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Hepatocyte gene expression and DNA methylation as
ancestry-dependent mechanisms in African Americans
C. S. Park 1, T. De1, Y. Xu1,2, Y. Zhong1, E. Smithberger1,3, C. Alarcon1, E. R. Gamazon4,5,6 and M. A. Perera 1*

African Americans (AAs) are an admixed population with widely varying proportion of West African ancestry (WAA). Here we report
the correlation of WAA to gene expression and DNA methylation in AA-derived hepatocytes, a cell type important in disease and
drug response. We perform mediation analysis to test whether methylation is a mediator of the effect of ancestry on expression.
GTEx samples and a second cohort are used as validation. One hundred and thirty-one genes are associated with WAA (FDR < 0.10),
28 of which replicate and represent 220 GWAS phenotypes. Among PharmGKB pharmacogenes, VDR, PTGIS, ALDH1A1, CYP2C19,
and P2RY1 nominally associate with WAA (p < 0.05). We find 1037 WAA-associated, differentially methylated regions (FDR < 0.05),
with hypomethylated genes enriched in drug-response pathways. In conclusion, WAA contributes to variability in hepatocyte
expression and DNA methylation with identified genes previously implicated for diseases disproportionately affecting AAs,
including cardiovascular (PTGIS, PLAT) and renal (APOL1) disease, and drug response (CYP2C19).
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INTRODUCTION
African Americans (AAs) are an admixed population, having
varying proportions of African and European ancestry across
individuals.1 As a consequence of their West African ancestry
(WAA), AAs have more genetic variation and shorter extent of
linkage disequilibrium than European ancestry populations, with
the proportion of WAA varying greatly across self-identified AAs.2

The variability in the proportion of admixture in AAs may aid in
explaining differences in hepatocyte gene expression and DNA
methylation patterns that cannot be elucidated in homogeneous
populations such as those of European-only ancestry. For example,
WAA has been shown to predict a stronger inflammatory response
to pathogens compared to those of European ancestry due to
recent selective pressures specific to this population.3

Furthermore, AAs suffer disproportionately from many chronic
diseases and adverse drug reactions, as compared to other
populations,4,5 as well as being protected from some conditions.
As an example, AAs have a higher risk of cardiovascular events
and negative outcomes to therapy such as the antiplatelet drug
clopidogrel.6 They have higher incidences of death and disability
from cardiovascular diseases (CVDs), thrombosis, renal dysfunction
and pathologies, diabetes, cancers, and other metabolic dis-
orders.7–15 Conversely, they have lower prevalence of disease such
as testicular cancer.16 Differences in gene expression may help
explain these observed differences.
Owing to the key role of the liver in biosynthesis, drug

metabolism, and complex human diseases, genetic and epigenetic
differences in the liver may be used to uncover the underlying
causal genes responsible for chronic diseases that disproportio-
nately affect AAs.17,18 Thus comprehensive mapping of liver
expression quantitative trait loci (eQTLs) proposed several
candidate susceptibility genes associated with type I diabetes,
coronary artery disease and plasma cholesterol levels in a white
cohort.19 More recently, finer-resolution mapping of liver eQTLs,

combining both gene expression data with histone modification-
based annotation of putative regulatory elements, identified 77
loci found to associate with at least one complex phenotype.20 In
addition, our group has previously shown that studies specifically
investigating the AA-specific genetic variants can reveal
population-specific risk factors that may explain differences in
drug response, such as African ancestry-specific genetic risk
factors associated with a higher risk of bleeding from warfarin
therapy in AAs,12 as well as population-specific variants associated
with increased risk of thrombotic disease.21

Rather than identifying disease susceptibilities through
genome-wide association studies (GWAS), here we use the
association of genomic ancestry to gene expression and DNA
methylation to uncover potential drivers of disease and drug
response that may explain differences in disease and drug
response in AAs. Of the genes we identified, many are known to
be dysregulated in diseases that disproportionately affect AAs,
and others are associated with drug metabolism.

RESULTS
Cohorts
Sixty primary hepatocyte cultures, procured from self-identified
AAs, passed all quality control (QC) steps and were used for RNA-
sequencing (RNA-seq) analysis (Fig. 1). Fifty-six hepatocyte
cultures were assayed for DNA methylation, with 44 used in the
final methylation analysis (Fig. 1). We obtained genome-wide
genotyping data on 153 subjects from the Genotype-Tissue
Expression Project (GTEx) liver cohort, version 7, of which 15 AAs
were used as a replication cohort (Fig. 1).22 All 60 of our AA
hepatocyte cohort were confirmed as having WAA ranging from
41.8% to 93.7%, and 15 subjects in the GTEx liver cohort met the
WAA inclusion criteria with WAA ranging from 75.6% to 99.9%
(Supplementary Fig. S1). As a quantification of African ancestry,
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WAA and principal component 1 (PC1) were highly correlated
(Supplementary Fig. S2, Pearson correlation=−0.999). The
Innocenti Liver Replication Cohort consisting of 23 AAs and 183
European Americans (EAs) was also used to validate our findings
from the Hepatocyte Discovery Cohort (Fig. 1). Table 1 shows the
demographics of each cohort. The GTEx Replication Cohort and
the Innocenti Validation Liver Cohort are comparable to the
Hepatocyte Discovery Cohort, but there are differences across
groups in age (p= 0.0280, specifically between Hepatocyte
Discovery Cohort and GTEx Replication Cohort, p= 0.0409), as
well as sex (p= 0.0439) (Table 1). Importantly, there were no
differences in proportion of WAA between the cohorts (Table 1).

