells 

were incubated for 4 h with 50 or 500 μM of oleic acid conjugated to albumin. Albumin was 

used as the control and MPO activity was determined as described above.

Neutrophilic cell studies

HL60 cells (5 × 105/ml) were incubated for 4 h with either 50 or 500 μM oleic acid 

conjugated to albumin. Albumin was used as the control and MPO activity was determined 

as described above. NB4 cells were induced to differentiate into mature granulocytes by 

exposure to 1 μM all trans retinoic acid (ATRA) for 72 h. Differentiation was verified via 

flow cytometry to detect expression of CD 11c with an anti-CD11c antibody conjugated 

directly to phycoerythrin. At 72 h, 83% of the cells were positive for antigen. The cells were 

washed and re-suspended in complete media at a concentration of 5 × 105/ml and exposed to 
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oleic acid as described for the HL60 cell line. Both cell lines were treated with 10 nM 

A23187 for 15 min as a positive control.

MPO uptake by porcine coronary arteries in vitro

To model the impact of an acute HFM on MPO uptake into coronary arteries, porcine hearts 

were obtained from a local abattoir and immediately placed in PBS for dissection. The 

epicardial coronary arteries were carefully isolated and adventitial fat was removed. Vessels 

were cut into ~5 mm rings and pre-incubated in 200 μl of DMEM (0.1% FBS, without 

phenol red) in 96-well plates at 37 °C for 30 min. The rings were then exposed to bovine 

serum albumin-conjugated sodium palmitate or oleic acid (0–500 μM, Sigma-Aldrich) for 0–

4 h, and then incubated with vehicle or purified human MPO (100 nM) for 2 h. Vessels were 

washed, homogenized, and MPO activity was measured by MPO detection kit (Fluoro MPO, 

Cell Technology) and normalized by mg of protein.

Statistical analysis

Data are presented as mean ± SD unless otherwise noted. Significance was set at p < 0.05. 

The Shapiro–Wilk test was used to analyze the normality of the measurement distribution. 

Those satisfying normalcy are presented as mean ± SE. Those which fail are presented as 

median with interquartile range. Repeated-measures ANCOVA analyses were used to 

evaluate the effects of the meal (HFM vs ICM) over time (pre vs post). When a significant 

interaction was identified, simple main effects were performed to identify where the 

differences exist. The change in each outcome is expressed as delta (Δ) and calculated as the 

post to pre difference for each meal. Paired samples t-tests were used to compare Δ’s 

between meal. Multiple hypothesis testing significance was treated as nominal. Regression 

analyses were conducted using Spearman’s method.

Results

Participant characteristics and biochemistry

Participant characteristics are listed in Table 1. All participants were apparently healthy, 

non-smoking, non-obese, physically fit young adult men who completed both the HFM and 

ICM protocols. Biochemical parameters before and after the meals are presented in Table 2. 

Consistent with prior publications [15], lipemia was present 4 h following ingestion of the 

HFM, but not the ICM (not shown), and total cholesterol (p = 0.01), triglycerides (p = 0.01), 

and plasma free fatty acids (p = 0.003) were all significantly increased post HFM. In 

contrast, the ICM had no effect on these parameters. Additionally, high-density lipoprotein 

(HDL), low-density lipoprotein (LDL), and glucose levels were similar after both the HFM 

and ICM.

Vascular endothelial function

Supplemental Figure S1 illustrates a significant meal by time interaction (p = 0.046) for 

flow-mediated dilation (FMD) when controlling for BMI. Specifically, a significant (p = 

0.005) decrease in FMD was observed following the HFM, whereas no change (p = 0.837) 

was observed following the ICM. Additional parameters of the FMD test for pre and post 

meal are presented in Table 3. No differences (all p > 0.05) in baseline diameter, peak 
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diameter, or absolute change in diameter were observed within or between meals. Shear rate 

was also similar (p = 0.790) pre and post within and between each meal. Consistent with the 

FMD findings, a significant (p = 0.016) meal by time interaction was observed for FMD 

normalized for shear rate when controlling for BMI. In addition, the pre to post change in 

concentrations of sVCAM, an inflammatory marker that correlates with the extent of 

atherosclerosis [16], was unaffected by consumption of either the HFM (Δ 3.12 ± 0.99) or 

the ICM (Δ −6.96 ± 2.2).

Erythrocyte sedimentation rate and RBC morphology

The change in erythrocyte sedimentation rate (ESR) was measured as a general marker of 

inflammation pre and post the HFM and ICM. Figure 2a illustrates a significant increase in 

ESR following the HFM, whereas no change was observed in ESR following the ICM. 

Compared to post ICM (Fig. 2b), RBC morphology was noticeably altered following the 

HFM. Specifically, microcytosis (Fig. 2c) was observed in the post-HFM samples. 

Furthermore, there was a significant increase in the number of acanthocytes (Fig. 2d) and 

echinocytes (Fig. 2e) post HFM. The blinded investigator scored change in RBC 

morphology is presented in Table 4. Mean corpuscular volume (MCV), estimated as 

hematocrit divided by RBC concentration (MCVe), was significantly (p = 0.015) reduced 

post HFM compared to the ICM (Table 4). In addition to the changes in RBC morphology, 

we detected foamy monocytes (Fig. 2f) and lipid-laden monocytes (Fig. 2f) in the circulation 

post HFM.

HFMs have been demonstrated to transiently increase circulating chemokine levels in 

humans [17]. Moreover, chronic high-fat feeding in mice promoted an increase in 

chemokine binding to RBC DARC [11]. To investigate whether a single HFM could increase 

chemokines in the circulation and/or bound to RBC in our subjects, we measured MCP-1, 

interleukin (IL)-8, and interferon gamma-inducible protein (IP)-10 using a multiplex bead 

array after treating blood with or without heparin to liberate chemokines bound to RBC 

DARC [11]. None of the levels of these cytokines were increased by either the HFM or the 

ICM. Although treatment with heparin increased MCP-1, indicative of liberation from 

DARC, the amount released was unaffected by consumption of either the HFM or ICM 

(Supplemental Figure S2). Heparin treatment was not effective at liberating either IL-8 or 

IP-10 from RBC in our study.

Intracellular RBC reactive oxygen species

The effects of the HFM on intracellular RBC reactive oxygen species (ROS) were 

determined using a fluorescent probe, CM-H2DCFDA. Representative histograms produced 

from RBC pre and post HFM demonstrate a positive post-prandial shift in fluorescence 

following HFM, indicative of increased intracellular ROS in the RBCs (Fig. 3a, left). In 

contrast, no significant increase in ROS was detected following ICM (Fig. 3a, right). Figure 

3b illustrates the significantly greater (p < 0.05) fold change in ROS following the HFM 

compared to the ICM. To determine whether the increase in ROS induced by the HFM was 

sufficient to induce oxidative damage to the RBCs, proteins were harvested from the RBC 

membranes pre and post HFM or ICM and assayed by western blotting. Notably, significant 
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increases in tyrosine nitration (3-NT) of band 3 (anion exchanger 1) were detected following 

the HFM (p = 0.008), whereas no change was observed following the ICM (Fig. 3c, d).

Plasma and RBC-bound MPO

We next examined the activity of MPO in the plasma of participants pre and post HFM or 

ICM. Figure 4a illustrates the significantly (p = 0.002) greater elevation in MPO following 

the consumption of the HFM compared to the ICM. To determine whether RBC-bound MPO 

was also increased following the HFM, we assayed plasma for MPO activity using heparin 

to liberate MPO from RBCs. While there was an increase in MPO activity in the EDTA-

collected samples post HFM, collection of these samples into heparin resulted in a further 

increase in MPO activity, indicative of liberation from RBCs (Fig. 4b). In contrast, very little 

MPO activity was detected in EDTA- or heparin-collected samples post ICM (Fig. 4b). 

Interestingly, MPO released from the RBCs upon heparin collection correlated significantly 

with the impairment in FMD (r = 0.63, p = 0.023), whereas the baseline collection into 

EDTA did not (r = 0.21, p = 0.68), consistent with a potential role for RBC-bound MPO in 

promoting endothelial dysfunction post-HFM consumption.