Genes expressed in hepatocytes and pharmacogenes associated
with African ancestry
Association analysis of RNA-seq gene expression traits in the
Hepatocyte Discovery Cohort with percentage WAA identified 131
genes, for which gene expression traits were significantly
associated with WAA (Supplementary Data S1; Fig. 2a, false
discovery rate (FDR) < 0.10). We were able to replicate 28 of these
genes in the independent Innocenti Liver Validation Cohort as
differentially expressed (DE) between AAs and EAs in the liver23

(Table 2; Fig. 2d, p < 0.05). These 28 validated genes are associated
with 220 reported and mapped disease and measurement traits
that have been curated in the NCBI GWAS catalog.24 Of these, 118
are unique diseases or traits (Supplementary Data S2).24 The
phenotypic disease and quantitative GWAS traits associated with
WAA include blood and blood pressure measures, coronary heart

and artery disease, diabetic blood measures, chronic inflammatory
disease, chronic kidney disease, and various cancers.
In the GTEx Liver Replication Cohort of 15 AAs, we were able to

replicate 8 of the 131 significant WAA-associated genes: DHODH
(effect size [confidence interval (C.I.)]= 3.19 [0.03, 6.34], p= 0.048),
GPI (effect size [C.I.]=−3.46 [−6.88, −0.04], p= 0.048), HSD17B7P2
(effect size [C.I.]=−9.22 (−17.0, −1.44], p= 0.027), PLCL2 (effect
size [C.I.]=−5.76 [−11.38, −0.15], p= 0.046), SLC2A3 (effect size
[C.I.]=−5.95 [−11.17, −0.73], p= 0.032), TRIM39 (effect size [C.I.]
= 5.53 [0.75, 10.30], p= 0.030), VEGFA (effect size [C.I.]=−4.74
[−8.93, −0.56], p= 0.032), and COL26A1 (effect size [C.I.]=−7.13
(−13.67, −0.60], p= 0.03), where the effect size represents fold
change of the corresponding gene’s expression with increased
African ancestry (Supplementary Data S1).
Owing to the importance of the liver in pharmacologic drug

response, we conducted a secondary subset analysis to investigate
the role of ancestry on gene expression in important pharmaco-
genes. In this analysis, we used a subset of genes belonging to the
very important pharmacogenes (VIP) reported in PharmGKB. These
64 VIP genes are known to be expressed in hepatocytes, and
owing to the reduced multiple testing burden, we considered a
nominal p < 0.05 suggestive of significance. The VIP genes
represent drug-metabolizing enzymes, transporters, and drug
target genes that are well established for their roles in drug
response.25 Testing the association between WAA and gene
expression in the VIP genes identified five genes that were
significantly associated with WAA: VDR (effect size= 0.35, p=
0.003), PTGIS (effect size=−0.57, p= 0.002), ALDH1A1
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Fig. 1 Flowchart outlining each cohort use in the analyses. a Hepatocyte Discovery Cohort from AA primary hepatocyte cultures were RNA-
sequenced and assessed for DNA methylation. b The GTEx Liver Replication Cohort was comprised of AA liver samples with available
genotype and gene expression data. c Innocenti Liver Validation Cohort was comprised of liver samples from both EAs and AAs obtained
through GEO (accession GSE124076), in which differential gene expression was used to validate findings from the Hepatocyte
Discovery Cohort
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(effect size= 1.03, p= 0.032), CYP2C19 (effect size=−1.36, p=
0.032), and P2RY1 (effect size= 1.61, p= 0.002 (Fig. 2b).

DNA methylation patterns in hepatocytes are associated with
African ancestry
To identify differentially methylated (DM) regions (DMRs) and
CpGs associated with WAA, we performed linear regression on
each CpG site.26 We identified 23,317 significant DM CpG sites, out
of a total of 867,531 probes on the Illumina EPIC BeadChip
microarray, annotated to 11,151 unique genes (Supplementary
Fig. S3a; Benjamini–Hochberg (BH)-adjusted p < 0.05). These DM
CpGs correspond to 1037 DMRs annotated to 1034 unique genes
(Supplementary Fig. S3b; minimum FDR < 0.0001). Each DM CpG
site was categorized into hypermethylated (HyprM) and hypo-
methylated (HypoM) sites: 15,404 HyprM CpG sites constituted
435 HyprM DMRs, mapping to 432 unique genes; 7913 HypoM
CpG sites constituted HypoM 602 DMRs, mapping to 602 unique
genes; and 7 annotated genes had both HyprM and HypoM DMRs.
As compared to all CpG sites tested, the gene body (45.0% vs

40.9%, p < 0.0001, chi-squared test) and shelf (8.4% vs 6.9%, p=
0.011, chi-squared test) had significantly higher proportions of DM
CpGs, while the promoter (18.4% vs 20.3%, p < 0.002, chi-squared
test), intergenic regions (IGR) (24.2% vs 27.7%, p < 0.0001, chi-
squared test), and shore regions (16.3% vs 18.2%, p < 0.0022, chi-
squared test) had significantly lower proportions of DM CpGs. In
our analysis of DM loci associated with WAA, 75.9% of DM CpG
sites within islands were HypoM, while the shore, shelf, and open
sea were predominantly HyprM (65.5%, 81.7%, and 78.9%
respectively; Supplementary Fig. S3c). Within transcriptionally
regulated promoter regions, 54.0% of CpG sites were HypoM
(Supplementary Fig. S3d).
Within the promoter, 71.5% of DM CpGs were HypoM 200 kb

upstream of the transcription start site (TSS), while 42.9% of DM
CpGs were HypoM 1500 kb upstream of the TSS (Supplementary
Fig. S3d). DNA methylation around TSS is an established predictor
of gene expression, with increased methylation leading to
decreased expression.27,28 In the gene body, 73.0% of DM sites
were HyprM (Supplementary Fig. S3d). IGR, 5’-untranslated region
(UTR), and 3’-UTR were predominantly HyprM (67.5%, 64.0%, and
79.6% respectively).
Next, we characterized the locations of WAA-associated CpGs

by genomic features and gene annotations. Within the 7913
HypoM CpG sites associated with WAA, there was a greater
proportion of HypoM CpGs located in islands compared to HyprM
CpG sites (15.1% vs 4.8%, p < 0.0001, chi-squared test; Supple-
mentary Fig. S3c). Within the 15,404 HyprM CpGs associated with
WAA, there was a greater proportion of HyprM CpGs compared to
HypoM CpGs in the open sea regions (43.8% vs 11.7%, p < 0.0001,
chi-squared test), shelf (6.9% vs 1.5%, p < 0.0001, chi-squared test),

and shore (10.6% vs 5.6%, p < 0.0001, chi-squared test) (Supple-
mentary Fig. S3c). By genomic annotation, the promoter had
greater proportion of HypoM CpG sites (46.0% vs 54.0%, p <
0.0001, chi-squared test), while the gene body (72.9% vs 27.1%,
p < 0.0001, chi-squared test), IGR (67.5 vs 32.5%, p < 0.0001, chi-
squared test), 5’-UTR (63.9% vs 36.1%, p < 0.0001, chi-squared
test), and 3’-UTR (79.5% vs 20.5%, p < 0.0001, chi-squared test) had
greater proportions of HyprM CpG sites (Supplementary Fig. S3d).

Gene expression trait correlation to WAA-associated DNA
methylation patterns
To determine the relationship of WAA-associated DMRs with gene
expression traits, we looked at the association of the 1034 unique
genes corresponding to the 1037 DMRs with their respective gene
expression profiles. Although there was no correlation of WAA-
associated HyprM gene regions with gene expression (Fig. 2c,
Pearson’s r= 0.036, p= 0.55), HypoM gene regions associated
with WAA were negatively correlated with gene expression (Fig.
2c, Pearson’s r=−0.14, p= 0.009). In general, all genes within
DMRs associated with WAA also showed negative correlation
between gene expression and methylation (Pearson’s r=−0.1, p
= 0.013).
From the 131 gene expression traits significantly associated

with WAA, we identified an overlap of ten DM gene regions
(Supplementary Data S3a). Of these ten, five genes (COL26A1,
HIC1, MKNK2, RNF135, and TRIM39) showed concordant directions
of effect (e.g., increased methylation leading to decreased gene
expression). To determine whether methylation mediated the
association of WAA to gene expression in these five genes, we
performed mediation analysis. We found that the expression of
two of these genes was mediated by methylation: COL26A1
(mediated effect= 2.336, 95% C.I.= 0.563–4.39, p < 2E−16) and
MKNK2 (mediated effect= 1.095, 95% C.I.= 0.016–2.61, p= 0.046)
(Supplementary Data S3b and S3c). A comprehensive Circos plot
summarizes these findings: 23,317 HypoM and HyprM CpG sites,
1037 DMRs, 131 genes significantly associated with WAA, and 220
GWAS disease traits from the GWAS Catalog that are associated
with the 28 validated genes (Fig. 3, Supplementary Data S1).

Functional representation of WAA-associated genes and DM
genes associated with African ancestry
To understand the biological relevance of differentially HyprM and
HypoM genes associated with WAA, we performed Gene Ontology
(GO) analysis of the 432 unique genes comprised of the 435
HyprM DMRs and 602 unique genes comprised of the 602 HypoM
DMRs using a gene panel of all annotated genes in the GO
database. HyprM genes are enriched for “cell development” (BH-
adjusted p= 0.0016) and “apoptotic process” (BH-adjusted p=

Table 1. Demographics and clinical characteristics of hepatocyte/liver cohorts

Hepatocyte Discovery Cohort GTEx Liver Cohort Innocenti Validation Liver Cohort

RNA-Seq cohort Methylation cohort

Variable AA (n= 60) AA (n= 44) AA (n= 15) AAa and EAb (n= 206)

Percentage of AA subjects (%) 100 100 100 11.1

Age, yearsc (mean ± SD) 39 ± 20.5 46 ± 12.2 54.5 ± 6.6 46 ± 22

Sex (female %)d 48.3 52.3 20 36.4

West Africane ancestry (%) (mean ± SD) 78.17 ± 12.86 79.83 ± 11.86 84.04 ± 7.13 NA

aAA: African Americans >40% WAA
bEA: European Americans with <1% WAA
cp= 0.0280 for age (between groups, one-way ANOVA), p= 0.0409 (between RNA-Seq and GTEx Liver cohorts)
dp= 0.0439 for sex
ep= 0.2331 for ancestry

C.S. Park et al.

3

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2019)    29 



0.0076) within the ontology of biological processes (Fig. 4a).
HypoM genes were enriched for “system development” (BH-
adjusted p= 4.0 × 10−6), “response to drug” (BH-adjusted p=
1.7 × 10−4), and “response to hypoxia” (BH-adjusted p= 0.0068)
within the ontology of biological processes (Fig. 4b). In addition,
HypoM genes are enriched for “sequence-specific DNA binding”
(BH-adjusted p= 4.4 × 10−5) and “RNA polymerase II transcription
factor activity” (BH-adjusted p= 4.4 × 10−5) within the ontology of
molecular functions (Fig. 4b).
With respect to GO analysis of the 131 WAA-associated gene

expression traits in hepatocytes (FDR < 0.10), “angiogenesis” (BH-
adjusted p= 4.5 × 10−5), “leukocyte activation involved in immune
response” (BH-adjusted p= 4.5 × 10−4), “acute-phase response”
(BH-adjusted p= 0.0011), “positive regulation of endothelial cell
proliferation” (BH-adjusted p= 0.0055), “zymogen activation” (BH-
adjusted p= 0.0059), and “cell proliferation” (BH-adjusted p=
0.0085) were biological processes that showed significant enrich-
ment (Fig. 4c). Molecular functions, including “oxidoreductase
activity” (BH-adjusted p= 9.6 × 10−4), “signaling receptor binding”
(BH-adjusted p= 0.0023), “glucocorticoid receptor binding” (BH-
adjusted p= 0.0045), and the KEGG pathway “HIF-1 signaling

pathway” (BH-adjusted p= 8.2 × 10−4), were also enriched
(Fig. 4c).