To investigate potential mechanisms that might promote an increase in circulating MPO 

following the HFM, monocytic THP-1 cells were either untreated or exposed to a neutral fat, 

triolein, for 4 h, after which MPO in the medium was assayed. Exposure to triolein resulted 

in significant (p < 0.05) MPO release when compared to the untreated cells (Fig. 4c). In 

addition, a significant release of the inflammatory factors tumor necrosis factor (TNF)-α and 

IL-8 was detected from THP-1 monocytic cells upon exposure to triolein (Fig. 4c). To 

determine whether oleic acid, the primary fatty acid present in the HFM, could induce a 

similar response, THP-1 cells were exposed to albumin-conjugated oleic acid for 4 h and 

MPO activity was measured. Oleic acid treatment dose dependently induced the release of 

active MPO as compared to albumin treatment alone (Supplemental Figure S3).

The primary MPO releasing cells in the blood are the granulocytes, with neutrophils being 

the most prevalent; thus, we also examined whether free fatty acids can induce MPO release 

from neutrophilic cells. Albumin-conjugated oleic acid (50 or 500 μM for 4 h) failed to 

induce MPO release from either HL60 cells or ATRA-differentiated NB4 cells, whereas both 

cell lines mounted a brisk degranulation response to 10 nM of the calcium ionophore 

A23187 within 15 min of treatment (Supplemental Figure S4). These data suggest that free 

fatty acids exhibit specificity with regard to eliciting MPO release from the monocytic cells 

in blood.

Given the pro-atherosclerotic potential of MPO, we investigated whether the HFM-induced 

increase in MPO was sufficient to promote pro-atherogenic oxidative modification of HDL. 

We observed that consumption of the HFM (Fig. 1b), but not the ICM (Fig. 1d), increased 

the levels of chlorotyrosine (Cl), a specific marker for MPO-mediated oxidative modification 

of HDL. In contrast, modifications of HDL linked to other oxidant mediators 

(hydroxynonenal; HNE, malondialdehyde; MDA) were not detected in any of the assayed 

samples. Finally, because the HFM was associated with concurrent increases in circulating 

free fatty acids and MPO, we investigated whether incubation of coronary arteries with fatty 

acids could promote vascular MPO uptake. Porcine coronary arteries were exposed to 
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sodium palmitate, oleic acid, or vehicle and incubated with MPO. Afterward, the arteries 

were homogenized and MPO activity was assayed. Notably, incubation with either palmitic 

or oleic acid, the two most abundant fatty acids contained in bovine milk fat [18] induced a 

significant (p < 0.05) increase in MPO uptake into porcine coronary arteries in a dose- (Fig. 

5a) and time-dependent manner (Fig. 5b).

Discussion

RBCs intimately interact with blood vessels and are increasingly recognized for their 

complex role in regulating vascular function and cardiovascular-related disease. Here, we 

demonstrate for the first time in humans that a single HFM sufficient to induce lipemia 

promotes RBC remodeling, induces intracellular ROS and oxidative damage to RBC 

membranes, and increases circulating and RBC-bound MPO that is sufficient to promote 

oxidative modification of HDL. Additionally, in vitro, monocytic cells exposed to lipid 

release MPO, which in turn is taken up by coronary arteries in the presence of free fatty 

acids. These findings may have implications with regard to the mechanisms, whereby 

consumption of meals rich in fat have been temporally linked to the development of acute 

coronary syndromes in humans [3, 19].

Erythrocyte morphology

Examination of whole blood smears (Fig. 2b–e) demonstrated a post-prandial increase in 

microcytes induced by the HFM. This change in morphology was likely caused by lipemia-

induced osmotic forces imposed on the RBC. Interestingly, microcytes have been reported to 

exhibit less deformability and a tendency to clump in the micro-circulation, suggesting 

potentially important functional consequences with regard to blood rheology, increased RBC 

density, and increased peripheral resistance [20]. In addition, acanthocytes and echinocytes 

were also detected following consumption of the HFM in most individuals. Structural 

alterations in protein band 3 have been associated with increased presence of acanthocytes 

[21], and MPO binding has been suggested to lead to the formation of echinocytes. Thus, the 

increased tyrosine nitration of band 3 post HFM, combined with the increase in RBC MPO, 

suggest multiple hits to the RBC each of which compromise its vaso-regulatory function. 