DISCUSSION
Several studies have shown that the first several PCs of
methylation data can capture population structure in cohorts
composed of European and African ancestry individuals.29

Recently, it was shown that genetic ancestry can be used as a
proxy for uncovering unknown covariates contributing to epistatic
and gene–environment interactions in both gene expression and
DNA methylation data.30 A recent study reported that approxi-
mately 75% of variation in DNA methylation was attributable to
shared genomic ancestry.31 This variability in epigenetic pro-
cesses, accounted for by ancestry, however, may include a genetic
component, demographic history (e.g., Transatlantic migration),
environmental exposures, and a disease-altered component.
Moreover, clinically meaningful measures can be associated with
the proportion of WAA, as has been shown for lung function
prediction.32

Fig. 2 Gene expression traits and methylation patterns associated with West African ancestry in hepatocytes. a Enhanced volcano plot of
gene expression traits associated with increasing WAA plotted against −log10 p values of all 18,854 genes expressed in hepatocytes and 131
genes significantly associated with WAA represented as red and blue circles (red circles: FDR < 0.05 and logFC > 1.5 and <−1.5; blue circles:
FDR < 0.05 and logFC < 1.5 and >−1.5; green circles: FDR > 0.05 and logFC > 1.5 and <−1.5, gray circles: FDR > 0.05 and logFC < 1.5 and >−1.5)
and b enhanced volcano plot of gene expression traits associated with increasing WAA plotted against −log10 p values within the subset of 64
PharmGKB “very important genes” (red circles: p < 0.05 and logFC > 1.0; blue circles: p value < 0.05 and logFC < 1.0; gray circles: p value > 0.05).
c Correlation of 1034 unique genes containing DMRs significantly associated with WAA (mean Beta fold change from DMRcate) with
coefficient of gene expression at each gene (indicating the direction of association to ancestry). Each point represents a gene, with gray
triangles representing hypomethylated genes (Pearson’s r=−0.014, p= 0.009) and maroon red circles representing hypermethylated genes
(Pearson’s r= 0.036, p= 0.55). Gray and maroon hash marks on the x- and y-axis represent genes plotted with both expression and
methylation values. Gray and maroon shading around each regression line represents the C.I. 95%. d Q–Q plot of the observed versus
expected −log10 p values in the replication cohort (n= 206). Each point represents a gene with the colored lines representing different FDR
thresholds of significance
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In our study, we investigated population-specific gene expres-
sion and DNA methylation in AAs, an admixed population. We
found HypoM genes, which indicate increased gene expression,
are enriched for “system development” and “response to drug.”
HypoM, or demethylation, may be a better predictor of gene
expression than methylation, which, in contrast to demethylation,
may or may not affect gene expression depending on the gene
region methylated or the pattern of methylation. For example,
methylation within the TSS of the promoter is well known to
repress gene expression while methylation within the gene body
results in more variable expression.28,33

Among gene expression traits associated with WAA, we
identified enrichment for genes within the angiogenesis pathway,
as well as inflammatory response categories including “leukocyte
activation in immune response,” “acute-phase response,” “positive
regulation of vascular endothelial proliferation,” “zymogen activa-
tion,” and “cell proliferation.” Angiogenesis and inflammatory
response pathways may underlie conditions in which AAs may be
more susceptible, such as CVD and other chronic inflammatory

disease. In particular, APOL1, PTGIS, and PLAT expression levels,
which we show to be associated with WAA, have been shown to
increase CVD risk and renal disease in AAs.13,34,35 Other genes
associated with WAA include ALDH1A1, which is involved in
alcohol and aldehyde metabolism disorders and cancer risk11,36,37;
IL-33, which is involved in beneficial immune response,38–40 and
VEGFA, which has been linked to renal disease and microvascular
complications of diabetes.7,14,41,42 These findings will require
further validation to better elucidate the extent to which the
identified pathways affect diseases in AAs.
Of the 131 genes associated with WAA, we were able to

replicate a quarter within our GTEx Liver Replication Cohort and
the Innocenti Liver Validation Cohort (Table 2). We also identified
an overlap with five significantly DM genes with concordant
directions of effect, COL26A1, HIC1, MKNK2, RNF135, and TRIM39.
HIC1 is a potential tumor suppressor that has been linked to
poorer outcomes in laryngeal cancer in AAs.43,44 RNF135 is a ring
finger protein that is regulated by several population-specific
variants.45 RNF135, itself, then regulates other genes at distant loci
and has been implicated in glioblastomas and autism.45–47 Of
particular interest for African ancestry populations, RNF135 has
been found to be under selective pressure, specifically in African
populations.48,49

Among the PharmGKB VIP genes, we identified five genes
associated with WAA: ALDH1A1, CYP2C19, P2RY1, PTGIS, and
VDR.22,25 Of particular importance, we found that, for every 1%
increase in African ancestry, there was a corresponding 1.36%
decrease in CYP2C19 expression and 1.61% increase in P2RY1
expression. CYP2C19 is involved in the metabolism of many
commonly prescribed drugs, including clopidogrel, an antiplatelet
therapy widely used for thrombo-prophylaxis of CVDs and linked
to substantial inter-patient differences in drug response. It is also
known to inhibit the P2RY family of receptor proteins on the
surface of platelets.34,35,50,51 By inhibiting P2RY12 function,
clopidogrel indirectly suppresses platelet clustering and clot
formation and prevents clots contributing to heart attack, stroke,
and deep vein thrombosis.52–54 P2RY1 works in concert with
P2RY12 to promote platelet activation and aggregation.55 Conse-
quently, P2YR1 variants have been associated with increased
platelet response to adenosine 5’-diphosphate stimulation56 and
increased expression may be linked to thrombotic disease.57

Clopidogrel requires CYP2C19-mediated conversion to its active
form, but it has been shown that different populations have
different levels of CYP2C19 activity.12,58–61 The underlying
mechanism is multifactorial and genetic polymorphisms contri-
bute to variable drug response within an individual and across
populations.6,62,63 A study conducted across 24 U.S. hospitals
showed 1-year mortality rates of 7.2% in clopidogrel-treated AAs,
compared to 3.6% for Caucasians on clopidogrel.6 This study also
found that AAs were at a higher risk of cardiovascular events and
mortality from poor antiplatelet response to clopidogrel. Our
finding that CYP2C19 expression is reduced with WAA while P2RY1
expression is inversely increased suggests that clopidogrel
resistance and susceptibility of AAs to thrombotic disease may
be due to ancestry-associated gene expression as an underlying
mechanism.
Another WAA-associated gene was PLAT, for which gene

expression is decreased with increased WAA. The PLAT gene,
which is involved in plasminogen activation and encodes tissue
plasminogen activator (t-PA), is linked to thrombosis and
increased risk of CVD.64,65 In AAs, polymorphisms in PLAT have
been linked to CVD and higher levels of t-PA antigen have been
observed in both myocardial infarction and venous thromboem-
bolism.66 In addition, increased plasma fibrinogen level, which is
involved in the fibrinolytic pathway and regulated by t-PA, has
been linked to increased venous thrombosis risk in AAs.67,68

VDR is also important in health and disease because Vitamin D
and its active metabolite 1,25(OH)2D are exogenous hormones

Table 2. Significant and replicated DE genes between AAs and EAs
(p < 0.05) from a genome-wide discovery of genes associated with
West African ancestry (FDR < 0.10)

Geneb AA Hepatocyte Cohort DE in AA vs EAa

Effect size p FDR < 0.10 p < 0.05c

IL18 3.152 7.25E−05 0.0471 0.00000126

APOL1 −2.848 3.83E−05 0.0380 0.000202

VEGFA −2.246 4.91E−05 0.0421 0.000502

PARD3 0.437 1.86E−04 0.0773 0.000696

SAP30 −1.945 2.93E−04 0.0788 0.00167

LRRC37A2 −0.306 6.73E−04 0.0988 0.00249

ENO1 −1.007 1.89E−04 0.0773 0.00266

PGK1 −0.929 5.29E−04 0.0882 0.00268

DGCR5 2.192 1.62E−04 0.0751 0.00278

MRO 1.131 2.57E−05 0.0380 0.00282

GREM2 −2.191 6.86E−04 0.0988 0.00327

CYP21A2 −2.986 3.17E−04 0.0790 0.00385

CEBPB −1.454 6.36E−04 0.0967 0.00445

MAD2L1BP −0.505 3.04E−04 0.0790 0.00605

GPR4 −1.316 3.08E−04 0.0790 0.00706

RNF149 −0.833 2.37E−04 0.0788 0.00743

GPI −1.453 4.58E−05 0.0411 0.0123

SLC22A15 −1.271 6.86E−04 0.0988 0.0125

HIC1 −1.567 9.64E−06 0.0307 0.013

APOL2 −1.643 1.06E−04 0.0583 0.0134

MME 2.640 3.94E−04 0.0854 0.0137

MKNK2 −1.545 3.44E−04 0.0811 0.0262

MGRN1 −1.010 2.76E−04 0.0788 0.0313

C3orf33 0.506 6.45E−04 0.0973 0.0314

PTPN4 0.484 5.37E−04 0.0882 0.0321

NPR2 1.235 6.11E−05 0.0471 0.0444

MSX1 1.432 2.90E−04 0.0788 0.0448

PDK1 −2.038 6.30E−04 0.0966 0.0498

aReplication in differentially expressed (DE) genes between 23 African
Americans (AAs) and 183 European Americans (EAs)
bGenes with FDR < 0.1 in the Replication Cohort are shown in bold
cReplication p value (p < 0.05) based on 131 discovery genes (Supplemental
Data S1)
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created by sun exposure or through diet, with higher risk for
deficiencies in both Vitamin D and its bioactive metabolites in
AAs.69,70 Those of African ancestry are known to have lower
plasma 1,25(OH)2D levels. One potential mechanism may be the
upregulation of VDR with increased WAA to compensate for
these lower levels. However, focused studies would need to
confirm this hypothesis. In addition, VDR single-nucleotide
polymorphisms (SNPs) have been implicated in CVDs and
various cancer susceptibilities in AAs.8,9,15,71,72 SNPs within

VDR may contribute to an already deficient Vitamin D environ-
ment in AAs.
Several limitations exist in this study. First, we were limited by

the 60 primary hepatocyte cultures used in this analysis, which
reduced our power to detect small changes in gene expression
associated with ancestry. Second, the GTEx replication liver cohort,
with 15 AA livers, also lacked power to replicate our findings
(although we supplement this with a much larger Innocenti
Validation Liver dataset for differential expression analysis

Fig. 3 A Circos plot of significantly associated CpGs, DMRs, and gene expression traits associated with West African ancestry and GWAS
catalog traits associated with replicated gene expression traits. The innermost ring represents the 220 GWAS catalog traits associated with the
28 genes replicated in the Innocenti et al. dataset (p < 0.05) with each purple circle representing the scaled −log(p value) of a study from the
GWAS catalog. The second ring represents 83 genes associated with decreased expression with increased WAA (red bars represent fold
change, ranging from 0 to −6). The third ring represents 48 genes associated with increased expression with increased WAA (blue bars
represent fold change >1.5, ranging from 0 to +6). The fourth ring represents 1037 DMRs significantly associated with WAA (purple tiles
represent DMRs that stack when overlapping). The fifth ring represents 23,317 significant differentially methylated CpGs (black squares
represent 7913 hypomethylated CpG sites; orange circles represent 15,404 hypermethylated CpG sites; not all CpGs are depicted due to
reduced crowding implemented in the Circos program). The next ring represents the karyotype of the human genome (reference hg38) and
the outermost ring corresponds to the gene names of the 131 WAA-associated gene expression traits identified
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between AAs and EAs). Third, while most of the genes found in
the PharmGKB VIP subset analysis were not statistically significant
in the comprehensive genome-wide analysis, we found ALDH1A1
and PTGIS to be significantly associated with WAA in both the
genome-wide and in the 64 PharmGKB VIP analysis, and we
replicated 8 of the 131 significant WAA-associated genes in a GTEx
liver cohort of 15 AAs. More importantly, and the primary reason
for the low power in our dataset, or any other dataset available for
AAs, very few genome-wide datasets of both genotype and gene
expression exist for AAs, and those that do exist have similarly
under-powered cohort sizes.
Another differentiation, though not considered a limitation, was

that we used cultured hepatocytes as opposed to frozen liver
tissues, as was the case with GTEx. Primary cultures may show
differences in gene expression profiles from those seen in the
intact organ, which consist of approximately 60% hepatocytes.73