Indeed, even non-specific RBC clumping or aggregation in addition to impaired 

deformability has been suggested to mediate increased micro-vascular flow resistance and 

subendocardial ischemia in patients with angina [22]. Whether the alterations in RBC 

morphology identified in this study might have contributed to the impaired FMD is unknown 

and beyond the scope of this investigation. Future studies are certainly warranted to identify 

if changes in erythrocyte morphology contribute to changes in vascular health.

Monocytes patrol the circulation in search of diseased or senescent RBC; for example, those 

infected by blood-borne pathogens such as malaria [23]. This function of monocytes is 

crucial for proper immune surveillance and infection control. In fact, our study detected 

foamy monocytes after a single HFM (Fig. 2g). We also demonstrated that ingestion of the 

neutral fat triolein was sufficient to induce the release of MPO, and other inflammatory 

factors, from monocytic cells. Furthermore, increased MPO release was detected in 

monocytic cells, but not in neutrophilic cells, when exposed to oleic acid, the primary fatty 
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acid present in HFM, suggesting that monocytic cells are a major cell source for MPO 

release by HFM. Conceivably, RBCs that are sufficiently “remodeled” by the HFM might be 

mistakenly recognized by circulating monocytes as infected or damaged. Indeed, we 

recently reported that remodeled RBCs from mice fed a chronically high-fat diet were avidly 

taken up by macrophages in vitro, triggering proinflammatory gene expression and cytokine 

production [11]. Moreover, when injected in vivo, the remodeled RBCs were avidly taken up 

by the spleen, and when incubated in vitro, they provoked increased monocytic cell binding 

to the vascular endothelium. The presence of acanthocytes following the HFM is consistent 

with the homing and escape of damaged RBCs to and from the spleen. Collectively, these 

findings suggest that the immune system may be capable of recognizing and responding to 

RBCs that are remodeled by consumption of the HFM, analogous to the “molecular 

mimicry” induced by oxidized lipid epitopes in atherosclerosis [24].

Role of MPO and clinical relevance

Plasma MPO levels have been linked to risk of acute coronary syndrome in several studies 

[8, 25, 26]. A transient increase in MPO, consequent to a single HFM, is not likely to be 

harmful to an otherwise healthy individual free of underlying atherosclerosis. However, 

uptake of MPO into a diseased coronary artery could potentially contribute to destabilization 

of vulnerable plaques [8]. Our ex vivo data show that MPO uptake in porcine coronary 

artery was augmented by treatment with free fatty acids, which have been shown to promote 

endothelial dysfunction [17]. MPO is known to bind to endothelial cells and accrues in the 

vascular matrix via endothelial transcytosis [27], but whether this process may be perturbed 

by fatty acids is unknown. Further in-depth studies are required to determine whether fatty 

acids augment vascular MPO uptake through the endothelium and/or by transcellular or 

paracellular pathways. Nevertheless, it is clear that the single HFM significantly increased 

plasma and RBC-bound MPO (Fig. 4) and promoted MPO-mediated oxidative modification 

of HDL (Fig. 1). These data suggest that HFM can transiently increase circulating MPO 

levels and potentially promote MPO uptake into the vascular wall, which in turn could 

contribute to oxidative stress, plaque destabilization, and acute coronary syndrome.