However, our study design has the advantage of assaying only the
gene expression of a single-cell type as opposed to the multiple-
cell types found in the liver. Previous studies have shown that
primary human hepatocytes show similar gene expression levels
for both Phase I (CYPs) and Phase II (e.g., UGTs) drug-metabolizing
enzymes to those obtained from frozen liver tissue.74,75 Also, the

use of primary hepatocyte cultures reduces the effect of
environmental confounders inherent in liver tissue (i.e., there is
less effect of previous drug/disease exposure) due to controlled
tissue culture processes following hepatocyte isolation. The
artifact of previous drug/disease exposures is typically present in
all transcriptome studies conducted in postmortem human liver
tissue. However, as with other studies, we too derived our cultures
from non-transplantable livers, which may bias our study to less
healthy individuals. Because of the anonymous nature of these
samples, we also lack clinical and environmental factors that may
affect gene expression.
Currently, genome-wide genetic, epigenetic, and multi-omics

datasets of AAs are generally lacking in both the scientific
literature and in public databases and repositories. Since
genomics studies should be inclusive of all populations to
comprehensively unravel disease etiology, the dearth of genetic
data in diverse and underrepresented populations poses a major
scientific and medical dilemma in new drug development,
precision medicine, and public health policies. An archetypal
example is the rs12777823 SNP in CYP2C9, which was found to
associate with lower warfarin dose requirement, but only in AAs.76

Fig. 4 Enrichment of biological processes and molecular functions of differentially methylated genes associated with West African ancestry
and corresponding gene expression traits. a Gene ontology terms that are enriched for biological processes (BP) and molecular functions (MF)
for 432 genes annotated to differentially hypermethylated regions, b 602 genes annotated to differentially hypomethylated regions, and c 131
genes with gene expression traits associated with WAA (FDR < 0.10). p Values are BH-adjusted p values obtained from gProfiler
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Findings, such as these, were only made possible due to focused
studies of an underrepresented minority patient population.
In conclusion, our study has important implications in the use of

genetic ancestry in understanding phenotypic differences and
health disparities in AAs. Our study also has major implications for
future investigations of genetic factors and potential for drug-
response outcomes in admixed populations. As evidenced by the
limited genome-wide data in AAs in public databases and
biobanks, our study further illustrates the need for inclusion of
diverse populations.

METHODS
Cohorts
A total of 68 AA primary hepatocyte cultures were used for this study. Cells
were either purchased from commercial companies (BioIVT, TRL, Life
technologies, Corning, and Xenotech) or isolated from cadaveric livers
using a modified two-step collagenase perfusion procedure.77 Liver
specimens were obtained through collaborations with Gift of Hope, which
supplies non-transplantable organs to researchers. In addition, we used
GWAS data for 153 subjects from GTEx release version 7; of the
153 subjects, 15 were identified as AA and used as a replication set. The
Institutional Review Board of Northwestern University has waived the need
for approval as this study used human samples obtained from deceased
individuals and was thus not considered human subjects’ research.

Primary hepatocyte isolation
Cadaveric livers obtained from Gift of Hope were transferred to the
perfusion vessel Büchner funnel (Carl Roth) and the edge was carefully
examined to locate the various vein and artery entries that were used for
perfusion. Curved irrigation cannulae with olive tips (Kent Scientific) were
inserted into the larger blood vessels on the cut surface of the liver piece.
The liver was washed by perfusion of 1 L Solution 1 (HEPES buffer, Sigma-
Aldrich), flow rate 100–400mL/min, with no recirculation, followed by
perfusion with 1 L of Solution 2 (EGTA buffer, Sigma-Aldrich), flow rate
100–400mL/min, with no recirculation. The tissue was washed to remove
the EGTA compound by perfusion of 1 L Solution 1, flow rate 100–400mL/
min, with no recirculation. The liver was digested by perfusion with
Solution 3 (collagenase buffer, Sigma-Aldrich), flow rate 100–400mL/min,
with recirculation. Following perfusion, liver section was placed in a
crystallizing dish (Omnilab) containing 100–200mL of Solution 4 (Bovine
Serum Albumin, Sigma-Aldrich). The Glisson’s capsule was carefully
removed and the tissue was gently shaken to release hepatocytes. The
cell suspension was then filtered by a 70-μm nylon mesh (Fisher Scientific),
and centrifuged at 72 × g for 5 min at 4 °C. The pellets contained
hepatocytes that were washed twice with Solution 4 and resuspended in
plating medium (Fisher Scientific).
For primary hepatocyte cultures, cell viability was determined by trypan

blue (Lonza) exclusion using a hemocytometer (Fisher Scientific).78 If
viability was low, Percoll gradient (Sigma-Aldrich) centrifugation of cell
suspensions was carried out to improve the yield of viable cells. Cell were
plated at a density of 0.6 × 106 cells/well in 500 µL InVitroGro-CP media
(BioIVT, Baltimore, MD) in collagen-coated plates with matrigel (Corning,
Bedford, MA) overlay and incubated overnight at 37 °C. Cultures were
maintained in InVitroGro-HI media (BioIVT) supplemented with Torpedo
antibiotic mix (BioIVT) per the manufacturer’s instructions. The media was
replaced every 24 h for 3 days. RNA was extracted after 3 days using the
RNAeasy Plus Mini-Kit (Qiagen) per the manufacturer’s instructions.

Genotyping and QC
DNA was extracted from 1–2 million cells from each hepatocyte line using
the Gentra Puregene Blood Kit (Qiagen) as per the manufacturer’s
instructions. All DNA samples were then bar-coded for genotyping. SNP
genotyping was conducted on the Illumina Multi-Ethnic Genotyping array
(MEGA) at the University of Chicago’s Functional Genomics Core using
standard protocols.
QC steps were applied, as previously described, with imputation info

metric threshold of >0.4.21 Briefly, a sex check was performed on
genotypes using PLINK (version 1.9) to identify individuals with discordant
sex information. Duplicated or related individuals were identified using
identity-by-descent method with a cutoff score of 0.125, which indicates

third-degree relatedness. A total of five individuals were excluded after
genotyping QC analysis. SNPs located on the X and Y chromosomes and
mitochondrial SNPs were excluded. SNPs with a missing rate of >5% or
those that failed Hardy–Weinberg equilibrium tests (p < .00001) were also
excluded.

African ancestry measurement
The genotypes of 68 primary hepatocytes and 153 GTEx subjects were
merged with HapMap phase 3 reference data from four global populations:
Yoruba in Ibadan, Nigeria (YRI); Utah residents with Northern and Western
European ancestry (CEU); Han Chinese in Beijing, China (CHB); and
Japanese in Tokyo, Japan (JPT).79 Population structure of the merged data
was inferred by the Bayesian clustering algorithm STRUCTURE deployed
within fastStructure v1.0 and performed without any prior population
assignment. We employed the admixture model, and the burn-in-period
and number of Markov Chain Monte Carlo repetitions were set to 20,000
and 100,000, respectively.80 The number of parental populations (K) was
set to 3, purporting three main continental groups (African, European, or
Asian). WAA percentages of the primary hepatocytes and GTEx subjects
were calculated as the probability of being grouped as Yoruba African,
Caucasian, and East Asian, respectively.80 All individuals in our 60 AA
cohort had WAA >40%.

GTEx replication liver cohort
Of the 153 GTEx liver IDs extracted from “GTEX_Sample_Attributes” file,
five were replicates and therefore removed from the analysis. Among the
remaining 139 unique liver IDs, 118 had available genotype information for
ancestry determination. Individuals with WAA >40% were included in the
GTEx AA Liver cohort. After WAA estimation, normalized gene expression
reads for 15 subjects meeting the ancestry inclusion criteria were extracted
from GTEx expression file (GTEx_Liver.v7.normalized_expression.bed). Age
and sex information of these subjects were extracted from the subject
phenotype file on the GTEx Portal site (GTEx_v7_Annotations_SubjectPhe-
notypesDS.txt). Genes were deemed replicated if they showed both
significant association with WAA (p < 0.05) and concordant direction of
effect.

Validation analysis in an independent liver transcriptome dataset
Gene expression and genotype information for the Innocenti Liver
Validation Cohort was obtained from the GEO database (Accession:
GSE124076). The gene expression profiling in the liver had previously been
conducted in 206 samples using Agilent-014850 4 × 44 k arrays
(GPL4133).23,81 These samples had come from donor livers not intended
for organ transplantation. Genotyping on these samples had been done
using the Illumina Human 610 quad beadchip platform (GPL8887) at the
Northwestern University Center for Genetic Medicine Genomics Core
Facility and imputation was subsequently performed using BIMBAM.82

Principal component analysis (PCA) was used to quantify ancestry using
the Human Genome Diversity Panel with African and European popula-
tions as reference, as previously described.23

We conducted differential expression analysis between the European
samples and the AA samples using Linear Models for Microarray Data
(limma) as implemented in the Bioconductor package.83 This Bayesian
methodology uses a “moderated” t-statistic from the posterior variance
assuming an inverse chi-squared prior for the unknown variance for a
gene. We used Bonferroni-adjusted p < 0.05 based on the total number of
genes that were tested for replication. Genes were deemed validated if
they were significantly DE between populations (p < 0.05) with a
concordant direction of effect (i.e., increased expression in AAs and
increased expression with higher WAA).

RNA-seq and QC
Total RNA was extracted from each primary hepatocyte culture after 3 days
in culture using the Qiagen Rneasy Plus Mini-Kit per the manufacturer’s
instructions. RNA-QC was performed using an Agilent Bio-analyzer and
samples with RNA integrity number scores >8 were used in subsequent
sequencing. RNA-seq libraries were prepared for sequencing using the
Illumina mRNA TruSeq RNA Sample Prep Kit, Set A (Illumina catalog # FC-
122-1001) according to the manufacturer’s instructions. The cDNA libraries
of 38 and 22 samples were prepared and sequenced using Illumina HiSeq
2500 and HiSeq 4000 machines, respectively, by the University of Chicago’s
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Functional Genomics Core to produce single-end 50 bp reads with
approximately 50 million reads per sample. Batch effects were corrected
for in QC below.
Quality of the raw reads was assessed by FastQC (version 0.11.2). Fastq

files with a per base sequence quality score >20 across all bases were
included in downstream analysis. Reads were aligned to human Genome
sequence GRCh38 and comprehensive gene annotation (GENCODE version
25) was performed using STAR 2.5. Only uniquely mapped reads were
retained and indexed by SAMTools (version 1.2). Nucleotide composition
bias, GC content distribution, and coverage skewness of the mapped reads
were further assessed using read_NVC.py, read_GC.py, and geneBody_-
coverage.py scripts, respectively, from RSeQC (version 2.6.4). Samples
without nucleotide composition bias or coverage skewness and with
normally distributed GC content were reserved. Lastly, Picard CollectRna-
SeqMetrics (version 2.1.1) was applied to evaluate the distribution of bases
within transcripts. Fractions of nucleotides within specific genomic regions
were measured for QC and samples with >80% of bases aligned to exons
and UTRs were considered for subsequent analysis.

RNA-seq data analysis
Post alignment and QC, reads were mapped to genes referenced with
comprehensive gene annotation (GENCODE version 25) by HTSeq (version
0.6.1p1) with union mode and minaqual= 20.84 HTSeq raw counts were
supplied for gene expression analysis using Bioconductor package DESeq2
(version1.20.0).85 Counts were normalized using regularized log transfor-
mation and PCA was performed in DESeq2. PC1 and PC2 were plotted to
visualize samples’ expression pattern. Three samples with distinct
expression patterns were excluded as outliers resulting in 60 samples
used in RNA-seq analysis. We calculated TPM (transcript per million) by first
normalizing the counts by gene length and then normalizing by read
depth.86 Gene expression values were filtered based on the expression
thresholds >0.1 TPM in at least 20% of samples and ≥6 reads in at least
20% of samples as performed by the GTEx consortium (https://gtexportal.
org, Analysis Methods, V7, updated 09/05/2017).
WAA percentage, gender, age, platform, and batch were used as

covariates for downstream analysis. Probabilistic estimation of expression
residuals (PEER) method v1.3 was used to identify PEER factors. Linear
regression was run on inverse normal transformed expression data with
five PEER factors as covariates, on the basis of GTEx’s determination of the
number of factors as a function of sample size.87,88 WAA-associated genes
were identified from a genome-wide list of 18,854 genes for our
hepatocyte-derived AA cohort samples and replicated in 21,730 genes
from the GTEx-derived AA cohort at FDR cutoff of 0.10. The top 131 genes
with an FDR < 0.10 were also replicated in the independent Replication
Cohort obtained from Innocenti et al. (GEO Accession number
GSE124076).23 To investigate whether our replicated gene set may inform
previous GWAS association findings, we downloaded NHGRI-EBI GWAS
Catalog file (v.1.0.2, 2019-03-22) and kept associations that passed the
genome-wide significant level (p < 5E−8). The 28 replicated genes were
then overlapped with the reported and mapped genes in this file to
identify GWAS-associated SNPs linked to our replicated genes.24 Unique
traits were identified by further filtering the Disease/Trait category from
this file to identify unique phenotypes that overlapped with the replicated
genes. FDR calculations from linear regressions on gene expression were
conducted with the “p.adjust” function in R and the default method of “fdr”
was used.
In addition, we also conducted a subset analysis with 64 PharmGKB

“VIPs.” These genes have extensive literature support for association with
drug responses. We used a nominal p value cutoff of 0.05 due to the
smaller number of genes being tested.