Inflammatory consequence of the HFM

HFMs have been demonstrated to transiently increase circulating chemokine levels in 

humans [28]. Moreover, chronic high-fat feeding in mice promotes an increase in chemokine 

binding to RBC DARC [11]. In the present study, and in contrast to prior reports [10], a 

single HFM was insufficient to induce changes in pro-inflammatory chemokines or sVCAM 

levels in this young, non-obese cohort. The reason for this discrepancy is unclear. However, 

given that we only tested a single post-prandial time point (4 h) following consumption of 

the HFM, it is possible that a transient increase in chemokines was not detected. Indeed, 

monocytic cells exposed in vitro to lipid produced measurable levels of TNF-α and IL-8, 

consistent with inflammatory activation (Fig. 4c). However, the 4 h time point employed in 

the in vivo study was specifically chosen based on data from prior published studies, which 

demonstrated elevated chemokine levels. More likely, the single HFM did not evoke a 

measurable chemokine response in this cohort because all participants were young, non-

obese, and exceptionally fit as evidenced by the high peak VO2 values (Table 1). Predictably, 

these subjects were highly insulin sensitive and exhibited a very low level of basal adipose 
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tissue and systemic inflammation, so that the HFM challenge was well tolerated. In fact, 

published data from our team indicate an equivocal vascular response to an HFM between 

active and sedentary men [2]. Nonetheless, ESR, a general marker of inflammation, was 

increased following the HFM (Fig. 2a). The elevated ESR might have been due to increased 

plasma viscosity resulting from the HFM, which may in turn have been related to changes in 

the RBC membrane. Both inflammation and viscosity are believed to be mechanistically 

linked to destabilization of coronary atheromatous plaques leading to myocardial infarction 

[29].

Erythrocyte-induced ROS

Impaired FMD induced by the HFM is thought to be mediated by post-prandial lipemia and 

elevated ROS, both of which can diminish NO bioavailability [30]. In the present study, we 

detected a significant increase in intracellular RBC ROS following the consumption of a 

single HFM. Although the source of the ROS and the specie(s) of free radicals remains to be 

determined, RBCs are particularly susceptible to oxidative stress due to their high content of 

unsaturated lipids and O2 [31]. Importantly, we also showed that the increased ROS post 

HFM was sufficient to induce oxidative RBC damage as measured by tyrosine nitration of 

band 3 (Fig. 4). Oxidative damage to the RBC has been implicated in the disruption of the 

cytoskeletal network, resulting in complexes between spectrin, oxidized hemoglobin, and 

band 329. Disruption of the cytoskeleton has in turn been shown to impair membrane 

deformability and impede RBC passage through microcirculation, which may produce 

detrimental effects on blood flow. Increases in non-fasting circulating cholesterol/

triglycerides and endothelial dysfunction have been identified as risk factors for 

atherosclerosis, which raises the possibility that RBC-induced ROS provoked by the HFM 

could also be a contributory factor [15].

Consumption of a single HFM, but not an ICM, resulted in a significant increase in 

circulating concentrations of total cholesterol, triglycerides, and free fatty acids (Table 2), 

findings that are in line with what has previously been reported [15]. In addition, the HFM 

resulted in a reduction in brachial artery FMD, which has been associated with increased 

risk of atherosclerotic cardiovascular disease [32]. Taken together, our findings may provide 

insight into the risk of acute coronary syndromes occurring following consumption of 

copious, fat-enriched meals. This may be particularly important to emphasize given the 

controversy surrounding the association between chronic fat consumption and 

cardiovascular disease, which has led some professionals to recommend relaxing restrictions 

on dietary fat intake [33, 34]. Unfortunately, patients might interpret such recommendations 

to mean that consuming fatty foods, no matter what the amount, is not harmful. Based on the 

present findings, the potential risk of “binge” HFM may be greater than previously 

recognized for patients with coronary artery disease, akin to the risk of other binge habits 

such as alcohol consumption.

In conclusion, we demonstrate for the first time in humans that a single HFM can induce 

pathological RBC remodeling and oxidative stress, in conjunction with elevations in plasma 

and RBC-bound MPO. Remarkably, the single HFM was sufficient to promote MPO-

mediated HDL oxidation. Together, these findings shed novel insight into the mechanisms 
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whereby consumption of heavy meals enriched in fat may promote destabilization of 

vulnerable plaques leading to acute myocardial infarction.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Quantification of oxidized HDL modifications before and after the HFM and ICM. HDL 

was interrogated in EDTA anticoagulated plasma using ELISA with IgG raised against 