Methylation sample preparation and data analysis
DNA was isolated from hepatocytes or liver tissue. Liver tissue was
homogenized in a bead mill (Fisher Scientific) using 2.8 mm ceramic beads.
Then DNA from hepatocytes or liver was extracted with the Gentra
Puregene Blood Kit (Qiagen) as per the manufacturer’s instructions. One
microgram of DNA was bisulfite converted at the University of Chicago
Functional Genomics Core using standard protocols. CT-conversion was
performed using Zymo-Research EZ DNA Methylation Kits and further
processed for array hybridization using Illumina provided array reagents.
Following hybridization, the arrays were stained per the manufacturer’s
protocol and analyzed using an Illumina HiSCAN. Of the 60 available

hepatocyte cultures, only 56 produced sufficient bisulfite-converted DNA
for analysis.
Illumina MethylationEPIC BeadChip microarray (San Diego, Ca, USA),

consisting of approximately 850,000 probes, predefined and annotated,89

and containing 90% of CpGs on the HumanMethylation450 chip and with
>350,000 CpGs regions identified as potential enhancers by FANTOM590

and the ENCODE project,91 was used for methylation profiling of DNA
extracted from 56 AA hepatocytes that overlapped the samples used for
gene expression analysis. Raw probe data were analyzed using the ChAMP
R package for loading and base workflow,26 which included the following R
packages: BMIQ for type-2 probe correction method;92 ComBat for
correction of multiple batch effects including Sentrix ID, gender, age,
slide, and array;93,94 svd for singular value decomposition analysis after
correction;95 limma to perform differential methylation analysis on each
CpG site with WAA as a numeric, continuous variable;96 DMRcate for
identification of DMRs, using default parameters, and the corresponding
number of CpGs, minimum FDR (minFDR), Stouffer scores, and maximum
and mean Beta fold change values;97 minfi for loading and normalization;98

missMethyl for gometh function for GSEA analysis;99 and FEM for detecting
DM gene modules.28

Methylation data QC in ChAMP’s champ.load() and champ.filter() function
removed the following probes: 9204 probes for any sample that did not
have a detection p value <0.01 and thus considered as a failed probe, 1043
probes with a bead count <3 in at least 5% of samples, 2975 probes with
no CG start sites, 78,753 probes containing SNPs,100 49 probes that align to
multiple locations as identified by Nordlund et al.,101 and 17,235 probes
located on X and Y chromosomes. Threshold for significantly DM probes
was set at BH-adjusted p value of 0.05 for multiple testing, as implemented
in the limma package. Significance for DMRs was set at adjusted FDR < 0.05
in the DMRcate package using default parameters. Analysis was performed
with the R statistical software (version 3.4.3 and version 3.5 for ChAMP
(version 2.10.1)). Three outliers, eight samples from young subjects aged
<5 years, and one subject who had a similar profile as young and clustered
with the eight young subjects, were excluded owing to known differences
in methylation profiles associated with age,102 leaving 44 samples in the
analysis (Fig. 1).
GO analysis was performed with g:Profiler (biit.cs.ut.ee/gprofiler) using

the g:GOSt package to provide statistical enrichment analysis of our
significantly HypoM and HyprM genes and significantly expressed genes
associated with African ancestry.103 We filtered for significance at a BH-
adjusted p value < 0.05. We set hierarchical sorting by dependencies
between terms on the strongest setting, “best per parent group,” and only
annotated genes were used as the statistical domain size parameter to
determine hypergeometrical probability of enrichment. We considered
ontology terms to be statistically significant at a BH-adjusted p value <0.01.
Correlation of log fold change in DNA methylation of DM CpG sites by

genomic feature was performed on significantly DM probes identified by
limma and plotted using ggplot2 v3.1.0. Genomic features and transcrip-
tionally regulated regions were subdivided for terms “island,” “open sea,”
“shelf,” “shore” and “5’UTR,” “TSS 1500,” “TSS 200,” “Body,” “3’UTR,”
respectively, where “island” refers to 1 kb regions of high CpG density,
“shore” refers to 2 kb regions flanking “islands,” “shelf” refers to 2 kb
regions flanking “shores,” and “open sea” refers to IGRs.104,105 Location of
CpGs in relation to gene annotation was defined as within the 5’-UTRs,
within 1500 bp of the TSS (TSS 1500), within 200 bp of the TSS (TSS 200),
within the gene body (Body), or within the 3’-UTR. A chi-squared test was
used for all categorical comparisons. Correlation with methylation and
gene expression was performed using the ggscatter function in ggpubr
v0.2, with the correlation method set to Pearson, C.I. set at 95%, and
regression calculations included for the following subsets: HypoM, HyprM,
and cumulative CpG sites. Gene name conversions and annotated gene
attributes were determined by BioMart v2.38.0. The Circos plot was created
using the Circos tool v0.69-6.
Mediation analysis was performed using the R package “mediation”

v4.4.7. We first performed linear regression to test whether African
ancestry affects methylation for each of the five genes we discovered to be
associated with WAA. For each non-zero effect, we subsequently
performed causal mediation analysis to determine the proportion of
methylation that affects gene expression compared to that of WAA. The
Average Causal Mediation Effects score represents the mediation effect of
methylation. We also report the 95% C.I., its upper and lower bounds, and
the statistical significance of the mediation effect (p value).
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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The datasets supporting the conclusion of this article are included with the article
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