MPO-oxidized HDL (Cl-HDL). Other modified sites (HNE and MDA) were also detected 

by ELISA (Generon). a High-fat pre, b High-fat post, c ICM pre, d ICM post. *Significant 

from HFM pre and ICM (n = 10 HFM, n = 6 ICM)
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Fig. 2. 
Changes in erythrocyte morphology and blood monocytes following HFM. a Effects of 

HFM and ICM on changes in erythrocyte sedimentation rate. Effects of ICM (b) and HFM 

(c–e) on RBC morphology. Note the appearance of microcytosis (c), acanthocytosis (d), and 

echinocytosis (e) following HFM. Foamy monocytes (f) and lipid-laden monocytes (g) post 

HFM. b–e ×400 magnification, f–g ×1000
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Fig. 3. 
Effects of HFM and ICM on levels of ROS and oxidative stress in RBCs. a Intracellular ROS 

were detected in washed RBCs loaded with the probe CM-H2DCFDA and subjected to flow 

cytometry. Representative histograms show a positive shift in fluorescence 4 h post HFM 

(left), while there was no significant shift following ICM (right). b Quantification of the fold 

change in fluorescence post meal. Each dot represents an individual subject value, and the 

horizontal lines denote the mean values (n = 10 HFM, n = 8 ICM). Tyrosine nitration of 

band 3 isolated from RBC membranes was increased in HFM group (c), while no change 

was observed in ICM group (d). *Significant from ICM. †Significant from Pre-meal (n = 6)
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Fig. 4. 
Changes in MPO activity following the HFM and ICM and monocitic exposure to neutral 

fat. a Individual plasma MPO activity levels before (pre) and after (post) the HFM and ICM. 

b Pre and post plasma MPO activity following the HFM (top) and ICM (bottom) in EDTA or 

heparin anticoagulated samples. c Relative changes in MPO activity and inflammatory 

marker expression (ELISA) in response to THP-1 monocyte exposure to neutral fat for 4 h. 

*Significant from pre. **Significant from untreated. †Significant from EDTA post (n = 6)
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Fig. 5. 
Effects of free fatty acids on MPO uptake by porcine coronary artery. Porcine coronary 

arterial rings were exposed to varying concentrations of a bovine serum albumin-conjugated 

sodium palmitate or oleic acid for 4 h, or to b 300 μM sodium palmitate or oleic acid for 

variable durations, followed by incubation with purified human MPO (100 nM) for 2 h. 

MPO activity in the arterial rings was then quanti-fied. *Significant from vehicle treatment 

(n = 3)
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Table 1

Participant characteristics

Variable

N 10

Age (years) 26 ±3

Height (cm) 184±7

Weight (kg) 83.8 ± 14.6

BMI (kg/m2) 24.7 ± 3.9

SBP (mm Hg) 117±12

DBP (mm Hg) 65 ±4

Body fat (%) 22.5 ± 4.2

Framingham risk score −5.9 ± 2.7

VO2 peak (ml/kg/min) 56.7 ± 9.4

Values are mean ± SD

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure
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Table 2

Blood testing following the high fat and iso-caloric meals

Variable PreHFM Post HFM Pre ICM Post ICM

Total cholesterol (mg/dl) 162±12 173 ±14
a 148±9 146 ± 10

HDL (mg/dl) 48 ± 5 49 ± 5 47 ± 5 46 ±5

LDL (mg/dl) 100±9 86 ±12 92 ± 7 85 ±4

Triglycerides (mg/dl) 87 ±12 211 ±42
a 83 ± 6 98 ±5

Free fatty acids μm/l) 135±15 203 ±12
a 109 ± 17 40± 11

Glucose (mg/dl) 90 ± 3 86 ± 2 90 ± 2 85 ±6

Values are mean ± SEM

HDL high density lipoprotein, LDL low density lipoprotein

a
Significant from pre HFM
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Table 4

Erythrocyte morphology change score following the HFM and ICM

Erythrocyte scoring summary

Acanthocytes Echinocytes MCVe

Change following HFM 2+ 3 74 [63.0, 80.7]

Change following ICM ND ND 97 [86.0, 103]

Values are presented as mean of observer scores with “+” indicating averaged value fell between 2 and 3. MCVe values are shown as median with 

[interquartile range]

ND none detected
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